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A b s t r a c t - - T h e  wave equation in an N-dimensional parallelepiped with boundary control equal 
zero everywhere except of an edge of dimension N - 2 is considered. The other case which is investi- 
gated is the boundary control acting on a face of dimension N -  1 and depending on N -  1 independent 
variables (including t). It is proved that, in both cases, the system is not approximately controllable 
for any T > 0. 

K e y w o r d s - - B o u n d a r y  controllability, Wave equation. 

S E C T I O N  1 

The  controllabil i ty problems for the  systems described by the hyperbolic type  equat ions take up 
a prominent  place in control theory  of  distr ibuted parameter  systems (see e.g., [1]). New fruitful 
approaches to  these p rob lems- -Hi lber t  Uniqueness Method [2], microlocal analysis [3] and some 
others (see e.g., [4] ) - - h a s  been developed in the last years. Aside from numerous "positive" results 

on controllability, there are interesting "negative" results which determine capabil i ty  limits of  

cer tain classes of  controls in certain kinds of  systems. We refer to some of those results related 

to the wave equat ion utt = A u  in a bounded domain f2 C R N, N > 2. 

In  the  paper  [3], geometrical  conditions are given to a par t  of  boundary  F0 c F and to  t ime T 
such t h a t  the wave equat ion is not  exactly controllable in space L2(f~) × H -1 (f~) under  the  act ion 
of  b o u n d a r y  control v, 

u = v  o n F 0 x  (0,T)  and u = 0  o n ( F \ F 0 )  x (0, T).  

In  [5, Chapters  4,5], it is shown tha t  the wave equat ion (and more general equat ions of hyperbol ic  

and parabolic  types) with finite number  of cont ro ls - -boundary ,  

m 

u = ~ - ~ g j ( x ) v j ( t )  on F x (0, T),  (1) 
j= l  
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pointwise or other kind--is not exactly controllable in H~(~) × H~-l(f~) for any r and any T > 0. 
In (1), functions gi E L2(~) are fixed and vi E L2(0, T) are controls. Moreover, these systems 
are not M-controllable [5, Chapter 3] (are not spectral controllable or eigenfunction controllable 
in terms of [1]). Triggiani [6] proved lack of the exact controllability with control of the form (1) 
for the various equations in "natural" spaces. 

There are also papers which contain more strong negative results, they prove lack of approxi- 
mate controllability. The first of these results seems to has been obtained in [5, Chapter 5;7]. It 
states tha t  the wave equation in a rectangle with a boundary control v, 

~tt = d~U, 

0 
on F × (0, T), 

is not approximately controllable for any g E L2(F) and for any T > 0. The reachability set R(T)  

"strongly increases" on T E [0, oc): 

R(T2) R(T1), for T2 > TI. 

Then the similar result has been proved for the wave equation in a rectangle with finite number 
of pointwise controls [8;9, Chapter 6], 

m 

j = l  

Lebeau [10] showed that  similar negative result is valid for arbitrary domain f~ with analytic 
boundary (under certain geometrical conditions). 

In the present paper, we prove lack of the approximate controllability ibr an even more powerful 
kind of control. Namely, we consider the wave equation in an N-dimensional parallelepiped with 
boundary control equal to zero everywhere except on an edge of dimension N - 2. The other case 
which is investigated is the boundary control acting on a face of dimension N - 1 and depending 
on N - 1 independent variables (including t). We show that  in both cases the system is not 
approximately controllable for any T > 0. 

To solve the posed problems, we apply the Fourier method and the theory of exponential 
families in spaces of vector-valued functions [5,9]. 

The model problems of such kind allow us to put forward the following hypothesis concerning 
controllability of hyperbolic equations of the second order. 

HYPOTHESIS. I f  

(i) a control acts on an m-dimensional part of  boundary and/or on an m-dimensional part of  
domain f~ C R N, and m < N - 1, 

or i f  (more general formulation) 

(ii) a control function depends on less than N independent variables (including t), 

then a sys tem described by hyperbolic equation of the second order is not approximately con- 
trollable in any finite time. 

S E C T I O N  2 

Let ~ be a parallelepiped in R N, N > 2, 

~'~ :~--- {X : (Xl ,X2 , . . . ,XN)  I 0 < Xj <( a j }  , 

Q:=~2×(0 ,  T), F:=0~2, E : = F × ( 0 ,  T). 
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Let A be an operator - A  + I with domain D ( A )  = H2(f~). For r > 0, we set W~ := D ( A  ~/2) 

and let W_~ be a dual to W~ space, W_~ = W~'. 
Let Fj be (N - j ) -d imens iona l  part  of F, 

[ ' j  : =  {X C F I Xl ~-- X2 . . . . .  Xj = 0}, 1 _< j < N, Ej := Fj x (0, T). 

We consider the initial boundary value problem 

wtt - Aw = 0, in Q, 
aw x (2) 

wl~=o=wo, a~wl~=o=wl, ~ = o .  

THEOREM 1. Let  (wo ,w l )  C W p x W p - l ,  s :=  p -  1/4 f o r j  = 1 and s := p -  (j - 1)/2 f o r j  > 1. 

I f  s > O, then w[zj c H s ( E j ) .  

REMARK l.  Analogous results take place for all other faces and edges. Moreover, compatibil i ty 
results are valid on mutual parts  of F of smaller dimension. In this sense, we can say, for instance, 
tha t  w]z E H p-1/4. 

We need also in result dual to Theorem 1. Let 

utt - A u  in Q, u l t = 0 = 0 ,  Otult=o = O, (3) 

Ou zj  Ou x\xj  
On = f '  ~ = 0 .  (4) 

The solution of the problem (3),(4) is understood in a weak sense and can be defined with the 
help of the method of transposition [11]. 

THEOREM 2. Let f c [HP(Ej)] ', p _> 0, s = 3/4 - p for j = 1 and s = 3/2  - j / 2  - p for j > 1. 
Then  there exists  the unique solution of  the problem (3), (4) such that  (u, ut)  E C([0, T]; Ws x 

Ws-1). 
REMARK 2. The exponents s in Theorems 1 and 2 are sharp. 

REMARK 3. For j ---- 1, p : 0, we get from Theorem 2 the following result. If  f E L2(E), then 
the solution of (3) with boundary condition ~-~u [z -- f satisfies the inclusion 

(U, Ut) E C ( [ O , T ] ; W 3 / 4  x W _ I / 4 )  = C ( [ O , T ] ; H 3 / 4 ( ~ )  x H - 1 / 4 ( ~ ) ) .  (5) 

This result was obtained in [5, Chapter  5;7] with the help of the Fourier method. I t  can be 
also derived from the results of [12] using other techniques. 

The proof of Theorems 1 and 2 is presented in [13]. In this paper, we are interested in control 
and observation problems for systems (3),(4) and (2), correspondingly. 

SECTION 3 

Let a function u satisfy the wave equation with zero initial conditions (3) and the following 
boundary  conditions 

0u 
Ou = f ,  ~ = 0. (6) 

E1 E\E1 

Suppose tha t  function f has the form 

f (x2 , . . . ,  xN, t) = g (x2) v (za, . .  •, ZN, t ) ,  (7) 

where g E L2(O, a2) is a fixed function and v is a control function, v E U := L2(E2). 



100 S. AVDONIN AND S. A. IVANOV 

Denote by R(T) the reachability set of the system (3),(6) in t ime T: 

R(T) := { ( u ( . , T ) , u t ( . , T ) ) l v  E U}. 

According to (5), R(T) c W := W3/4 x W--i/4. 

THEOREM 3. For any time T > 0 and any g E L2(O, a2), the set R(T) is not dense in V? and 
codim R(T) : CO. 

PROOF. We shall prove the more exact statement.  Namely, 

- -  the set Ro(T) := {u(.,  T) [v E U} is not dense in W3/4, 
- -  the set RI(T)  := {u , ( . ,T )  [v c U} is not dense in W-1/4, 

and corresponding codimensionals equal to infinity. 
For simplicity of notations, we give the proof for the case N = 3. In the general case, the proof 

can be carried out in a quite similar way. 
Opera tor  - A  with the domain D ( - A )  = H2(12) has eigenvalues 

Akron k al / k a2 / \ a3 / ' k ,m ,n  = 0 , 1 , 2 , . . . ,  

and eigenfunctions 

(TrXlk~ (Trx2~rt~ (7fx372 ~ 
~km~(x) : a lk  a2m a3~ cos cos cos , 

\ a l  / \ a2 / \ a3 / 

{ 2 X / ~ ,  for p # 0, 

aJP := 1 V / ~ ,  for p = 0. 

The functions ~kmn form an orthonormal basis in L2(f~). 
Let us present function u(x, T) in the form 

u(x,T) : ckm Vkmn(x). 
k,m,n 

Ckmn 3/4 2 OJkm n < CO, 

w k m ~ : = {  ~x/Xk~, f o r k + m + n # O ,  

1, f o r k = m = n = O .  

Inclusion u( . ,  T) c W3/4 means that  

E 
k,m~n 

where 

(8) 

Inequality cl R(T) # W3/4 is equivalent to existence of a sequence {bkmn} such tha t  

E Ckmnbkmn=O, E bkm~ "-3/42 Wkm n < Co. (9) 
k,m,n k,m,n 

With the help of standard calculations using the Fourier method (see e.g., [1]), we obtain the 
following formula for coefficients Ckm~: 

ck ,~  = f (z2, x3, T - t) a lk a2,~ a3~ 

F1 

x cos cos sin (Wkm~t) -1 dt dx2 dx3. OJkm n 
\ a,2 / \ a3 / 
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Taking  into account  (7) and introducing the no ta t ion  

f0 ~m := g (X2) a2rn COS dx2, 
\ a2 ] 

we get 

ckm,~ = v (x3, T - t) c~Ik ~'m a3,~ cos ~x3n sin (wkm,~t) w~~,~ dt dx3. 
\ a 3 ]  

In the  following proposi t ion,  we use eigenfrequencies 

(10) 

~gkrnO v \ a l }  + \a2rm] k , m = O ,  1,2, . . . ,  

corresponding to n -- 0. The  analogous s t a t emen t  is valid for all sequences OJkm n with  fixed n E N. 

PROPOSITION 1. [5, Section II.6] For any T > O, there exist a number M(T) and sequences 
+ {akin}, {a;m} such that 

a ÷ (i) ~ k , m [  km exp (iwk~ot) + a~m exp(--iWkmOt)] = 0 in L2(-T,  T), 
(ii) + 2 

(iii) akin+ =akin- = 0 f o r m > M ( T ) .  

Using Euler ' s  formulas  and separa t ing  in (i) even and odd par ts ,  we ob ta in  the  following 

s t a t emen t .  

PROPOSITION 2. For any  T > 0, there exist a number M(T) and a sequence {akin}, such t h a t  

(i) ~-~k,m akm sin(WkmOt) = 0 in L2(0, T) ,  

lakml Wk o < (ii) ~ k , m  2 2 

(iii) akin ---- 0 for m > M(T), aoo = O. 

Now we are able to prove t ha t  the  set Ro(T) is not  dense in W3/4. 
I f  ~/m = 0 for some m,  this s t a t emen t  is t r ivial  (see (8),(10)). 

:~(°) ~ by the  formula  I f  ~/,~ ¢ 0 for all m,  we define the sequence tvkm,~j 

b(O) ~ akmOJkmO(O~lk"[mOl30) -1' for n = 0, 

kmn [ O, for n ~ 0. 

From (10) and Proposi t ion  2, it follows tha t  this sequence satisfies condit ions (9). So we proved 

t h a t  cl R0(T)  ~ W 3 / 4 .  

:~(~) ~ for any  l ---- 1, 2, These  sequences In  a quite similar way, we can cons t ruc t  sequences t~kmnJ . . . .  

are mu tua l ly  or thogonal  and all of t hem are or thogonal  to {Ckmn}. Hence, codim Ro(T) = c~ 
in W3/4. 

Analogously,  it can be proved t h a t  RI(T) is not dense in W_U4 and codim R I ( T )  = c~. 
T h e o r e m  3 is proved. 

S E C T I O N  4 

Let  us consider now the equat ion (3) wi th  bounda ry  control act ing on 

F2 : {2: E F [ x 1 --~ x2 == 0 } ,  ~"]2 = F2 x (0, T) ,  

Ou ~2 Ou = O. 
O n  : f' 

By vi r tue  of T h e o r e m  2, (u, ut) e C([0, T]; W1/2 × W-1/2). 

(11) 
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THEOREM 4. For any T > O, reachability set R(  T ) o f  sys tem (3), (11) is not  dense in W1/2 x W _  1/2 

and c o d i m  R ( T )  = oc. 

T h e  p r o o f  is q u i t e  s imi la r  to  t h e  p r o o f  of  T h e o r e m  3 ( fo rma l ly  in th i s  case,  all f ac to r s  "~'m 

e q u a l  1). 

T h e  a s se r t i on  dua l  to  T h e o r e m  4 gives  us a n o n o b s e r v a b i l i t y  resu l t  for  s y s t e m  (2). 

THEOREM 5. For any T > O, there exist nonzero functions wo E I4z112 and wl  E W-112 such 

that,  for the solution w o f  the sys tem (2), we have w[~ 2 = 0 in L 2 ( ~ 2 ) .  
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