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Abstract
We study the asymptotic behavior of the solution of the Maxwell equations with the following
boundary contition of memory type:
o
E: (t) =noH(®®) xn—{—/n(s)H(t—s) x nds. (0.12)
0
We consider a ‘Graffi’ type free energy and we prove that, if the kennghtisfies the condition
n” +«n’ > 0 and the domai is strongly star shaped, then the energy of the solution exponentially
decays. We also prove that the exponential decay isfa necessary condition for the exponential

decay of the solution.
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1. Introduction

The system of equations governing the evolution of the electromagnetic field (in the
absence of free charges) in a regular donsaia R? is given by the Maxwell equations

D-VxH+JI=-Jy, B+V xE=0, (1.1)
divD =0, divB =0, (1.2)
whereD, B andE, H represent respectively the electric and magnetic inductions and the

electric and magpnetic fields) denotes the electric current density ahd the external

source. Here we consider a linear homogeneous isotropic dielectric, whose constitutive
equations are

D()=¢E@®), B@)=pH®), JI=0

with ¢ and u positive scalar functions. In this case the Maxwell equations (1.1)—(1.2)
assume the following form:

eE—VxH=-J;, uH+VxE=q0, (1.3)
divE=0, divH = 0. (1.4)

We assume tha® is a bounded simply connected domain with a connected complement
and situated, locally, on one side of f¥-boundaryds2. Moreover,ds2 is realized by a
“good” conductor, that is a medium with a high but finite electric conductivity, so that the
relation between the electric and magnetic intensity on the boundary is described by the
condition:
(e.¢]
E:(x,1) =no(x)H(x, 1) x n(x) + / n(x, s)H (x, s) x n(x)ds, (1.5)
0
whereE; denotes the tangential component of the electric field @nandn is the unit
outward normal to the boundary. Moreover, given a funciiamR, the notationf’ stands
for the past history off up to timet, i.e., f(s) = f(t —s), s e R™.
The aim of this paper is the study of the asymptotic behavior of the solution of the
system (1.3)—(1.5) with a memory kernelistying a “weak fading memory principle,”
namelyn € LL(R*) N H2(R'), we also assume the restriction

no + / codws)n(s)ds >0, Vw#O0. (1.6)
0

As usual, when no ambiguity arises, the dependencewitl be omitted. Condition (1.6)
is obtained as a consequence of the factttiboundary is assumed to be locally dissipa-
tive [4], i.e.,

d
%E(x, )y xHx, 1) -nx)dt >0
0
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holds for every cycle of period andx € 9§2. Note that, as a direct consequence of the
application of the Riemann—Lebesgue lemma to (1.6), werfye O.

The problem considered in this note hameh studied for the first time by Fabrizio
and Morro in [4]. The existence and the uniqueness of the (local in time) solution of the
system (1.3)—(1.5) and a result of asyntmatability have been proved in [4], under the
assumptions (1.6). The problem of the exputied decay has been considered by Kapi-
tanov and Perla Menzala in [7]. We also rét¢hé paper by Propst and Priss [13], where
an evolutive problem with a boundary conditianalogous to (1.5), though for a mechan-
ical system, has been studied. Berti [1] cioesed the Maxwell equations for an ohmic
conductor with a boundary of the type (1.5), while in [2] an analogous problem related to
the theory of transonic gases is considered together with nonlinear boundary damping and
boundary source term.

In this paper we study the system (1.3)—(1.5) in the framework of the semigroup theory,
the function spaces are defined in terms of'free energy’ of the solutions. We recall [4]
that a boundary free energy density is a functional that, to each histgrgssociates a
non-negative functiofyy; of the timer, such that

Yae(®) <E@ x H(®) -n (1.7)

almost everywhere ia£2. It is well known that, in presence of a boundary condition with
memory, the expression of the boundanefenergy is non unique. In the sequel we will
use two different functionals, which we will refer to as the ‘Graffi’ free energy and the
‘maximal’ free energy, defined as follows:

o ‘Graffi’ free energy:

oo
1 _
I/fag(t)z—E//n/(an’(s) xn|?dsdo, (1.8)
02 0
e ‘Maximal’ free energy:

2, (151 —
Poo (1) == ///a InUs = 52D g ) o0 Al (s2) x Ndsidsado,  (1.9)

051052
02 0

where

H (s) :/H’(t)dr
0

is the “backward” integrated history, which is defined wi&ne LlOC(R+).
While the maximal free energy is well-defined when the memory kernel satisfies the
general hypothesis (1.6), the Graffi free energy needs more restrictive assumptions that is

n<0,  n">=0. (1.10)

In Section 2 (and in Section 3, respectively) we rewrite the initial value problem for
the Maxwell system as = Au + f in a function space related to the Graffi (respectively
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Maximal) type energy and we prove thatgenerates a strongly continuous semigroup of
linear contractions. We then recover the same existence, uniqueness and asymptotic stabil-
ity results proved by Fabrizio and Morro in [4] by a different technique (see Theorems 2.3
and 3.3).

In Section 4 we prove some energy estimates of the Hjfigzert uniqueness method
(H.U.M.) that are used in Section 5 toqwe the exponential decay of the solution. We
recall that the Hilbert uniqueess method was introducég Lions [10] in the study of
the wave equation. Lagnese in [9] adapted the method for the study of a boundary control
problem for the Maxwell system, then Komornik [8] and Kapitonov [6] used the same
kind of estimates in the study of the Ma®ll equations with a boundary condition of
Leontovich type. In a recent work, the H.U.M. has been used by Kapitanov and Perla
Menzala in [7] to prove the exponential decaytbé solution of the system (1.3)—(1.5).
The main assumptions made in [7] are that the kernels appearing in (1.5) has the form
n(x, 1) =a(x)exp(—o (x)r), witha, o € C1(382),a(x) > 0,0 (x) > 0 and that the domain
is star shaped. In Section 4 we assume that

n0>0, k>0 7n'(s)+kn(s)>0 VseR" (1.11)

and we show that the ‘Graffi’ type energy of the solution exponentially decays (see The-
orem 5.2). In order to compare our hypothesis with the assumption made in [7], we note
that (1.11) yields

' (e, 8)| = =1/ (x, 5) < cox)e ™ @, Vs R,

for some positive functiorg, however we do not require any regularity of and «.

Moreover the assumption’ € L? ¢ an be relaxed so that is allowed to have a weak

singularity at the origin (see Remark 5.3). On the other hand, we suppose that the domain

£2 is stronglystar shaped (namely, there existse 2 such thatx — xg) - n > 0, for any

x € 082). As a final remark, we note that the function spaces considered here, which are

related to the Graffi and Maximal free energies, are different from the one consideredin [7].
In the last section we prove that the expati@decay of the kernel is also a necessary

condition for the exponential decay of the d@dm. To be more specific, we prove that, if

n > 0 and theL?(3£2) norm of (E, H) exponentially decays, in the following sense

/J‘“( /(|Et(t)|2+|Ht(t)|2)dcr> dt < oo,
0

082
(for some positive constanf), then it exists a positive constafitsuch that

o]

/eﬁ’r)(t) dt < oo
0

(see Proposition 6.1).
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2. Graffi energy

In this section we rewrite problem (1.3)—(1.4) as an abstract Cauchy prablem
Au + f and prove tha#A generates a strongly continuous semigroup of linear contrac-
tions in a function space related to the Graffi-type free energy (1.8), under the assumptions
ne€ LY®RT) N H3R1) and (1.10).

We first show that (1.8) defines a boundary free energy density in the sense that the
relation (1.7) is satisfied. Let us observe that Eq. (1.5) can be rewritten as

0
E.(t)=noH(@) x n— / 7' (s)H! (s) x nds. (2.1)
0
Thanks to the relations
AH! (s)

H' (s) = H(r) — H'(s),
s

:HI(S), (22)

it plainly follows that

10 =fn/(s)|3|f(s) xn-[H'(s) —H(®)] x nds
0

oo

=E.(t) x H@) - n = no[H (1) x n|* — %/n”(s)‘ﬂ’(s) xnf’ds.  (2.3)
0

The non-negativeness gf assures the validity of (1.7).
If we now define

1(T1 1
lI’_Q(t):E/I:;|E(t)|2+g|H(t)|2i| dx, (2.4)
2

then the function

(1) = entio ) + / Voo (1) do (x) (2.5)
082

may be considered as the energy of the system aii, H) is a solution of the Maxwell
equations (1.3)—(1.4) with a vanishing source, we haye < 0 (see Remark 2.2).

In order to set the problem (1.3)—(1.4) in the semigroup theory, we introduce the/Space
of the triplets(E(r), H(r), H) with E(r), H(r) € L?(£2) andH! such that, for almost every
t eRT,

oo
//[—U/(S)|Ht(s) X n|2] do ds < oo,
0 852

with the inner product
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((Ex(0), H1(), HY). (E2(1), Ha(1), H)),

= /[eEl(t) -Ea(1) + uH1(r) - Ha(t) ] dx
2

+/ / [~ ()H(s) x - Hj(s) x n]dods. (2:6)
0 082

so that

SIE AL = H(E A 1)

is the Graffi-type energy (2.5). We then define the operétas follows:
- 1 1 a -
A(E,H,H’):(—VxH,——VxE,H(t)——H’(s)), (2.7)
£ " as

and we defineD(A) C K as the set of the triplet&, H, H) satisfying the boundary con-
dition (2.1) and such tha& (E, H, H") belongs tolC. Clearly, if (E, H, H")) € D(A), then
V x E, V x H € L?(£2), as a consequeneex n € L2(352) and

//[—77/(5)|HI(S) X n|2] dods < 00,
0 a2

for almost everyr € R*. Moreover, thanks to the boundary condition (1.5), disoe
L2(0£2).

Theorem 2.1. If 5 satisfy conditior{1.10)andng > 0, then(A, D(A)) generates a strongly
continuous semigroup of linear contractions.

Proof. Thanks to Lumer—Phillips theorem, we have to show that the doféd) of the
operatorA is dense inC and thatA and its adjointA* are dissipative operators. Clearly,
A is a closed linear operator and, since the trace of.&afiunction is not well-defined,
D(A) is dense irnfC. We now prove thah is dissipative, i.e.,

(Au), un), <0, (2.8)
whereu stands for the tripletE, H, H).

(Au@), u@) = /[v x H(t)-E(t) — V x E(t) - H(1)] dx
2

i , o' -
+//|:_77 (S)(H(t)xn—g(s)xn).H (s) Xn:|do’ds

0 982

:/H(t) xE(t).nda—%//n”(s)‘ﬂt(s) x n|*do ds

082 0 982
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+//H(t) x n-[=n'(s)H'(s) x n]do ds

090
:/[_E(I)'H(f) x N+H(#) x n'/—n/(s)I:V(s) X ndsj| do
EYe) o
1 i " Tt 2
—5//71 ()|H'(s) x n|“do ds. (2.9)
080

Taking into account that the boundary céiah assumes the form (2.1), we find

((Au(t),u(t))Kz—/n0|H(t) xn|2d0—%//n”(s)||:|’(s) xn[?do ds <0,
082 0 082

sincen” > 0 andng > 0. Condition (2.8) is therefore proved.
We next consider the adjoint operatot. Its domainD(A*) is defined as the set of the
triplesv € K such that av € K exists satisfying

(Au, v = (U, w)c, YueDA).
Letu(t) = (E(r), H(r), H") e D(A) andv(t) = (&), h(r), h") € K, then

(Au), v(D)) = f[v x H(t)-e(t) = V x E(t) -h(1)] dx

2
i / al:'t h
+//[—n (s)(H(t) x N — W(S) X n) -hi(s) x n:| dods
0 082
:—/[Vxh(t)-E(t)—Vxe(t)-H(t)]dx
2
— /[e(t) ‘H(@®) x n+E@®) -h(t) x n]do
982
—|—//H(t)xn~[—r/(s)ﬁt(s) xn]dcrds
0 082

o
_ 9 -
+//n/(S)h’(S) xnoa—Hf(s) x Ndo ds.
S
0 0R
By using condition (2.1), we find

(Au@), v(@))c =— /[v xh@)-E@) -V xet)-H()]dx
2
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—//—n’(s)[h(t) Xn—a%ﬁt(S)Xn]H’(s)xndsdo

2 0

—//n”(S)ﬁ’(S) xn-H(s) x ndsdo

92 0

- / H@) xn- (e(t) +noh(?) x n +/n/(s)ﬁ’(s) X nds> do

082 0

= —(u(t),Av(t)),C — //n”(s)ﬁ’(s) xn-H'(s) x ndsdo

a2 0

oo
- / H() xn- (e(t) +noh(r) x n +/n/(s)ﬁ’(s) X nds> do.
a9 0
(2.10)
Hence every = (e, h, h') € D(A*) must satisfy the “dual boundary condition”
0o
e (t) = —noh(t) x n+ / —' ()R’ (s) x nds
0

andw = A*v is defined as

A*(e h, i) = —(}v ch—2v xeho - 2R — TR x n).
e u s n'(s)

We finally show tha\* is dissipative. From (2.10) and (2.9) we immediately get:
o
(A*u), u(t))lC =—(Au(), u(t)),C — / / r}”(s)||:|’(s) X n|2dsdcr
32 0

:—/[—E(I)-H(t) x N+ H(t) x n-/—n/(s)ﬂt(S) X ndS} do
0

a0
1 o0
—E//n/'(s)‘ﬂt(s) xn‘zdads

0 082

o0
1 _
=—/[770|H(t) X ﬂ|2+§/n”(5)|H’(S) X n|2ds] do <0,
FY?) 0

for anyu € D(A*). This completes the proof.0
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Remark 2.2. Suppose that satisfy condition (1.10) andgo > 0. If (E(?), H(g), H) is
a solution of the Maxwell equations (1.3)—(1.4) with a vanishing source, then< 0,
since¥ (1) = (Au(?), u(t))x, which is non-positive, by (2.8).

We end this section with an existence result. Quoting Da Prato and Sinestrari [3], we
say that a functiom € Wé’c” RT, )N Lf(’)c(R+, D(A)) is astrict solutionof the abstract

Cauchy problemi = Au + f; u(0) = ug (With ug € D(A), f € LY (RT,K), andp e

[
[1, o) if u(0) =up andit(t) = Au(t) + f(¢) holds for almost any S?)sitive

Theorem 2.3. Suppose thaj satisfy conditior{1.10)andzg > 0. LetEg, Hg € L?(52, R®)
be such thativEg = 0, divHo =0, V x Eg, V x Hg € L2(£2,R3) and thatEg x n =
noHoxnondaf. Letds e Wl(l)’é’(RJf, L2(£2,R%)). Then the problertil.3)—(1.5) with ini-
tial conditions(Eg, Ho) and null past history, has a unique strict solutio C1(R*, £)N
C(R*, D(A)) such thati € Lj; (R, K).

Proof. Since(A, D(A)) generates a strongly continuous semigroug jive can apply [3,
Theorem 8.1], withio = (Ep, Ho,0) and f = (J£,0,0). O

3. Maximal energy

In this section we show that the functiga, defined in (1.9) is a boundary free energy
density, in the sense of (1.7). Then,

¢(f)=8,U«‘1’.Q(f)+/¢a.(2(f)d0(x), (3.1)
02

(herevy, is the function defined in (2.4)) can be considered as the energy of the system
and is a non-increasing function, when the source in the Maxwell equations (1.3)—(1.4)
vanishes (see Remark 3.2).

In order to prove (1.7) we state some preliminary facts. We first note that the function

2 SR . X . . . . . .
% is defined in the distribution sense in terms of the Dirac measure as

*n(ls1—s2)

o . 20 (0) B ’
951052 0" (Is1 = s2l) — 21 (0)8(s1 — 52)

(the right-hand side is well-defined singes H2(R1)). In the sequel, we will use the
following elementary identities:

00
on(ls1—s2)) _ 9n(ls1—s2|) /3U(|Sl—sz|)d
ds1 a ds2 ’ 051

s1=—n(s2), (3.2)
0

moreover, beingd (s) = 0 for anys < 0, H’ is a continuous bounded function for every
positiver. We next prove that
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// 9%n(|s1 — s2]) (H(t) = H'(s1)) x n- A'(s2) x ndsy1dsz

051052

9]

=H@{) xn- / n(s2)H (s2) x ndso. (3.3)
0
To prove (3.3) itis sufficient to integrate by parts, use the second identity in (3.2) and (2.2):

// 9%n(|s1 — s2]) (H(t) = H'(s1)) x n- A'(s2) x nds1dsz

051052

(sinceH’ is bounded ang’ € L?(R™))

o0 X0 B T
= —//M(H(I) — H’(sl)) xn- ﬂ(sz) X Ndsy1ds?
051 0s2
=H(@) xn -/n(sz)Ht(sz) X Ndso
0

00 ooa
+// MHI(&L) X n- Ht(sz) X Nds1dso.
S1

This proves (3.3), since last integral vanishes.
We are in position to show that ; is a boundary free energy density. Indeed, from (3.3)
and (1.5) it follows that

2 —_ -
qbag(t)—//a n(s1 SZ') (H(r) — H' (s1)) x n- A (s2) x ndsydsa
051082
=E, (1) x H(®) - n — no|H(®) x n[>.

This proves (1.7).

We next show that the operatér defined in (2.7) generates a strongly continuous
semigroup of linear contractions in a Hilbert spa¢edefined in terms of the ‘Maximal’
energy (3.1). To this aim, we defiri¢ as the space of the triplet&(r), H(z), H') with
E(r), H(r) € L2(22) andH’ : 82 x RT — RS such that

2 _
/// 9°n(|s1 SZI)H (S )y xn- H (s2) x Nds1dsado < o0,

051082
02 0

for almost every € R™ and we set the inner product as

((Ea(0). Ha(n), HY). (Ea(r), Ha(1). HY)),,
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- / [¢E1(0) - Ea(t) + uH1(1) - Ha(1)] dx

00
32 _
/// n(|s1 SZI) l( 1) xn- H! (sZ)XndsldSZdO' (3.4)
051052
02 0

Theorem 3.1. If 5 satisfy conditior(1.6), then(A, D(A)) generates a strongly continuous
semigroup of linear contractions iH.

Proof. As in Section 2, we have to show that the domBif\) of the operatoA is dense
in H and thatA and its adjointA* are dissipative operators, the claim follows from the
Lumer—Phillips theorem.

The domainD(A) C H is the set of the tripletgE, H, H") satisfying the boundary
condition (1.5) and such th&t(E, H, H") € H, then it is a dense subset&f Note that, if
(E,H,H") e D(A), thenV x E, V x H € L2(£2), as a consequenéex n € L2(3£2) and

9% (|51 —
/// n(s1 SZI)Ht(sl) x N-H (s2) x Nds1dsado < 00,

051082
02 0

for aimost every € R*. We now prove thaf is dissipative, i.e.,
{Au), u(n),, <0, (3.5)
for everyu = (E, H, H) € D(A). By using (3.3), we find

(Au), u(n),, = /[v xH@®) -E@) -V xE@®) -H(@®)]dx

32n(Js1 — s2l) dH!
/// 0510582 < = —(Sl))

02 0
xn- H2(s2) X Nds1ds2do

o0

= / (H(t) x E@)-n+H@) xn -/n(sz)Ht(sz) X ndsz) do,
982 0

(3.6)
thus (1.5) gives

(Au@), u@)),, =— / no|H(@) x nf°do <0
a0
and the proof of (3.5) is accomplished. .
We next compute the adjoint opera#t. For anyu () = (E(r), H(z),H") € D(A) and
v(t) = (e®), h(?), h!) e H we find



R. Nibbi, S. Polidoro / J. Math. Anal. Appl. 302 (2005) 30-55 41

(Au), v()),, = /[V x H(1) - e(r) = V x E(1) - h(1)] dx

32n(|s1 — s2]) dH!
]t//‘ 351952 Oﬂwxn_”&f“”xn>

02 0
-h'(s2) x nds1dsodo

——/[v x h(t)-E(t) — V x et) - H(t)] dx

2

- /[e(t) ‘H@®) xn+E@®) -h(t) x n]do

/// 3n(|81—52|) <|-|(t) x N — —(Sl) x ”)

92 0

ah’
-—(s2) x Ndsidsado.
052

We now use condition (1.5), the identities (3.2), then we integrate again by parts. We find

(Au@), v()),, =— f[v x h(t)-E(t) — V x et) - H(t)] dx

2

— /[e(t) -H(t) xn

82
00

+ (770H(t) X n+/n(s)H’(s) X nds> -h(t) x n:| do

0
00

. /H(t) XN ~/n(s2)h’(sz) X Ndsydo

2 _ t
/// 9n(|s1 32|)ah ( ) x N-H(s1) x nds1dsado.

051052
02 0

By using again the second identity (3.2), we finally get
(Au@), v())y, =— /[v xh@)-E@) -V x et)-H()]dx

[T 92051 — s2)) oht
— / // 35195 <h(t) X N— 8_s1(sl) X n)
0

92 0
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“H'(s2) x nds1dsado

- / H@#) xn- (e(t) + noh(r) x n —/n(s)ht(s) X nds> do.
082 0

Hence every = (e, h, h') € D(A*) must satisfy the “dual boundary condition”
o0
e (1) = —noh(t) x n+ / n(s)h'(s) x nds, (3.7)
0

moreoverA* = —A.
We finally show thaA* is dissipative. For any € D(A*) we use (3.6) and we find

(A*u(®), u())y, = —(Au(), u),,
=— / (H(t) x E(t) -n+H() xn- / n(s2)H (s2) x nds2> do,
a0 0
then, by using (3.7), we finally obtain

(A*u@), u®),, = - / no|H() x n|°do < 0.
a2
This completes the proof of Theorem 3.33

Remark 3.2. Suppose that satisfy condition (1.6). I{E(z), H(), H’) is a solution of
the Maxwell equations (1.3)—(1.4) with a vanishing source, #¢n < 0, sinced (1) =
(Au(t), u(t)), which is non-positive, by (3.5).

Theorem 3.3. Suppose that satisfy conditior(1.6). LetJ ¢ € W| PR, L2(£2,R®)) and
let Eg, Hp € L2(§2, R3) be such thatlivEg = 0, divHo =0, V x Eg, V x Hg € L2(£2, R3)
and thatEg x n = noHp x n on3£2. Then the problenil.3)—(1.5) with initial conditions
(Eo, Ho) and null past history, has a unique strict solutior C1(Rt, H)NC(R*, D(A))
such thati € RT, H).

Ioc(

Proof. As in the proof of Theorem 2.3 we apply [3, Theorem 8.1f

4, H.UM. estimates

In this section we give some preliminary results to prove the energy estimates of H.U.M.
type.

Lemma4.1. If (E, H) is a solution of the Maxwell equatioif$.3)—(1.4)with a vanishing
source, then
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(i) forany functionp € C2(2) and anyT > 0, we have
/I:%(V(;S(x) e D)D) N+ S (Vo 0x) - ECr, 0)ECx. 1) - n} do (x)dt
4 n

= / E(x, T) xHx,T) -V (x)dx — / E(x,0) x H(x,0)- Vo (x)dx

2 2

3 2
+/ Z 09 (x)(}Hi(x,t)Hj(x,t)—i—EE,'(x,t)Ej(x,t)> dxdt
o =l & K

— 0x;0x;

1 1., 1 _,
—i——/ —|H|*+ —|E|* ) V¢ (x) - ndo (x) dt
2 e 7

x

1 1, 1,
——/Aq)(x) —|H[*+ —|E|7 ) dx dt;
2 & I
o

(i) foranyT > 0 andr > 0 we have

}/<}|H(x,t)|2+1|E(x,t)|2)dxdt
2Q e 7

1 1 > 1 2
=—/(T+t0)<—|H(x,T)| + = |E(x, T)| >dx
2 e nw
2

—t—°/<}|H(x,0)|2+1|E(x,0)|2>dx
2 e nw
2
+8i/(t +10)E(x, 1) x H(x,t) -n(x)do (x) dt.
m
x

Proof. We first show that the following identities hold for any functigre C2(£2) and for
anyT >0,

/(E xH)x,T) -Vo(x)dx — /(E x H)(x,0)- Vo (x)dx
2 Q

+/[;—L(V>< H) - (V¢ x H)+1(v x E) - (Vo x E):|(x,t)dxdt=0, (4.1)
nw
0

1
/[E(Vqs(x).H(x,t))H(x,t).n(x)

X

+%(V¢(x) CE(x,0)E(x, 1) - n(x):| do (x)dt
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1 1
- /[EH(x, 1 -V(Vx) -Hix, 1) + ;E(x, 1 -V(Ve(x)-Ex, t)):| dx dt.
0
(4.2)

In order to prove (4.1), we note that, sindg, H) is a solution of the Maxwell equations
with a vanishing source, we have

/(E Lo H>(x, 1)+ (Vo) x H(x, ) dxdr =0,

/(H + lv X E)(x, t)- (qu(x) x E(x, t)) dxdt =0,
I

for any functiong € C2(£2). By subtracting the first from the second of the previous two
equations, we get
—/(E(x, N x H@x, ) +E@x, 1) x H(x, 1) - Vo (x) dx
0
1 1
+/(—(V xH)- (Vo xH)+ —(VXE)- (V¢ x E))(x,t)dxdt =0,
€ jz
Q

and (4.1) follows immediately from this identity.
We next prove (4.2). Sincé andH are divergence-free, then

1 /(Vq)(x) -E(x, 1) divE(x, 1) dxdt =0,

"o

%/(Vq)(x)-H(x,t))divH(x,t)dxdtzo,
0

for any¢ € C2(£2). The identity (4.2) can be obtained by summing the previous two equa-
tions and then applying the divergence theorem.
We are in position to prove (i). Thanks to identities (4.1) and (4.2) we get

/E(Vqs(x) “H, D)H@, 1) - nx) + 1(v¢(x) -E(x,0))E(x,1) - n(x):| do (x)dt
n
X

= / E(x,T) xH(x,T) -Vo(x)dx — / E(x,0) x H(x,0)- Vo (x)dx
2 2

1 1
+/[EH(M) - V(Ve(x) - H(x, 1) + JEG.D V(Vo(x)- E(x,t))i| dxdr

+/E(v x H(x.0) - (Vo) x Hex, 1)
0
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1
+ ;(v x E(x,1)) - (Vo (x) x E(x, t)):| dx dt.

A direct calculation shows that

3 2
9 1
(VxE)- (V¢ xE)+E-V(V¢-E)= Z ax_;;E,-Ej + Ev(p -V(IE]?),
ij=1 "t
& 0% 1 ~
(VxH) - (Vo xH)+H -V(Vp-H) = Z WH,»H,- + Eng.v(|H| );
ij=1 Xioxj

consequently we find

/E(ng(x).H(x,t))H(x,t).n(x)Jr 1(v¢(x) . E(x,t))E(x,t).n(x)] do (x)dt
n
X
:/E(x,T) X H(x,T)-VqS(x)dx—/E(x,O) x H(x,0) - Vo (x)dx
2 2

P

a
i =1 3x,~8xj

(x) |::ELH,~ (x, ) Hj(x, 1) + %E,- (x,DE;(x, t)} dxdt

+%/V¢(x) : Ev(|H(x,t)|2) + %V(|E(x,t)|2)j|dxdt. (4.3)

Equation (i) follows from this identity and from the divergence theorem.
We next prove (ii). If(E, H) is a solution of (1.3)—(1.4) with a vanishing source, the
identities

.01 1
/(E — -V x H>(x, t) - — (@ +10)E(x,t)dxdt =0,
€ jz
.1 1
/(H + =V x E)(x,t) St +to)H(x,1)dxdt =0,
" e
hold for anyzg > 0. If we sum the previous two relations, we obtain
1 0 /1 1
/—(t+to)—<—|E(x,t)|2+—|H(x,t)|2)dxdt
2 or \ i e
0
1
——/(t +t9)E(x, 1) x H(x,t) -n(x)do (x) dt,
ep
X

from which (ii) follows immediately. O

Corollary 4.2.If (E, H) is a solution of the Maxwell equatiofik.3)—(1.4)with a vanishing
source, then
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(i) foranyT > 0, and anyxg € £2 we have

/[Hiz(X,t) ()C _XO) . H(x,t) + En(xa t)
€ W

(x — x0) - E(x, t)j| do(x)dt

=/E(x,T) X H(x,T)-(x—xo)dx—/E(x,O) x H(x,0) - (x —xg)dx
2 2

1 1., 1 _5
—|——/ —|H|“4+ —|E|° ) (x — x0) - n(x) do (x) dt
2 & 7

x

1 1., 1 _,
=5 | | ZIHI+ —IE| | dxdt,
2Q e 7

whereE, (x,t) =E(x, ) -n(x) and H,(x, ) =H(x, ) - n(x);
(i) foranyT > 0, g > 0 and anyxg € 2 we have

/[(T+to)(%|H(x, T)|2+ 1|E(x, T)|2> —2ExH)(x,T) - (x _xO)i| dx
o n
1 2,1 2
_/|:to<g|H(x,O)| + =|E(x,0)]| >—2(E X H)(x,O)-(x—xo)} dx
2 1%
1 2 1 2 2
:/|:<—|H(x,t)| +—|E(x,t)| >(X—x0)——(t+t0)(ExH)(x,t)
3 w I

1 1
- 2(5(()6 —x0)-H@x, D)H@x, 1) + ;((x —x0) - E(x,1))E(x, t))}
-N(x)do dt.
Proof. Assertion (i) immediately follows from the statement (i) of Lemma 4.1, by choos-
ing ¢(x) = %|x — xol%. If we sum relation (i) of this corollary with identity (ii) of
Lemma 4.1, we then get (ii). O

5. Exponential decay

In this section we will prove that, ifip > 0, n satisfy the conditiong’ <0, n” >0
andn” 4+ «n’ > 0, then the Graffi type energy defined in (2.5) decays exponentially. We
follow the approach introduced by Kapitanov and Perla Menzala in [7].

Proposition 5.1. Let 2 be a strongly star-shaped open set. Assume jhestisfy condi-
tions (1.10) (1.11)and let(E, H) be a solution to problenil.3)—(1.5)with a vanishing
source. Then it exisp > Tp > 0 such that

(T + 10— To)¥(T) < (to + To)¥ (0) (5.1)
foranyT > 0.
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Proof. From identity (ii) of Corollary 4.2, we have
2T + 1) W (T) — 2/(E x H)(x, T) - (x — xq) dx
Q2
— 210¥ (0) + 2/(E x H)(x,0) - (x — xp)dx
2
1 1 2
Z/[<—\H(x,t)\2+ —\E(x,t)\z)(x —x0) — — (¢ + 10)(E x H)(x, 1)
e nw el
z
1 1
— 2(5((x —x0) - H(x, t))H(x, 1)+ ;((x —xo) - E(x, t))E(x, t)>j|
-N(x)do dt,

foranyT > 0,7 > 0, andxg € £2.
Now we want to estimate the right-hand side of the previous relation. To this end we
first observe that ol we have the following decompositions:

H=H,n+H, E=E,n+¢&,
whereH = (H — H,n) andé = (E — E,;n), therefore
H-n=H,, |H|=|H x n|, E-n=E,, |1 =|E x n|.

Moreover, since? is strongly star-shaped with respectdpandds2 is smooth, for any
x € 082 it existsyp > 0 such thatx — xg) - n > yp|x — xg|. Consequently,

1 2 1 2
/[(—|H(x,t)| +=|E(x, 1) >(x ~X0) N(x)
J e 10

— 2(%(@ —x0) -H(x, ))H(x, 1)
+ 1((x —x0) - E(x,1))E(x, t)) : n(x)] do dt
w
1 1
- /[(E(m(x, 0|? = |Hatx, 0)°) + ;(\E(x, ) = |Enx, t)\2)>
X

x (x —x0) - N(x)

—2(x — xg) - <%H(x, HH, + %E(x, t)En)i| do dt

1
< /[(x —x0)-Nx) + —|x — xol}
J Y0

X <%|H(x, 1) x n(x)|2+ 1|E(x, 1) x n(x)‘2> dodt. (5.2)
m

If we take into account the boundary condition (1.5), for &anyr) € > we have
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2
[E(x,1) x n(x)° =

noH (x, 1) x n(x) —fn’(s)H’(x,s) x n(x)ds
0

oo 2

/n/(S)H’(x,S) x N(x)ds
0

<2n3H(x, 1) x nx)[*+2

<2n3|H(x, 1) x n(x)[?

[e%e] 1 oo _
+ (4/ —r;’(s)ds) (E/(—n/(S))|H’(x,S) X n(X)|2dS>o
0

0
The above inequality, together with (5.2) and (2.3), yields

2(T + to)¥e(T) — 2/(E x H)(x, T) - (x — x0) dx
2

— 210¥ 0 (0) + 2/(E x H)(x,0) - (x — xp)dx
Q

2
</[(x—xo) nex) + — L Ix—xol}[<%+2@)|"'(x,t)xn(x)|2
J W
+< / (s)ds>< / n'(s))|H' (x,5) x n(x)| ds>j|dadt
0 0

- — /(t +to)H(x,t) x n(x) -Edo dt
eu

2
R<1+ i) /[(1 +2@>|H(x,t) x (o)
Y0 e u

/(t—i—to) [2no|H(x,r> x n(x)[?

X
o0

=l

/ n (s)ds)iﬂag(t):| dodt — — /(t +t0)—1//39(t) do dt
0

z‘é’|H

+/n”(s)\|:|’(x,s) X n(x)‘zds:| do dt,

whereR = sups |x — xol. Thus we get

2T + 10)¥(T) — 210% (0)
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S2R/en(W(T) +¥(0) + 2/ Yoo (t)do dt
b

o0

—/(t+to)|:2n0|H(x,t) x n(x)|2+fn”(s)||3|’(x,s) x n(x)|2ds:| do dt
) 0
2

—i—euR(l—i— i)/[(hﬂ)mu,n x ()2

Y0 e

)
4l
+<;/—7] (S)ds)¢ag(t)j| do dt
0

or, equivalently,
2(T + 1o — R/ep)¥(T) — 2(to + R /e )¥ (0)

< (2+48R<1—|—%)/—n’(s)ds)/wag(t)dadt
0
0 )

R 1\ /1 2
—2710/[0 +10) — i(1+ —) (— + 2@>i||H(x, 1) x n()|Pdo di
J 2no VAN 7

—/(t—i—to)/n”(s)m’(x,s) X n(x)‘zdsdcrdt.
X 0

Thanks to condition (1.11), we get

_/(t+t0)/77”(s)|l:|’(x,s) x N(x)|*ds do dt
0

)

<K/(t+to)/n/(s)||:|’(x,s) X n(x)|2dsdcrdt
X 0

= —2 /(t +t0) Yy (t)do dt,
P

therefore
(T +1to— R\/ep)W(T) — (to+ R\/e)¥(0)

< —/c/|:(t + o) — E (1+ 28R<1+ %) / —1'(s) ds)]wag(t) do dt
K 0
) 0

2
—TIO/I:(I + 1) — ﬂ<1—i— i><} +2@>i||H(x,t) X n(x)|2dc7dt.
J 2no v/ \¢ w
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Let us define

oo

1 1
To=R./cu, T1=;(1+28R<1+ %>/—n’(s)ds>, and
0

R 1\/1 2
2no vo/\e nu
(recall thatpo > 0), then the inequality above can be rewritten as

(T +10— To)¥(T) — (10 + To)¥ (0)

< —K/(t + 10— TV Yo (t)do dt — no/(t + 10— To)|H(x, 1) x n(x)|2dcrdt.
X X

If we chooseg > max{To, T1, T2} = T*, the positiveness afp andx yields the thesis. O

Theorem 5.2. Let us assume that the domaihis strongly star-shaped and the memory
kerneln satisfies the conditiond.10)and(1.11) If (E, H) is a solution to problen(l.3)—
(1.5)with a vanishing source, then there exist two positive const@nissuch that

(1) < Cexp(—at)¥ (0) (5.3)
foranyr > 0.

Proof. Thanks to Theorem 2.1 and Proposition 5.1 the energy rigenH, H) || be-
longs to L? (R™) for any p > 1. The thesis follows therefore from a general theory of
semigroups due to Datko and Pazy (see, for instance, [12, Theorem 4.1, p. 116]).

Remark 5.3. As stated in the introduction, assutigm (1.11) yields the exponential decay
of '
[n'(x,9)| = —n'(x,5) < co(x)e ™, Vs e RT.

On the other hand, we may relax conditipre H2(R*) by only requiringn’ € L1(R*)
andn” e L?([8, +oc), for every positives. Under this assumption, that allowsto have
a weak singularity at the origin, the statement of Theorem 5.2 holds true.

6. A necessary condition for the exponential decay

1

ioc(RT) exponentially decayifa positive constant exists

We say that a functiof € L
such that
o

/e‘“|f(t)|dt < o0.
0

In this section we consider a positive scalar kemeind we show that th&?(3$2)
norm of a solutionE, H) to the system of Maxwell equations (1.3)—(1.4), with boundary
condition (1.5) cannot exponentially decay, unlgsioes.
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Proposition 6.1. Let (E, H) be a solution to problen(il.3)—(1.5) with initial data Eg and
Ho and vanishing source, such that

o
/620”< /(|E,(t)\2+\H,(r)|2)da>dt<oo, (6.1)
0 Y]

for some positive constaat If §2 is star-shaped and > 0, thenn decays exponentially.

The proof of the proposition relies on the use of the Laplace transform. Indeed, from
condition (6.1) it follows that the Laplace transformef andH,

o0 o0
Er(x,z)zfe_Z’Er(x,t)dt, qu(x,z)zfe_thr(x,t)dt,
0 0

is defined for almost every € 92 and for any; € D, where

D={zeC: Rez > —a}.
The proof of Proposition 6.1 is a plain consequence of the following known result (see [11,
Theorem 2] or [5, Lemma 3.1]).

Lemma 6.2. Let U C C be a neighborhood o® and letg : U — C be a holomorphic
function. If G € LY(R") is a non-negative function such thét(z) = g(z) for everyz
U N {Rez > 0}, thenG exponentially decays.

We first prove a preliminary result, in the spirit of the H.U.M.

Lemma 6.3. If (E,H) is a solution to problen{1.3)—(1.4)with a vanishing source and
E(x,t) x n(x) =0foralmost any(x, r) € X, then

(i) ¥o@) =¥o(0), foranyr > 0,
(ii) it exists a positive constamit, depending on the domaiR, such that

R
(T —2 /e R)¥a(0) < > / [H x n|?(x, 1) do (x) dr.
')
92 x[0,T]

Proof. Let us first prove the assertion (i). If we consider the time-derivative of the function
¥, defined in (2.4), we obtain

20 =/<§H(x,t) H(x, 1) + %E(x,t) : E(x,t)) dx
2

1
=/—(EonH—H~VxE)(x,t)dx
ep

Q2

= / i(H x E)(x,1) -n(x)do(x) =0,
e
082
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for almost anyr > 0, thanks to hypotheses of the lemma. This proves#aats constant
and, therefore, the assertion (i).

In order to prove (ii), we recall that we have assuredn = 0 on X andH(x,0)-n=0
ond£2. It follows that

E(x,1) = E,(x, H)n(x), |E(x, )| = |En(x, 1)
Hex, 0] = [H(x, 1) x n(x)

9

bl

forany(x, t) € X. Then, from the identity (i) of Corollary 4.2, we get

T
/Wg(t)dt—/E(x,T)xH(x,T)~(x—xo)dx
0 2
—|—/E(x,0) x H(x,0) - (x —xg)dx
2
1 2
:—/(—|En(x,t)| (x—xo).n(x))da(x)dt
3 120
1 1 2 1 2
+§/(E|H(x,t) x N(x)| +;|En(x,t)| )(X—XO)-H(X)dU(X)dt
b
171 2
< E/E|H(x,t) x n()[2(x = x0) - N(x) do (x) dt, (6.2)
X

since{? is star-shaped with respect tg and, consequentlyx — xp) - n(x) > 0 for any
x €082.
Let R =sup, |x — xo|. Then

‘/E(x,t) x H(x, 1) - (x —xp)dx
Q

< /‘E(x,t)”H(x,t)“x — xoldx
Q

< V‘9“Rf<i;[|H|2<x, 0+ 1|E|2<x,t)> dx
m
22

2

= JVEURY (1),
foranyt € [0, T']. Thanks to (i), the functiowy, is constant, therefore from (6.2) follows

R
(T — 2 /e R)We(0) < > / IH x n|2(x, 1) do (x)dt.
£
392 x[0,T]
In this way we have concluded the proof of Lemma 6.81

1Asa consequence of the boundary conditirx ny,, = 0, if we multiply Eq. (1.3} by V¢ with ¢ €

C®°(£2) and, after an integration over the doma take into account Eq. (1.4)we getaa—,(H “N)|,o =0, that

. a2
iSH-n=Hg-nonX.
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As an immediate consequence of the previous lemma, we get the following corollary.

Corollary 6.4. If (E, H) is a solution to problenfl.3)—(1.4)with a vanishing source, such
E(x,t) x n(x) =0andH(x, t) x n(x) = 0 for almost any(x, t) € X, then(E, H) is nec-
essarily the trivial solution.

Coroallary 6.5. If (E, H) is a nontrivial solution of the problerfl.3)—(1.5) satisfying con-
dition (6.1), then & € N U {0} exists such that

/ 9 2

a—zk(x, 0) xn| do(x)#0.
EYe;

Proof. Assume, by contradiction, that the claim is false. Then

9 H
8—Zk(x,0) X nZO,

for almost anyx € 952 and for allk e NU {0} Note thatH (x,+) is a holomorphic func-

tion in D, for almost everyx, then the above identity yieldé(x, - x n= 0 and thus
H(x,t) x n=0 for almost any(x, t) € 32 x R*. By Corollary 6.4, this implies that

(E, H) is the trivial solution. Last assertion contradicts the hypothesis of the corollary,
then the proofis done.O

Proof of Proposition 6.1. Let (E, H) be a nontrivial solution of the problem (1.3)—(1.5)
satisfying condition (6.1). Being € L1(R*), its Laplace transform is defined in the set
{z € C: Rez > 0} and the condition (1.5) yields

Er(x,2) = (no+A(2)H(x, 2) x n, (6.3)

for almost anyx € 952 and for every; € C such that Re > 0. We next show that this
equation implies the exponential decaynof

Let k be the first integer such that the assertion of Corollary 6.5 holds. For ewery
we set

A

fx) = /(H(x,z) xn)- (%k?':(x, 0) x n> do (x). (6.4)
082
Clearly, f is holomorphic in the domai®; moreover, by our choice df we have
fO=f©O=--=5“P0=0 P00
Hence there exists a functign holomorphic inD, such thaig (0) # 0 and
f(z)=27"1g(z) foreveryze D. (6.5)
We next define a functiof’ in the domainD as follows:

P
F(Z): / E(x’z) X wf{’o) . ndov(x)’
0z

082
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Thanks to our assumptiong; is holomorphic in the domaiD; moreover it follows
from (6.3) that

F(2)=—(no+ 1) f(2),

for everyz € C such that Re > 0.
Since F is holomorphic inD, we get from the previous identity and from (6.5) that
there exists a functioy, holomorphic inD, such that

F(2) =716 (2).
We then have

G(z)=—(no+1(2)g(@) (6.6)

for everyz € C such that Re > 0. Recall thatg(0) # 0, then the functiorG(z)/g(z) is
holomorphic in some neighborho@dof 0. By (6.6), we then have

sy GE)
n(z) = 2@) 70

for anyz € U such that Re > 0 thus, by Lemma 6.2; exponentially decays. This com-
pletes the proof of Proposition 6.1
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