Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The forcing hull and forcing geodetic numbers of graphs

Li-Da Tong

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan

ARTICLE INFO

Article history: Received 13 June 2007 Received in revised form 9 November 2007 Accepted 9 March 2008 Available online 2 May 2008

Keywords: Geodetic number Hull number Forcing geodetic number Forcing hull number Geodesic

ABSTRACT

For every pair of vertices u, v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let $I_C[u, v]$ denote the set of all vertices lying on a u-v geodesic. Let $S \subseteq V(G)$ and $I_G[S]$ denote the union of all $I_G[u, v]$ for all $u, v \in S$. A subset $S \subseteq V(G)$ is a convex set of G if $I_G[S] = S$. A convex hull $[S]_G$ of S is a minimum convex set containing S. A subset S of V(G) is a hull set of G if $[S]_G = V(G)$. The hull number h(G) of a graph G is the minimum cardinality of a hull set in G. A subset S of V(G) is a geodetic set if $I_G[S] = V(G)$. The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset $F \subseteq V(G)$ is called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called the forcing hull number $f_h(G)$ of G and the cardinality of a minimum forcing geodetic subset in G is called the forcing geodetic number $f_{g}(G)$ of G. In the paper, we construct some 2connected graph G with $(f_h(G), f_g(G)) = (0, 0), (1, 0)$, or (0, 1), and prove that, for any nonnegative integers *a*, *b*, and *c* with $a + b \ge 2$, there exists a 2-connected graph *G* with $(f_h(G), f_g(G), h(G), g(G)) = (a, b, a + b + c, a + 2b + c)$ or (a, 2a + b, a + b + c, 2a + 2b + c). These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81-94].

© 2008 Elsevier B.V. All rights reserved.

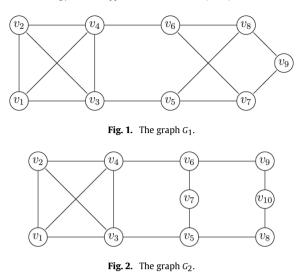
1. Introduction

All graphs considered in the paper are finite and simple. Let *S* be a subset of V(G). Denote by *induced subgraph* $\langle S \rangle_G$ the subgraph of *G* induced by *S*. The *neighborhood* of a vertex *v* in a graph *G* is the set of vertices of *G* adjacent to *v*, denoted by $N_G(v)$ or N(v). Define $N_G(S)$ as the union of all $N_G(v)$ for all $v \in S$. A u_0 - u_k path (u_0, u_1, \ldots, u_k) is a sequence of vertices in *G* such that $u_0u_1, u_1u_2, \ldots, u_{k-1}u_k \in E(G)$ and u_0, u_1, \ldots, u_k are distinct. A u - v geodesic of *G* is a u - v shortest path in *G*. The *distance* between two vertices *u* and *v* in a graph *G*, written $d_G(u, v)$, is the length of a u - v geodesic of *G*. A graph *G* is called *vertex-transitive on a vertex subset S* if, for every pair *x*, $y \in S$, there exists an isomorphism *f* on *G* such that f(x) = y.

For a graph *G*, let $I_G[u, v]$ denote the set of all vertices lying on a u-v geodesic. For $S \subseteq V(G)$, let $I_G[S]$ denote the union of all $I_G[u, v]$ for all $u, v \in S$. A subset *S* of V(G) is *convex* if $I_G[S] = S$. Harary and Nieminen [7] defined the *convex hull* of a set *S* of vertices of a graph as the smallest vertex subset *T* containing *S* satisfying the property that all vertices of any geodesic between each pair of vertices of *T* belong to *T*. Let $I_G^k[S] = I_G[I_G^{k-1}[S]]$ for $k \ge 2$. It is easy to see that $[S]_G = I_G^k[S]$ for some *k*. A subset *S* of V(G) is a *hull set* of *G* if $[S]_G = V(G)$. Everett and Seidman [5] gave the definition of the hull number of a graph as the cardinality of a minimum vertex subset *S* with the convex hull of *S* is the vertex set. A subset *S* of V(G) is a *geodetic set* of *G* if $I_G[S] = V(G)$, and the *geodetic number* g(G) of a graph *G* is the minimum cardinality of a geodetic set *S* in *G*. The geodetic sets of a connected graph were introduced by Harary, Loukakis, and Tsouros [6], as a tool for studying metric properties of connected graphs. A vertex *v* is an *extreme vertex* of *G* if, for every two distinct vertices $x, y \in N(v), xy \in E(G)$. It is obvious that every hull (or geodetic) set of *G* contains all its extreme vertices.

E-mail address: ldtong@math.nsysu.edu.tw.

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter @ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.03.023



A subset $F \subseteq V(G)$ is called a *forcing hull (geodetic) subset* of *G*, if there exists a unique minimum hull (geodetic) set containing *F*. The cardinality of a minimum forcing hull (geodetic) subset in *G* is called *the forcing hull (geodetic) number* $f_h(G)$ ($f_g(G)$) of *G*. The study of forcing concepts have been widely investigated in graph theory, such as forcing convexity number [4], forcing domination number [1], forcing geodetic number [2,9,10], forcing hull number [3], forcing perfect matching [8], and so on.

Chartrand and Zhang in [3] posed a conjecture that:

Conjecture 1. For every pairs a, b of nonnegative integers, there exists a connected graph G with $f_h(G) = a$ and $f_g(G) = b$.

In the paper, we construct some 2-connected graph *G* with $(f_h(G), f_g(G)) = (0, 0), (1, 0)$, or (0, 1), and prove that, for any nonnegative integers *a* and *b* with $a + b \ge 2$, there exists a 2-connected graphs *G* with $(f_h(G), f_g(G), h(G), g(G)) = (a, b, a + b + c, a + 2b + c)$ or (a, 2a + b, a + b + c, 2a + 2b + c). These results confirm the conjecture above.

2. Forcing hull and geodetic graphs

In this section, we construct 2-connected graphs with fixed forcing hull number and forcing geodetic number. First, we construct a 2-connected graph G_1 with $h(G_1) = g(G_1) = 3$, $f_h(G_1) = 1$, and $f_g(G_1) = 0$.

Define G_1 as the 2-connected graph with the vertex set { $v_i : i = 1, 2, ..., 9$ } and the edge set { $v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4, v_3v_5, v_4v_6, v_5v_7, v_5v_8, v_6v_7, v_6v_8, v_7v_9, v_8v_9$ }, see Fig. 1.

Proposition 1. $h(G_1) = g(G_1) = 3$, $f_h(G_1) = 1$, and $f_g(G_1) = 0$.

Proof. Observe that v_1 and v_2 are the only two extreme vertices of G_1 . Therefore every hull set or geodetic set contains v_1 and v_2 . By $[\{v_1, v_2\}]_{G_1} = \{v_1, v_2\}$ and $I_{G_1}[\{v_1, v_2, v_9\}] = V(G_1)$, $h(G_1) = g(G_1) = 3$. Since $\{v_1, v_2, v_9\}$ is the unique minimum geodetic set, $f_g(G_1) = 0$. And, by $\{v_1, v_2, v_8\}$ being a minimum hull set, $f_h(G_1) = 1$.

Let G_2 be the 2-connected graph with the vertex set { $v_i : i = 1, 2, ..., 10$ } and the edge set { $v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4, v_3v_5, v_4v_6, v_5v_7, v_5v_8, v_6v_7, v_6v_9, v_8v_{10}, v_9v_{10}$ }, see Fig. 2.

Proposition 2. $h(G_2) = 3$, $g(G_2) = 4$, $f_h(G_2) = 0$, and $f_g(G_2) = 1$.

Proof. Observe that v_1 and v_2 are the only two extreme vertices of G_2 . Therefore every hull set or geodetic set contains v_1 and v_2 . Since $[\{v_1, v_2\}]_{G_2} = \{v_1, v_2\}, h(G_2), g(G_2) \ge 3$. Since $[\{v_1, v_2, v_{10}\}]_{G_2} = V(G_2)$ and $\{v_1, v_2, v_{10}\}$ is the unique minimum hull set of G_2 , $h(G_2) = 3$ and $f_h(G_2) = 0$.

Since $I_{G_2}[\{v_1, v_2, v_x\}] \neq V(G_2)$ for any $x \in V(G_2)$ and $I_{G_2}[\{v_1, v_2, v_7, v_{10}\}] = V(G_2)$, $g(G_2) = 4$. It follows that $I_{G_2}[\{v_1, v_2, v_6, v_8\}] = V(G_2)$. This implies that $f_g(G_2) \ge 1$. Now, since the set $\{v_1, v_2, v_7, v_{10}\}$ is the only minimum geodetic set containing v_7 , it follows that $f_g(G_2) = 1$.

Let G_3 be a 2-connected graph with the vertex set { $v_i : i = 1, 2, ..., 15$ } and the edge set { $v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4, v_3v_5, v_3v_6, v_4v_7, v_4v_8, v_5v_9, v_6v_9, v_7v_{10}, v_8v_{10}, v_9v_{12}, v_{10}v_{13}, v_{11}v_{12}, v_{11}v_{14}, v_{12}v_{15}, v_{13}v_{14}, v_{13}v_{15}$ }, see Fig. 3.

Proposition 3. $h(G_3) = 3$, $g(G_3) = 4$, $f_h(G_3) = 1$, and $f_g(G_3) = 2$.

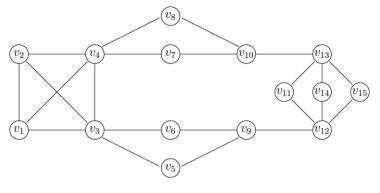


Fig. 3. The graph *G*₃.

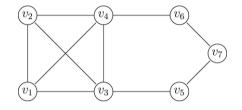


Fig. 4. The graph H_0 .

Proof. Observe that v_1 and v_2 are the only two extreme vertices of G_3 . Therefore every hull set or geodetic set contains v_1 and v_2 . Also, since $[\{v_1, v_2\}]_{G_3} = \{v_1, v_2\}, h(G_3), g(G_3) \ge 3$. Since $[\{v_1, v_2, v_{15}\}]_{G_3} = [\{v_1, v_2, v_{14}\}]_{G_3} = V(G_3), h(G_3) = 3$ and $f_h(G_3) = 1$.

Consider the values of $f_g(G_3)$ and $g(G_3)$. Since $I_{G_3}[\{v_1, v_2, v_a\}] \neq V(G_3)$ for any $a \in \{3, 4, ..., 15\}$ and $I_{G_3}[\{v_1, v_2, v_{10}, v_{12}\}] = V(G_3)$, we get $g(G_3) = 4$. Let $T = \{v_1, v_2, x, y\}$ be a minimum geodetic set of G_3 . If $x = v_5$, then, by $I_{G_3}[\{v_1, v_2, v_5, v_5\}] = \{v_1, v_2, v_3, v_5\}$. This implies that $v_6 \in I_{G_3}[v_1, y]$. Thus, $y \in \{v_9, v_{11}, v_{12}, v_{14}, v_{15}\}$. We find that $I_{G_3}[\{v_1, v_2, v_5, v_t\}] \neq V(G_3)$ for $t \in \{9, 11, 12, 14, 15\}$. Then $v_5 \notin T$. By a similar argument, $v_t \notin T$ for t = 5, 6, 7, 8. If $x = v_{11}$, then, by $I_{G_3}[\{v_1, v_2, v_{11}\}] = V(G_3) - \{v_{14}, v_{15}\}$; that is $v_{14} \in I_{G_3}[v_1, y_2]$. Since only $I_{G_3}[v_1, v_{14}]$ contains $v_{14}, y = v_{14}$. But $I_{G_3}[\{v_1, v_2, v_{11}, v_{14}\}] = V(G_3) - \{v_{15}\}$. Therefore, $v_{11} \notin T$. Similarly, $v_t \notin T$ for t = 14, 15. And, we have that $I_{G_3}[\{v_1, v_2, v_9, v_{10}\}] = I_{G_3}[\{v_1, v_2, v_{10}, v_{13}\}] = V(G_3)$. These imply that $f_g(G_3) = 2$.

Let H_0 be a 2-connected graph with the vertex set { $v_i : i = 1, 2, ..., 7$ } and the edge set { $v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4, v_3v_5, v_4v_6, v_5v_7, v_6v_7$ }, see Fig. 4.

Proposition 4. In the graph H_0 , $h(H_0) = g(H_0) = 3$ and $f_h(H_0) = f_g(H_0) = 0$.

Proof. Since $\{v_1, v_2, v_7\}$ is the unique minimum hull (geodetic) set of H_0 , $h(H_0) = g(H_0) = 3$ and $f_h(H_0) = f_g(H_0) = 0$.

For nonnegative integers *a* and *b*, we construct a graph *G* with $f_h(G) = a$ and $f_g(G) = b$ as follows. Let $m \ge 2$ and *t* be positive integers. Assume that G_1, G_2, \ldots, G_m are vertex disjoint graphs, each has at least t + 1 vertices and contains a *t*-subset S_i for which $\langle S_i \cup N_{G_i}(S_i) \rangle_{G_i}$ is complete. Let *G* be obtained from the disjoint union of G_1, G_2, \ldots, G_m by identifying S_1, S_2, \ldots, S_m . Let $S = S_1 = S_2 = \cdots = S_m$. It is easy to see that G_1, G_2, \ldots, G_m , and *G* are vertex-transitive on *S*, and if G_1, G_2, \ldots, G_m are 2-connected and $t \ge 2$, then *G* is also 2-connected.

Lemma 5. Suppose that G is the graph defined above and T is a minimum hull (or geodetic) set. Then T and S are disjoint.

Proof. Let *T* be a minimum hull (or geodetic) set of *G* and *u* be a vertex of *S*. Since $\langle S_i \cup N_{G_i}(S_i) \rangle_{G_i}$ is complete, $\langle S_i \cup N_{G_i}(S_i) \rangle_{G_i}$ is convex. Then $T \cap (V(G_i) - S_i)$ is nonempty. Let $x_i \in T \cap (V(G_i) - S_i)$ for i = 1, 2, ..., m. As *G* is vertex-transitive on *S*, and $x_1, x_2, ..., x_m$ are in the different components of G - S, we have that $u \in I_G[x_i, x_j]$ for $i \neq j$. If *T* is a minimum hull set and $u \in I_G[x_i, x_j]$ for some $i \neq j$, then *T* and *S* are disjoint. For *T* being a minimum geodetic set, if $v \in I_G[x, y]$ for some $x \in T \cap (V(G_i) - S_i)$ and $y \in S$, then $v \in I_G[x, x_j]$ for some $j \neq i$. Then *T* and *S* are disjoint.

Lemma 6. Suppose that *G* is the graph defined in Lemma 5. Then *T* is a minimum hull (or geodetic) set of *G* if and only if $(T \cap V(G_i)) \cup S_i$ is a minimum hull (or geodetic) set of G_i for i = 1, 2, ..., m.

Proof. Since *G* is vertex-transitive on *S* and $V(G) - S = \bigcup_{i=1}^{m} (V(G_i) - S_i)$, we have that, for $v_i \in V(G_i) - S_i$ and $v_j \in V(G_j) - S_j$ with $i \neq j, x \in I_G[v_i, v_j]$ for all $x \in S$. It follows that: Property (*): For $v_i \in V(G_i) - S_i$ and $v_i \in V(G_i) - S_i$ with $i \neq j, S \subseteq I_G[v_i, v_i]$. Suppose that *T* is a minimum hull set in *G*. Let $v_i \in V(G_i) - S_i$ and $v_j \in V(G_j) - S_j$ with $i \neq j$. Since v_i and v_j are in different components of *G* – *S*, every geodesic between v_i and v_j passes through some vertex of *S*. Then $V(G_i) \cap I_G^k[T] = I_G^k[(T \cap V(G_i)) \cup S_i]$ for all positive integer *k*. This implies that $[(T \cap V(G_i)) \cup S_i]_{G_i} = V(G_i)$; that is, $(T \cap V(G_i)) \cup S_i$ is a hull set of *G*. Thus, by Lemma 5, $h(G) + m|S| \ge h(G_1) + h(G_2) + \cdots + h(G_m)$. If *T*_i is a minimum hull set of *G*. We thus get $h(G) \le h(G_1) + h(G_2) + \cdots + h(G_m) - m|S|$. By the two inequalities above, we conclude that $h(G) = h(G_1) + h(G_2) + \cdots + h(G_m) - m|S|$. Then it follows that *T* is a minimum hull set of *G* if and only if $(T \cap G(G_i)) \cup S_i$ is a minimum hull set of *G* for $i = 1, 2, \ldots, m$.

Assume that *T* is a minimum geodetic set in *G*. Since *G* is vertex-transitive on *S*, $V(G) - S = \bigcup_{i=1}^{m} (V(G_i) - S_i)$, $u \in V(G_i) - S_i$, and $v \in V(G_j) - S_j$ with $i \neq j$, we have that $x \in I_G[u, v]$ for all $x \in S$. For each $x \in V(G_i) - S_i$, by Lemma 5, there exist $v_i \in (T \cap V(G_i)) - S_i$ and $v_j \in (T \cap V(G_j)) - S_j$ such that $x \in I_G[v_i, v_j]$. So either i = j or $x \in I_G[v_i, y]$ for some $y \in S$. Then $(T \cap V(G_i)) \cup \{S_i\}$ is a geodetic set of G_i . Thus, $g(G) + m|S| \ge g(G_1) + g(G_2) + \dots + g(G_m)$. Assume that T_i is a minimum geodetic set of G_i for $i = 1, 2, \dots, m$. Since $\langle S_i \cup N_{G_i}(S_i) \rangle_{G_i}$ is complete in G_i for $i = 1, 2, \dots, m$, $T_i - S_i$ is nonempty. By the property (*), $S \subseteq I_G[\cup_{i=1}^m (T_i - S_i)]$. For each $x \in V(G_i) - S_i$, there exist $u, v \in T_i$ such that $x \in I_{G_i}[u, v]$. If $u, v \notin S_i$, then $x \in I_G[\cup_{k=1}^m (T_k - S_k)]$. If $u \in S_i$ and $v \notin S_i$, then $x \in I_G[v, w]$ for some $w \in T_j - S_j$ with $i \neq j$; that is, $x \in I_G[\cup_{k=1}^m (T_k - S_k)]$. Hence $\bigcup_{k=1}^m (T_k - S_k)$ is a geodetic set in *G*. This implies that $g(G) \leq g(G_1) + g(G_2) + \dots + g(G_m) - m|S|$. By above, $g(G) = g(G_1) + g(G_2) + \dots + g(G_m) - m|S|$. Then it follows that *T* is a minimum geodetic set of *G* if and only if $(T \cap G(G_i)) \cup S_i$ is a minimum geodetic set of G_i for $i = 1, 2, \dots, m$.

Theorem 7. Suppose that *G* is the graph defined in Lemma 5. Then

(a) $h(G) = h(G_1) + h(G_2) + \dots + h(G_m) - m|S|$, (b) $g(G) = g(G_1) + g(G_2) + \dots + g(G_m) - m|S|$, (c) $f_h(G) = f_h(G_1) + f_h(G_2) + \dots + f_h(G_m)$, and (d) $f_g(G) = f_g(G_1) + f_g(G_2) + \dots + f_g(G_m)$.

Proof. By Lemma 6, we have that $h(G) = h(G_1) + h(G_2) + \dots + h(G_m) - m|S|$ and $g(G) = g(G_1) + g(G_2) + \dots + g(G_m) - m|S|$. According to Lemma 6 and definitions, *F* is a forcing hull (or geodetic) subset of *G* if and only if $F \cap V(G_i)$ is a forcing hull (or geodetic) subset of G_i for $i = 1, 2, \dots, m$. This implies that $f_h(G) = f_h(G_1) + f_h(G_2) + \dots + f_h(G_m)$, and $f_g(G) = f_g(G_1) + f_g(G_2) + \dots + f_g(G_m)$.

Theorem 8. Let *a*, *b*, and *c* be nonnegative integers with $a + b \ge 2$. Then there exists a 2-connected graph *G* with $f_h(G) = a$, $f_g(G) = b$, h(G) = a + b + c, and g(G) = a + 2b + c.

Proof. Suppose that X_i is a graph isomorphic to G_1 for $i = 1, 2, ..., a, X_j$ is a graph isomorphic to G_2 for $j = a+1, a+2, ..., a+b, X_k$ is a graph isomorphic to H_0 for k = a + b + 1, a + b + 2, ..., a + b + c, and S_l is the set of all extreme vertices in X_i for l = 1, 2, ..., a + b + c. Let G be the graph obtained from $X_1, X_2, ..., X_{a+b+c}$ identifying $S_1, S_2, ..., S_{a+b+c}$. By Propositions 1, 2 and 4, and Theorem 7, G is a 2-connected graph with $f_h(G) = a, f_g(G) = b, h(G) = a + b + c$, and g(G) = a + 2b + c.

Corollary 9. Suppose that a and b are nonnegative integers with a and b. Then there exists a 2-connected graph G with $f_h(G) = a$ and $f_g(G) = b$.

Proof. Let *H* be a complete graph with $V(H) = \{x_1, x_2, x_3, x_4\}$ and *H'* be the graph obtained from *H* by deleting the edge x_1x_2 . Then, it is obvious that $\{x_1, x_2\}$ is the unique maximum hull (geodetic) set in *H'*; that is, $f_h(H') = 0$ and $f_g(H') = 0$. For $(a, b) \neq (0, 0)$, by Propositions 1 and 2, and Theorem 8, there exists a 2-connected graph *G* with $f_h(G) = a$ and $f_g(G) = b$ for nonnegative integers *a* and *b* with $a + b \ge 1$.

Corollary 9 proves Conjecture 1.

Corollary 10. Suppose that *a* and *b* are nonnegative integers with $a \le b$ and $b \ge 2$. Then there exists a 2-connected graph *G* with $f_h(G) = a$ and h(G) = b.

Theorem 11. Let *a*, *b*, and *c* be nonnegative integers with $a + b \ge 2$. Then there exists a 2-connected graph G with $f_h(G) = a$, $f_g(G) = 2a + b$, h(G) = a + b + c, and g(G) = 2a + 2b + c.

Proof. Suppose that X_i is a graph isomorphic to G_3 for $i = 1, 2, ..., a, X_j$ is a graph isomorphic to G_2 for $j = a+1, a+2, ..., a+b, X_k$ is a graph isomorphic to H_0 for k = a + b + 1, a + b + 2, ..., a + b + c, and S_l is the set of all extreme vertices in X_i for l = 1, 2, ..., a + b + c. Let G be the graph obtained from $X_1, X_2, ..., X_{a+b+c}$ identifying $S_1, S_2, ..., S_{a+b+c}$. By Propositions 2–4, and Theorem 7, we have that G is a 2 connected graph with $f_h(G) = a, f_g(G) = 2a+b, h(G) = a+b+c$, and g(G) = 2a+2b+c.

Chartrand and Zhang showed that if *G* is a connected graph with g(G) = 2, then $f_g(G) < 2$ in [2].

Corollary 12. Suppose that *a* and *b* are nonnegative integers with $a + 1 \le b$ and $b \ge 2$. Then there exists a 2-connected graph *G* with $f_g(G) = a$ and g(G) = b.

Proof. It is obvious that a complete graph of order $n \ge 3$ is a 2-connected graph with geodetic number n and the forcing geodetic number 0. Since every even cycle is a 2-connected graph with geodetic number 2 and the forcing geodetic number 1. For $(a, b) \ne (1, 2)$ and $2 \le a + 1 \le b$, by Theorem 11, there exists a 2-connected graph G with $f_g(G) = a$ and g(G) = b.

According to the above study, if *G* is a connected graph *G* with $f_h(G) = a$, $f_g(G) = b$, h(G) = c and g(G) = d, then $(b, d) \neq (2, 2)$ and a > 0 for c = d, b > 0. We offer the following open problem.

Problem 1. For which nonnegative integers *ab*, *c*, and *d* with $a \le c \le d$, $b \le d$, $c \ge 2$, does there exist a connected graph *G* with $f_h(G) = a, f_g(G) = b, h(G) = c$ and g(G) = d?

Acknowledgement

The author was supported in part by the National Science Council under grant NSC 95-2115-M-110-012-MY2, National Center of Theoretical Sciences.

References

- [1] G. Chartrand, H. Gavlas, R.C. Vandell, F. Harary, The forcing domination number of a graph, J. Combin. Math. Combin. 25 (1997) 161–174.
- [2] G. Chartrand, P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45–58.
- [3] G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81–94.
- [4] G. Chartrand, P. Zhang, The forcing convexity number of a graph, Czech. Math. J. 51 (2001) 847-858.
- [5] M.G. Evertt, S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223.
- [6] F. Harary, E. Loukakis, C. Tsourus, The geodetic number of a graph, Math. Comput. Modeling 17 (1993) 89–95.
- [7] F. Harary, J. Nieminen, Convexity in graphs, J. Differential Geom. 16 (1981) 185-190.
- [8] M.E. Riddle, The minimum forcing number for the torus and hypercube a graph, Discrete Math. 245 (2002) 283–292.
- [9] L.-D. Tong, The (a, b)-forcing geodetic graphs, preprint.
- [10] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin. 62 (2002) 3–15.