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a b s t r a c t

Network models that can capture the underlying network’s topologies and functionalities
are crucial for the development of complex network algorithms and protocols. In the
engineering community, the performances of network algorithms andprotocols are usually
evaluated by running themon anetworkmodel. Inmost if not all reportedwork, the criteria
used to determine such a network model rely on how close it matches the network data in
terms of some basic topological characteristics. However, the intrinsic relations between a
network topology and its functionalities are still unclear. A question arises naturally: For
a network model which can reproduce some topological characteristics of the underlying
network, is it reasonable and valid to use this model to be a test-bed for evaluating the
network’s performances? To answer this question, we take a close look at several typical
complex network models of the AS-level Internet as examples of study. We find that
although a model can represent the Internet in terms of topological metrics, it cannot be
used to evaluate the Internet performances. Our findings reveal that the approaches using
topological metrics to discriminate network models, which have been widely used in the
engineering community, may lead to confusing or even incorrect conclusions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The topological properties of a complex network are typically very complicated due to its large size and intrinsic
interconnection patterns. To better understand the structure of a network and to analyze its dynamical behavior, it is
important and even necessary to construct a simplified abstract model that can well preserve the most fundamental
topological characteristics of the network.

Graphs, consisting of nodes with links connecting them in some topologies, have been widely used to model and
analyze the structural features of various complex networks [1]. Representative examples include those discussed in the
following. For social networks, Saban et al. [2] proposed a growth network model to represent the bilateral investment
treaties network; Kitsak et al. [3] proposed a scale-free model to describe the business firm network; Vieira et al. [4]
investigated the sexual transmission of HIV within a population based on a small-world network model; Yang et al. [5]
studied a spreading scheme of viral marketing based on a complex network model. For biological networks, Nicolau and
Schoenauer [6] introduced a network model to reproduce some statistical measurements of the gene regulatory network;
Nacher and Araki [7] suggested an evolutionary model to rebuild the degree distribution of the ncRNA–protein interaction
network; Sneppen et al. [8] presented a simplified model to understand the large-scale regulatory networks; Ponten
et al. [9] examined the relationship between structural and functional connectivity on the basis of the EEG neural mass
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model. For communication and transportation networks, Boas et al. [10] developed a modified geographical model to
discuss worldwide highway networks; Wang and Loguinov [11] derived a wealth-based Internet model to study the AS-
level Internet topology. In fact, along the same line of research on network modeling, many other examples can be easily
given.

Once amodel is constructed to describe a network, it needs to be evaluated to see if it is ‘‘good’’ to represent that network
and, moreover, if it is ‘‘better’’ than other existing models designated for the same network.

At present, most if not all reported network models rely only on topological characteristics of the underlying network,
and these criteria are used to evaluate and differentiate comparable models. From this perspective, a model is considered to
be ‘‘good’’ if it can reproduce basic topological features of the underlying network from its measured data; furthermore, this
model is considered to be ‘‘better’’ than other models if it can match the network data-set more closely, also in terms of the
same topological characteristics. In a word, topological characteristics are used as litmus for testing and judging network
models today.

Specifically, some well-studied topological characteristics such as node degree distribution, clustering coefficient,
distance distribution, and spectrum of the adjacency matrix, are commonly used to validate a model for a network or
to evaluate and differentiate different models. For instance, Nacher and Araki [7] used degree distribution to evaluate
their proposed model for an ncRNA–protein interaction network; Wang and Loguinov [11] asserted that their proposed
wealth-based Internet model is better than other existing models because it can better capture the clustering coefficient
and the distance distribution of the AS-level Internet network according to a set of real data; Toivonen et al. [12] utilized
degree distribution, clustering coefficient and community structure to compare different models of friendship and email
networks.

Themain concern in the engineering community, however, is typically the network performances instead of the network
topological features, themain reason being that a network (e.g., the Internet) is designed and built for certain intended tasks
and functionalities. In such cases, it is important for a network model to behave as the underlying network in terms of some
concerned performance indexes, yet not necessarily being able to capture the network topological characteristics as many
as possible. Lacking profound knowledge about the intrinsic relations between the network topology and its dynamics and
functionalities, the existing criteria using topological characteristics to evaluate and differentiate network models remains
in place for most scientific and engineering applications today-one example in point is a new design of Internet routing
protocols from the complex network approach [13].

To identify to what extent a network model obtained by the criteria using topological characteristics to evaluate models
is useful for engineering applications, by taking models of the AS-level Internet topology as the underlying test-bed, we
show that the current approaches using the topological characteristics to evaluate different models may be misleading for
engineering applications. Specifically, we show that different Internet models may have very little difference in resisting
random removals although they are very different in major topological metrics, namely the clustering coefficient, the
distance distribution, the largest eigenvalue of the adjacency matrix, and the gap between the first and the second largest
eigenvalues.

We also show that some network models that closely match the Internet data-sets in terms of the aforementioned
topological metrics can be very different from the real Internet in their performances of resisting intentional attacks and
traffic load distribution. We thereby conclude that it is misleading if the network performances are evaluated based on the
model which is obtained by the commonly-adopted criteria using topological characteristics to evaluate and differentiate
Internet models.

The rest of the paper is organized as follows. Section 2 provides some background and preliminaries on network
models and their topological metrics. Section 3 compares some basic topological characteristics and Section 4 compares the
robustness against random failures and intentional attacks, as well as data traffic performance of the Internet, all supported
by extensive data-based simulations. Section 5 briefly concludes the investigation.

2. Network models and their topological metrics

For the AS-level Internet, since the first observation by Faloutsos et al. [14], several power-law models such as the
Barabási–Albert (BA) model [15], Extended BA (EBA) model [16], Fitness model [17], Generalized Linear Preference (GLP)
model [18], Highly Optimized Tolerance (HOT) model [19], Positive-Feedback Preference (PFP) model [20], Multi-Local-
World (MLW) model [21], and Wealth-based Internet Topology (WIT) [11] model, have been proposed to describe the
Internet topology, despite the fact that most of them were not intended for the Internet.

In order to evaluate and differentiate the above-listed models against the real Internet, basic topological characteristics
have been examined and discussed in the literature, particularly the following:

Clustering coefficient—it is defined to measure how closely the neighbors of a node are interconnected, popularly known
as the probability of two friends of a person being friends themselves in a social network. It is an important characteristic
used to describe the robustness performance in resisting removals of nodes–links, and even to evaluate routing algorithms
in computer networks, because a node with a higher clustering coefficient generally has higher path diversity.

Distance distribution—it is to measure the probability that a randomly selected pair of nodes are separated by a pre-
designated distance. As a global topological characteristic, it plays a vital role in many Internet applications such as data
routing and virus spreading prevention.
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Fig. 1. Cumulative degree distribution of the AS-level Internet on May 15 from 2004 to 2010.

The first largest eigenvalue and the gap between the first and the second largest eigenvalues of the adjacency matrix—
eigenvalues of the adjacency matrix of a network represent another global characteristic of the network. Particularly, the
first largest eigenvalue of the network adjacency matrix and the gap between the first and the second largest eigenvalues
of this matrix are very important because the former is key to the network robustness against node–link removals and the
latter is closely related to the maximum traffic throughput of the network. Here, the adjacency matrix, {ai,j}N×N , is defined
by setting ai,j = 1 if nodes i and j are connected, or = 0 otherwise.

The above three basic topological characteristics have been frequently used to evaluate newly proposed models for
the Internet. For example, Wang and Loguinov [22] compared the wealth-based evolution model with the BA model, the
generalized linear preferential model [23], and the HOT model [19], by examining whether or not they can reproduce
the average clustering coefficient and the average distance characteristics of the real Internet topology. They also used
the dynamical behaviors of the average clustering coefficient, the average distance, and the second smallest eigenvalue
of the normalized Laplacian matrix (the negativity of the adjacency matrix), so as to differentiate different models [11].
As another example, Bu and Towsley [18] argued that their proposed model is better than the others by evaluating the
degree of resemblance to the Internet in terms of the power-law exponent, average clustering coefficient and average
distance.

On the other hand, in the engineering community, two usually concerned and widely studied issues are the following:
Robustness in resisting random failures and intentional attacks—On the Internet, events such as equipment failures, power

lost, traffic overloading, and distributed DoS attacks, frequently occur. Such incidents are expected to have little effect on
the effective operation of the entire network, namely the Internet should be robust against them.

Traffic load distribution—In Internet data traffic engineering, the traffic load distribution pattern of the Internet is very
important because it can be used to measure the potential traffic on nodes–links and potential congestion points in the
network.

By taking all the above-referred network metrics and concerned issues into consideration, the objective of this paper is
to answer the following question:

If an Internet model ‘‘closely matches’’ the real Internet data-set in terms of the three key topological characteristics listed
above, can it be used to evaluate the Internet performances of resisting random failures and intentional attacks and to uncover
the pattern of the Internet traffic load distribution?

To address this question, the familiar BA, EBA, Fitness, andMLWmodels are used for evaluation and comparison, because
they can be precisely formulated and programmed tomatch therefore investigate the AS-level Internet topology constructed
based on the daily data collected by UCLA [24], for example on 15 May 2005 which will be examined below.

Noticing the argument [25] that the degree distribution of the AS-level Internet might not be a power-law but a Weibull
or perhaps something else, we plot Fig. 1 here for verification, to show the cumulative degree distributions of the data-set
collected on every 15th of May from year 2004 to 2010. During this period of a total of six years, although the Internet had
grown and changed dramatically, these cumulative degree distributions turned out to be very similar to each other and they
all look like in power-law (albeit not perfectly). For this reason, some traditional Internetmodels, such as random graph [26]
and Tiers and Transit-Stubmodels [23], are excluded from our comparisons below. On the other hand, previous observations
have shown [27] that the three basic topological characteristics, namely the average degree, degree distribution and joint
degree distribution, are key to reproduce an Internet-like topology. Therefore, the models considered here, namely the BA,
EBA, Fitness, and MLW models, will apply the same set of values of these three characteristics (see [21] for more details in
performing such simulations).
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Table 1
Values of topological parameters for the Internet and the networkmodels. N is the number of nodes, γ is the
power-law exponent, r is the assortativity coefficient, C̄ is the average clustering coefficient, d̄ is the average
distance between nodes, and λ is the largest eigenvalue of the adjacency matrix.

Internet BA EBA Fitness MLW

N 21999 21999 21999 21999 21999
γ 2.18 3.0 2.69 2.45 2.36
r −0.18 −0.02 0.02 −0.11 0.03
C̄ 0.46 0.003 0.01 0.01 0.24
d̄ 3.49 4.14 3.49 3.71 3.45
λ 141.12 27.82 62.83 39.16 111.87

Fig. 2. Comparison of clustering coefficient.

At this point, it should be remarked that our emphasis here is not to claim which model is the best one to represent the
Internet, nor to optimize a model to best fit the Internet topology. Instead, our intention is to demonstrate that the current
approaches using topological metrics to evaluate and differentiate complex network (e.g., the Internet) models may lead to
confusing or even incorrect conclusions in the field of engineering applications. Therefore, it is often not necessary to tune
the model parameters to best fit the snapshots of the Internet topology data-set in simulations. This will become clearer as
our presentation develops.

3. Comparison of basic topological characteristics

The parameter values of some basic topological metrics obtained from our extensive simulations, such as the network
size (number of nodes), power-law exponent, assortativity coefficient, average clustering coefficient, average distance, and
largest eigenvalue of the adjacency matrix, are summarized in Table 1.

It can be observed from Table 1 that theMLW and EBAmodels are closer to the Internet in terms of the average clustering
coefficient, average distance and largest eigenvalue. Clearly, the MLW and EBA models are better than the BA and Fitness
models if they are compared based on these topological characteristics.

Fig. 2 shows the relationship between the clustering coefficient and the node degree k for the Internet and the models in
question. It can be seen that high-degree nodes of the Internet have lower clustering coefficients while low-degree nodes
have higher clustering coefficients, which is consistent with the observations reported earlier in [28] that the core is loosely
connected and the structure is clearly hierarchical in the Internet. It can also be observed from Fig. 2 that the clustering
coefficient of the MLWmodel is closer to that of the Internet as compared to the other models.

Fig. 3 displays the distance distributions of the Internet and the models. It can be seen that the BA and Fitness models
have a Poisson-like distance distribution, with a peak around a certain distance d0 and exponentially delayingwhen distance
d is far from d0. Clearly, the MLW and EBA models are better than the BA and Fitness models in capturing the characteristic
of distance distribution of the Internet.

Fig. 4 depicts the first and second largest eigenvalues of the adjacency matrix of the Internet and the models. For the
Internet, the first largest eigenvalue is quite large and there is a big gap between the first and the second largest eigenvalues.
It can be observed that the first largest eigenvalue and the gap between the first and the second largest eigenvalues are both
bigger in the MLW and EBA models, but they are smaller in the BA and Fitness models. Clearly, if only the first largest
eigenvalue is concerned, the MLW and EBA models are better than the BA and Fitness models. Furthermore, in evaluating
both the first largest eigenvalue and the gap between the first and the second largest eigenvalues, the same can be concluded.

In summary, theMLW is the best choice among the studiedmodels to fit the Internet topology, on the basis of the above-
referred real AS-level Internet data-set, if the models are evaluated by their topological characteristics such as the average
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Fig. 3. Comparison of distance distribution.

Fig. 4. Comparison of the first and second largest eigenvalues of adjacent matrix.

clustering coefficient, average distance, clustering coefficient distribution, distance distribution, the first largest eigenvalue,
and the gap between the first and the second largest eigenvalues.

4. Comparison of performances in robustness and data traffic

The robustness of a network against attacks and failures can be studied by using Sf , the size of the largest connected
component after a fraction of nodes, f , in the network were randomly or intentionally removed from the original network
S0. Clearly, the ratio Sf /S0 measures the capability of the network regarding how many nodes remain functioning in
communicating with each other after the f portion of nodes had been removed.

Fig. 5 shows a comparison of robustness in resisting random removals of nodes. It can be observed that all models have
only little differences. However, as discussed above, all these models are very different in their topological characteristics,
namely the clustering coefficient, distance distribution, the first largest eigenvalue, and the gap between the first and the
second largest eigenvalues. We therefore conclude that the model obtained by the approach using topological metrics to
evaluate models provides quite limited information on the resistance ability of the Internet against random removals.

It can also be observed that the BA and Fitness models have different power-law exponents but they behave similarly in
resisting random removals. Therefore, concerning the robustness of the Internet against random removals, it is not necessary
to require amodel to be able to exactly reproduce the value of the power-law exponent of the real Internet. Even the simplest
BA model can roughly reflect the Internet’s robustness against random removals. This also shows that the so-called ‘‘robust
yet fragile’’ property of the Internet [29], or of its BA model, does not essentially depend on the power-law distribution of
its topology.

Fig. 6 compares the robustness in resisting intentional attacks. Here, as usual, intentional attack means that nodes
are removed one after another following the decreasing order of the node degrees. It can be observed from the figure
that the MLW model is the best while, surprisingly, the EBA model is the worst in reflecting the Internet’s robustness
in resisting intentional attacks. However, both the MLW and EBA models are better than the BA and Fitness models in
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Fig. 5. Comparison of robustness in resisting random removals.

Fig. 6. Comparison of robustness in resisting intentional attacks.

terms of reproducing the average clustering coefficient and the average distance. Therefore, the model obtained on the
basis of the average clustering coefficient and the average distance, as did in [18], provides an incorrect information on the
resistance ability of the Internet against intentional attacks. Note also that the EBA model is better than the Fitness model
in reproducing the Internet’s topological characteristics, including the clustering coefficient, distance distribution, the first
largest eigenvalue, and the gap between the first and the second largest eigenvalues. However, the Fitnessmodels is closer to
the Internet than the EBAmodel inmatching the robustness against intentional attacks. Thus, the approach using topological
metrics to evaluate and differentiate models leads to an incorrect conclusion on the resistance ability of the Internet against
intentional attacks.

Next, to investigate the traffic load distribution, it is natural to study T (r), the ratio of the traffic load of the first r largest
nodes over the total traffic load of the whole network. Here, it is assumed that a data packet is sent from node i to j, for every
possible pair of nodes (i, j). For simplicity, it takes into account the time delays of data transmission at nodes and links, and
it adopts the Open-Shortest-Path-First (OSPF) routing protocol to transmit data packets. Thus, the traffic load of a node is
defined as the total number of packets passing through it, after all pairs of nodes have sent and received one packet between
them.

Fig. 7 shows the traffic load distribution of the Internet and the concerned models. It can be seen that the traffic load
distribution of the Internet is quite heterogeneous: a small fraction of the first largest nodes occupy most traffic load of the
network, while a large number of low-degree nodes occupy only a small portion of the total traffic. Compared to the BA and
Fitnessmodels, theMLWand EBAmodels significantly underestimate the heterogeneity of the traffic load distribution of the
Internet. Again, for the traffic load distribution concerned by the engineering community, the approach using topological
metrics to evaluate and differentiate models leads to an incorrect conclusion.

5. Conclusions and discussions

Topological characteristics of the Internet can highly influence the dynamics of the processes running on it. The state
of the art is that every existing Internet model can only present one subset of the real Internet topological features.
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Fig. 7. Comparison of traffic load distribution.

The evaluation and differentiation of the Internetmodels, therefore, rely on the use of trustworthymeasures of fundamental
topological characteristics. Yet, this paper has revealed that the commonly-adopted criteria that use basic topological
characteristics to evaluate and compare Internet models can be confusing and they are, de facto, questionable.

Observe that usually more than two measures of topological characteristics are applied to evaluate and differentiate an
Internet model. In such cases, one can also combine the canonical variable analysis and Bayesian decision theory to classify
the Internet models [29]. Suppose the feature vector is X = (x1, x2, . . . , xp)T , where xi is a scalar measure, and it is used to
classifyN networkswhich are divided intoM classes. The objective is tomaximize the interclass dispersionwhileminimizing
the intraclass scattering, where the intraclass matrix is defined as

Sintra =

M
k=1


ζ∈Ck


Xζ − X̄k


Xζ − X̄k

T
,

while the interclass matrix is defined as

Sinter =

C
k=1

Nk


X̄k − X̄


X̄k − X̄

T
,

where Xζ is the feature vector of network ζ , X̄k is the average feature vector of class Ck, X̄ is the average feature vector
of N networks, and Nk is the number of networks in class Ck, k = 1, 2, . . . ,M . The original higher-dimensional feature
measures can then be projected into a two-dimensional feature space by using a linear transformation Y = TXζ , where T is
constructed by the eigenvectors associated with the first two largest eigenvalues of thematrix S−1

intraSinter. Finally, in the two-
dimensional feature space, a network with unknown classification can be determined to belong to which class, on the basis
of the Bayesian decision method. Fig. 8 shows the canonical projection results when the average clustering coefficient, the
average distance, and the first largest eigenvalue of the adjacency matrix are involved in the evaluation and comparison of
the Internetmodels. By using the Bayesian decisionmethod, one can find that theMLWmodel is indeed themost compatible
one to the real Internet.

It is also possible to apply the hierarchical clustering algorithm [30] to classify the various Internet models. This method
builds a hierarchy by treating every network as a single cluster. Then, in each successive iteration, according to the
predefined distance between clusters, the closest pair of clusters are merged, until only one cluster remains. Fig. 9 shows
the dendrogram by using the familiar Ward’s method when the average clustering coefficient, the average distance, and
the first largest eigenvalue of the adjacency matrix are used to classify the Internet models. In the figure, each linkage of
distances indicates a point at which two models are merged: the sooner the two networks are merged, the more similar
they are. From this figure, one can see that the MLWmodel is closer to the real Internet than all the other models.

From Figs. 8 and 9, thus, one can gain an overall impression that although a network model (e.g., the MLW model)
can represent the network (e.g., the Internet) in terms of topological characteristics, it cannot represent the concerned
network performances (e.g., traffic load distribution). It means that the approach using topological metrics to evaluate and
differentiatemodelsmay lead to incorrect conclusions on network performances concerned by the engineering community.

In summary, the approaches using topological characteristics to discriminate graph models are widely used in the
engineering community [31]. However, due to the fact that the intrinsic relations between the network topology and its
functionalities are still unknown, the current approaches using topological characteristics to evaluate and differentiate
network models may mislead engineers to draw incorrect conclusions on performances of network algorithms and
protocols.
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Fig. 8. Classification of the Internet models by using canonical variable analysis.

Fig. 9. Dendrogram of the Internet and its models.
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