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I¢[S] denote the union of all I¢[u, v] for all u, v € S. A subset S € V(G) is a convex set of G if
I¢[S] = S. A convex hull [S]; of S is a minimum convex set containing S. A subset S of V(G) is
a hull set of G if [S]g = V(G). The hull number h(G) of a graph G is the minimum cardinality
of a hull set in G. A subset S of V(G) is a geodetic set if I;[S] = V(G). The geodetic number
g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset F C V(G) is
called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or
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Forcing geodetic number geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called
Forcing hull number the forcing hull number f; (G) of G and the cardinality of a minimum forcing geodetic subset
Geodesic in G is called the forcing geodetic number f,(G) of G. In the paper, we construct some 2-

connected graph G with (f,(G), f;(G)) = (0, 0), (1, 0), or (0, 1), and prove that, for any
nonnegative integers q, b, and ¢ with a + b > 2, there exists a 2-connected graph G with
(1 (G), fz(G), h(G), &(G)) = (a,b,a+b+c,a+2b+c)or(a,2a+b,a+b+c,2a+2b+c).
These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P.
Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001)
81-94].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in the paper are finite and simple. Let S be a subset of V(G). Denote by induced subgraph (S); the
subgraph of G induced by S. The neighborhood of a vertex v in a graph G is the set of vertices of G adjacent to v, denoted by
N¢(v) or N(v). Define N¢(S) as the union of all Ng(v) for all v € S. A ug-u path (ug, us, ..., 1) is a sequence of vertices in G
such that uguy, uqua, ..., we_q1ux € E(G) and ug, uy, ..., u are distinct. A u — v geodesic of G is a u — v shortest path in G. The
distance between two vertices u and v in a graph G, written d¢(u, v), is the length of a u — v geodesic of G. A graph G is called
vertex-transitive on a vertex subset S if, for every pair x, y € S, there exists an isomorphism f on G such that f(x) = y.

For a graph G, let I¢[u, v] denote the set of all vertices lying on a u-v geodesic. For S C V(G), let I¢[S] denote the union of
all Ig[u, v] for all u, v € S. A subset S of V(G) is convex if I;[S] = S. Harary and Nieminen [7] defined the convex hull of a set
S of vertices of a graph as the smallest vertex subset T containing S satisfying the property that all vertices of any geodesic
between each pair of vertices of T belong to T. Let IX[S] = IG[IE’I[S]] for k > 2.1t is easy to see that [S]; = IX[S] for some k. A
subset S of V(G) is a hull set of G if [S]g = V(G). Everett and Seidman [5] gave the definition of the hull number of a graph as
the cardinality of a minimum vertex subset S with the convex hull of S is the vertex set. A subset S of V(G) is a geodetic set of
G if Ig[S] = V(G), and the geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set S in G. The geodetic
sets of a connected graph were introduced by Harary, Loukakis, and Tsouros [6], as a tool for studying metric properties of
connected graphs. A vertex v is an extreme vertex of G if, for every two distinct vertices x, y € N(v), xy € E(G). It is obvious
that every hull (or geodetic) set of G contains all its extreme vertices.
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Fig. 1. The graph Gq.

Fig. 2. The graph G,.

A subset F C V(G) is called a forcing hull (geodetic) subset of G, if there exists a unique minimum hull (geodetic) set
containing F. The cardinality of a minimum forcing hull (geodetic) subset in G is called the forcing hull (geodetic) number
fi(G) (f;(G)) of G. The study of forcing concepts have been widely investigated in graph theory, such as forcing convexity
number [4], forcing domination number [1], forcing geodetic number [2,9,10], forcing hull number [3], forcing perfect
matching [8], and so on.

Chartrand and Zhang in [3] posed a conjecture that:

Conjecture 1. For every pairs a, b of nonnegative integers, there exists a connected graph G with f,(G) = a and f,(G) = b.

In the paper, we construct some 2-connected graph G with (f,(G), f,(G)) = (0, 0), (1, 0), or (0, 1), and prove that, for
any nonnegative integers a and b with a + b > 2, there exists a 2-connected graphs G with (f,(G), fz(G), h(G), g(G)) =
(a,b,a+b+c,a+2b+c)or(a,2a+b,a+ b+ c,2a+ 2b+ c). These results confirm the conjecture above.

2. Forcing hull and geodetic graphs

In this section, we construct 2-connected graphs with fixed forcing hull number and forcing geodetic number. First, we
construct a 2-connected graph G; with h(G;) = g(G1) = 3, fu(G1) = 1, and f;(G;) = 0.

Define G; as the 2-connected graph with the vertex set {v; : i = 1,2,...,9} and the edge set {viva, viv3,
V1V4, V2V3, V2 V4, V3V4, V3V5, V4V, V5V7, V5Vg, VgV7, VgVg, V7Vg, Vng}, see Flg 1.

Proposition 1. h(G1) = g(G1) = 3, fu(G1) = 1, and fz(G1) = 0.

Proof. Observe that v; and v, are the only two extreme vertices of G;. Therefore every hull set or geodetic set contains v,
and v,. By [{v1, v2}l, = {v1, v2} and Ig, [{v1, v2, vo}] = V(G1), h(G1) = g(G1) = 3. Since {v1, v2, vo} is the unique minimum
geodetic set, f,(G1) = 0. And, by {v1, v,, vs} being a minimum hull set, f,(G;) =1. B

Let G, be the 2-connected graph with the vertexset{v; : i = 1, 2, ..., 10} and the edge set {vqv;, v1v3, V1V4, VaV3, VaV4, V3V4,
V3Vs, V4Ve, VsV7, VsVg, VV7, VeVe, VgV10, VoVio), See Fig. 2.

Proposition 2. h(G;) = 3, 2(G,) =4, fu(Gy) =0, and f,(G) = 1.

Proof. Observe that v; and v, are the only two extreme vertices of G,. Therefore every hull set or geodetic set contains v,
and v,. Since [{v1, v2}lg, = {v1, v2}, h(G2), g(G2) > 3. Since [{vy, v2, vio}lg, = V(G) and {v1, v, vy} is the unique minimum
hull set of G, h(G;) = 3 and f;,(G;) = 0.

Since Ig,[{vi, v2, »}] # V(Gy) for any x € V(Gp) and Ig,[{vi, v2,v7,vio}] = V(Gy), g(G2) = 4. It follows that
Ig, [{v1, v2, vs, v8}] = V(G,). This implies that f,(G;) > 1. Now, since the set {v4, v,, v7, vio} is the only minimum geodetic set
containing v;, it follows that f,(G,) = 1. ®

Let G5 be a 2-connected graph with the vertex set {v; : i = 1,2, ..., 15} and the edge set {viv,, v{v3, v1vy4, VoV3, VaV4,
V3V4, V3Vs, V3Vg, V4V7, V4Vs, VsVe, VeVe, V7V10, V8V10, VoV12, V10V13, V11V12, V11V13, V12V14, V12V15, Vi3Via, V13Vis), See Fig. 3.

Proposition 3. h(Gs) = 3, g(G3) =4, f3,(G3) = 1, and f,(G3) = 2.
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Fig. 3. The graph G3.
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Fig. 4. The graph Hp.
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Proof. Observe that v; and v, are the only two extreme vertices of Gs. Therefore every hull set or geodetic set contains v4
arEd \;z.AISO. since [{v1, va}le, = {v1, v2}, h(G3), g(G3) = 3. Since [{vi, v2, vis}le; = [{v1, v2, vialle; = V(G3), h(Gs) = 3 and
fi(G3) = 1.

Consider the values of f;(G3) and g(Gs). Since Ig, [{v1, v2, vo}] # V(G3) foranya € (3,4, ..., 15} and I, [{v1, v2, V10, vi2}] =
V(Gs3), we get g(G3) = 4. Let T = {vy, v, %y} be a minimum geodetic set of G3. If x = vs, then, by Ig,[{vi, v2, vs}] =
{Vl, Vv, V3, V5}. This 1mp11es that Vg € IG3 [vi, y1. ThLlS, y € {Vg, V11, V12, V14, V15}. We find that 153 [{V], V2, Vs, V[}] ;é V(Gg)
fort € {9, 11, 12, 14, 15}. Then vs ¢ T. By a similar argument, v, ¢ T for t = 5, 6, 7, 8. If x = vq3, then, by Ig, [{vi, v2, vi1}] =
V(G3) — {v14, v1s}; thatis vi4 € Ig;[v1, y]. Since only Ig, [v1, v14] contains vig, y = vi4. But I, [{v1, v2, vi1, v1a}] = V(G3) — {vis5}.
Therefore, vi; ¢ T. Similarly, v, ¢ T for t = 14, 15. And, we have that I, [{v1, v2, Vo, vio}] = Ig;[{v1, V2, vo, vi3}] =
IG3 [{V] , V2, V1o, V]z}] = IG3 [{V] , V2, V10, V13}] = V(G3) These lmply that[g(C3) = 2. |

Let Hy be a 2-connected graph with the vertex set {v; : i = 1,2,...,7} and the edge set {viv,, v{v3, v1v4, VoV3, Vo4,
V3V4, V3V5, V4V, V5V7, V5V7}, see Flg 4,

Proposition 4. In the graph Ho, h(Ho) = g(Ho) = 3 and f,(Ho) = fy(Ho) = 0.
Proof. Since {vy, v,, v;} is the unique minimum hull (geodetic) set of Hy, h(Ho) = g(Ho) = 3 and fy(Ho) = f;(Ho) =0. W

For nonnegative integers a and b, we construct a graph G with f,(G) = a and f;(G) = b as follows. Let m > 2 and ¢
be positive integers. Assume that Gy, G, ..., G, are vertex disjoint graphs, each has at least t + 1 vertices and contains a
t-subset S; for which (S; U N, (S))¢, is complete. Let G be obtained from the disjoint union of Gy, G, .. ., G, by identifying
$1,5,...,Sq.. LetS =S =S, = --- = §,,. Itis easy to see that Gy, Gy, ..., G, and G are vertex-transitive on S, and if G4,
Gy, ..., G, are 2-connected and t > 2, then G is also 2-connected.

Lemma 5. Suppose that G is the graph defined above and T is a minimum hull (or geodetic) set. Then T and S are disjoint.

Proof. Let T be a minimum hull (or geodetic) set of G and u be a vertex of S. Since (S; U Ng, (S:))g, is complete, (S; U N, (S;)),
is convex. Then T N (V(G;) — S;) is nonempty. Let x; € TN (V(G;) — S;) fori = 1,2, ..., m. As G is vertex-transitive on S,
and x4, X2, . .., X, are in the different components of G — S, we have that u € I¢[x;, x;] for i # j. If T is a minimum hull set
and u € Ig[x;, x;] for some i # j, then T and S are disjoint. For T being a minimum geodetic set, if v € I[x, y] for some
xeTN(V(G) —S;) andy € S, thenv € Ig[x, x;] for some j # i. Then T and S are disjoint. M

Lemma 6. Suppose that G is the graph defined in Lemma 5. Then T is a minimum hull (or geodetic) set of G if and only if
(TN V(G)) US; is a minimum hull (or geodetic) set of G; fori=1,2, ..., m.

Proof. Since G is vertex-transitive on S and V(G) — S = UL, (V(G;) — S;), we have that, for v; € V(G;) — S;and v; € V(G)) — §;
withi # j, x € Ig[v;, vj] for all x € S. It follows that:
Property (*): Forv; € V(G;) — S; and v; € V(G;) — S withi #j, S C Ig[v;, vj].
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Suppose that T is a minimum hull set in G. Let v; € V(G;) — S; and v; € V(G;) — S; with i # j. Since v; and v; are in different
components of G—S, every geodesic between v; and v; passes through some vertex of S. Then V(G) NIK[T] = E[(TNV(G;)) US;]
for all positive integer k. This implies that [(TNV(G;)) USilg, = V(G;); thatis, (TNV(G;)) US; is a hull set of G;. Thus, by Lemma 5,
h(G) +m|S| > h(G1) +h(Gy) +- - -+ h(Gp). If T; is a minimum hull set of G; and every vertex of S; is an extreme vertex in G;, then
Si C Tfori=1, 2, ..., m.Bythe property (*), Ul (T;—S;) is a hull set of G. We thus get h(G) < h(G1)+h(Gy)+- - -+h(Gp)—m|S|.
By the two inequalities above, we conclude that h(G) = h(Gy) +h(Gy)+- - - +h(G,;) —m|S|. Then it follows that T is a minimum
hull set of G if and only if (T N G(G;)) U S; is a minimum hull set of G; fori=1,2, ..., m.

Assume that T is a minimum geodetic setin G. Since G is vertex-transitive on S, V(G)—S = UL (V(G;)—S;), u € V(G;)—S;, and
v € V(Gj)—S; withi # j, we have thatx € I;[u, v]forallx € S.Foreachx € V(G;)—S;, by Lemma 5, there existv; € (TNV(G;)) —S;
andv; € (TNV(G))) —S; such thatx € Ig[v;, v;]. So eitheri = jorx € Ig[v;, y] for somey € S. Then (TNV(G;)) U{S;} is a geodetic
set of G;. Thus, g(G) + m|S| > g(G1) +g(G2) + - - - + g(G). Assume that T; is a minimum geodetic set of G; fori= 1,2, ..., m.
Since (S; U Ng, ()¢, is complete in G; fori = 1,2, ..., m, T; — S; is nonempty. By the property (*), S € I;[U~,(T; — S;)]. For
eachx € V(G;) — S;, there exist u, v € T; such that x € Ig,[u, v]. If u, v € S;, then x € Ig[U]_(Tx — Sp)1. If u € S;and v ¢ S;, then
x € Ig[v, w] for some w € T; — S; with i # j; thatis, x € I[U]_, (Tx — S¢)]. Hence UL, (T — Sy) is a geodetic set in G. This implies
that g(G) < g(G1) + g(Gy) + - - - + g(Gn) — m|S|. By above, g(G) = g(Gy) + g(Gz) + - - - + g(Gn) — m|S|. Then it follows that T
is a minimum geodetic set of G if and only if (T N G(G;)) U S; is a minimum geodetic set of G; fori=1,2,...,m. W

Theorem 7. Suppose that G is the graph defined in Lemma 5. Then

h(G) = h(Gy) + h(Gy) + - - - + h(Gy) — m|S|,
2(G) = g(G1) +g(Go) + - - + g(Gy) —m|S],
f1(G) = fu(G1) + fu(G2) + - - - + f1(G), and
fg(G) :fg(G1) +_ﬁg(GZ) + - +fg(Gm)-

Proof. By Lemma 6, we have that h(G) = h(Gy) + h(Gz) + - - - + h(Gy) — m|S| and g(G) = g(G1) + g(G2) + - - - + g(Gy) — m|S|.
According to Lemma 6 and definitions, F is a forcing hull (or geodetic) subset of G if and only if F N V(G;) is a forcing
hull (or geodetic) subset of G; for i = 1,2, ..., m. This implies that f,(G) = f,(G1) + fu(G2) + - -+ + fu(Gn), and fz(G) =
fg(Gl) +fg(GZ) + - +fg(Gm)- u

(a
(b
(c
(d

RarENE AN ING

Theorem 8. Let q, b, and c be nonnegative integers with a + b > 2. Then there exists a 2-connected graph G with f,(G) = q,
f:(G) =b h(G)=a+b+candg(G) =a+2b+c

Proof. Suppose thatX; is a graphisomorphictoG; fori =1, 2, ..., a,X;isa graphisomorphicto G, forj = a+1,a+2, ..., a+
b, X is a graph isomorphicto Ho fork =a+b+ 1,a+b+2,...,a+ b + ¢, and S; is the set of all extreme vertices in X; for
I=1,2,...,a+b+c. Let Gbe the graph obtained from X1, Xz, . . . , Xo1p+c identifying Sy, S,, . . ., Sgrpsc. By Propositions 1, 2
and 4, and Theorem 7, G is a 2-connected graph with f,(G) = q, f;(G) = b, h(G) =a+b+c,andg(G) =a+2b+c. N

Corollary 9. Suppose that a and b are nonnegative integers with a and b. Then there exists a 2-connected graph G with f,(G) = a
and f,(G) = b.

Proof. Let H be a complete graph with V(H) = {x1, x2, x3, x4} and H' be the graph obtained from H by deleting the edge
x1x2. Then, it is obvious that {x1, x,} is the unique maximum hull (geodetic) set in H'; that is, f;(H') = 0 and f;(H") = 0. For
(a, b) # (0, 0), by Propositions 1 and 2, and Theorem 8, there exists a 2-connected graph G with f,(G) = a and f,(G) = b for
nonnegative integers aand bwitha+b>1. ®

Corollary 9 proves Conjecture 1.

Corollary 10. Suppose that a and b are nonnegative integers with a < b and b > 2. Then there exists a 2-connected graph G with
f+(G) = aand h(G) = b.

Theorem 11. Let a, b, and c be nonnegative integers with a + b > 2. Then there exists a 2-connected graph G with f,(G) = q,
f:(G) =2a+b h(G)=a+b+candg(G) =2a+2b+c.

Proof. Suppose thatX; is a graphisomorphictoGs fori =1, 2, ..., a,X;isagraphisomorphicto G, forj = a+1,a+2, ..., a+
b, X is a graph isomorphicto Ho fork =a+b+ 1,a+b+2,...,a+ b + ¢, and S; is the set of all extreme vertices in X; for
I=1,2,...,a+b+c Let Gbe the graph obtained from X1, X, . . ., Xoyp identifying Sy, Sy, . . ., Sq1p4c. By Propositions 2-4,
and Theorem 7, we have that Gis a 2 connected graph with f,(G) = a,f,(G) = 2a+b, h(G) = a+b-+c,andg(G) = 2a+2b+c. ®

Chartrand and Zhang showed that if G is a connected graph with g(G) = 2, then f,(G) < 2in[2].

Corollary 12. Suppose that a and b are nonnegative integers with a4+ 1 < b and b > 2. Then there exists a 2-connected graph G
with f,(G) = a and g(G) = b.
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Proof. It is obvious that a complete graph of order n > 3 is a 2-connected graph with geodetic number n and the forcing
geodetic number 0. Since every even cycle is a 2-connected graph with geodetic number 2 and the forcing geodetic number
1.For (a, b) # (1,2) and 2 < a+ 1 < b, by Theorem 11, there exists a 2-connected graph G with f,(G) = aandg(G) =b. N

According to the above study, if G is a connected graph G with f,(G) = a, f,(G) = b, h(G) = c and g(G) = d, then
(b,d) # (2,2) and a > 0 for c = d, b > 0. We offer the following open problem.

Problem 1. For which nonnegative integers ab, ¢, and d witha < c < d,b < d, ¢ > 2, does there exist a connected graph G
with f,(G) = a, f;(G) = b, h(G) = cand g(G) = d?
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