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The association between angiogenesis and chronic inflammatory diseases, such as psoriasis, seems to be an
important phenomenon implicated in the pathogenesis of these medical conditions. Recent studies provide
evidence that dimethylfumarate (DMF) has a profound anti-inflammatory as well as anti-tumorigenic action,
although the effect of DMF on angiogenesis is unknown. Signaling via the vascular endothelial growth factor
receptor-2 (VEGFR2) pathway is critical for angiogenic responses. Therefore, we explored whether the known
anti-inflammatory and anti-tumorigenic properties of DMF might be mediated in part by anti-angiogenic effects
through the reduction in VEGFR2 expression. In this study, DMF was found to inhibit endothelial VEGFR2
expression; time- and concentration-dependent inhibition was demonstrated both at the level of protein and
mRNA expression. This blockade was coincident with the inhibition of the formation of capillary-like structures.
The DMF-dependent inhibition of VEGFR2 transcription was found to be mediated by an element located
between base pairs �60 and �37, which contains two adjacent, consensus Sp1 transcription factor-binding sites,
and the constitutive formation of complexes containing Sp1 at this site is decreased by DMF treatment.
Inhibition of VEGFR-2 is shown to be one critical aspect in DMF-mediated anti-angiogenic effects.
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INTRODUCTION
In the last two decades, a plethora of evidence has shown the
association between inflammation and angiogenesis in
pathological conditions. There are many chronic inflamma-
tory diseases, such as rheumatoid arthritis, psoriasis, diabetes,
metabolic syndrome-associated disorders, arteriosclerosis,
and cancer, where inflammation and angiogenesis are
mutually dependent upon each other. In fact, chronic
inflammation and angiogenesis are two processes that
can develop concurrently (Heidenreich et al., 2009). Hence,
targeting angiogenesis may lead to the suppression of
inflammation by decreasing the number of invading immune
cells, preventing the supply of nutrition, or reducing
inflammatory and proteolytic mediators. Conversely, target-
ing inflammation may also negatively affect angiogenesis.
Therefore, a compound capable of inhibiting both processes

may be efficacious in the treatment of various chronic
inflammatory diseases and tumor entities.

Fumaric acid esters (FAEs) have been successfully used in
the treatment of psoriasis for more than 40 years (Schweck-
endiek, 1959). To date, several clinical trials have proven the
efficacy of FAEs, especially dimethylfumarate (DMF), in the
treatment of this chronic inflammatory disease (Yazdi and
Mrowietz, 2008). In addition, a recent study by Kappos et al.
(2008) impressively demonstrated that DMF might be
effective in the treatment of relapsing-remittent multiple
sclerosis, which is another inflammatory disease.

To date, multiple mechanisms of action have been defined
for FAEs against inflammatory cells. Stoof et al. (2001)
showed that IL-8, Gro-alpha, IP-10, and Mig are effectively
downregulated during treatment with DMF, which switches
the cytokine profile of these cells toward one that char-
acterizes Th2 cells. In addition, DMF treatment has been
shown to cause leukocytopenia, with apoptosis causing a
reduction in CD8þ and CD4þ T cells in psoriasis lesions
(Sebök et al., 1994; Treumer et al., 2003).

Leukocytes are recruited to the site of inflammation by
multiple adhesion molecules on endothelial cells, including
ICAM-1, vascular cell adhesion molecule-1, and E-selectin.
In Th1 cytokine-dominated diseases, such as psoriasis, the
expression of these receptors enables leukocytes to transmi-
grate the endothelium. Vandermeeren et al. (1997) convin-
cingly demonstrated that DMF is an effective inhibitor of
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cytokine-induced vascular cell adhesion molecule-1,
ICAM-1, and E-selectin expression in human endothelial
cells. Further investigations revealed that DMF inhibits the
nuclear translocation of activated NF-kB in endothelial cells
and suppresses the activation of NF-kB in human dendritic
cells (Loewe et al., 2001, 2002; Yamazoe et al., 2009). The
NF-kB transcription factor is known to have a central role in
immune and inflammatory responses that regulate a large
number of proinflammatory Th1 cytokines and adhesion
molecules. Therefore, it has been suggested that NF-kB is one
of the central molecular targets of DMF.

Loewe et al. (2002) demonstrated that DMF reduces
melanoma metastasis in a severe combined immunodeficient
mouse model. These data were supported by the data of
Yamazoe et al. (2009), who showed that DMF reduces
cell invasion and metastasis by inhibiting metalloproteases.
Other than the anti-inflammatory and anti-tumorigenic
properties of DMF, the influence of this compound on
angiogenesis is unknown.

Vascular endothelial growth factor (VEGF; VEGF-A) is an
endothelial cell-specific growth factor that is essential for
endothelial cell differentiation (vasculogenesis), the sprouting
of new capillaries from pre-existing vessels (angiogenesis),
vasodilatation, and vascular permeability. VEGF is also a key
regulator of angiogenic sprouting in cancer, ischemic
and inflammatory diseases, and wound repair (Carmeliet
and Jain, 2000; Yancopoulos et al., 2000). These functions
are primarily mediated through the interaction of VEGF
with three structurally related tyrosine kinase receptors: VEGF
receptor-1 (VEGFR-1; Flt-1), VEGFR-2 (KDR/Flk-1), and
VEGFR-3. There is increasing evidence that VEGFR-1 is a
regulator of VEGFR-2 signaling by functioning as a decoy
receptor or by directly regulating the VEGFR2 signaling
pathway (Cao, 2009). Although VEGFR-1 is required for
normal blood vessel development during embryogenesis,
VEGFR-2 is thought to mediate the major growth effects and
permeability of VEGF (Olsson et al., 2006). VEGFR-3 seems
to be essential for lymphatic vessel formation. VEGFR2 is
only detectable at proportionally low levels in the normal
adult vasculature; however, during chronic inflammation,
wound repair, or tumor growth, its expression is upregulated
in the involved blood vessels (Olsson et al., 2006). VEGF is
secreted by a variety of different cell types, including
macrophages and tumor cells. However, VEGFR2 expression
is restricted mainly to vascular endothelial cells. Therefore,
the suppression of VEGF/VEGFR2 signaling is being intensely
investigated as a therapeutic option to prevent new blood
vessel formation (Ellis and Hicklin, 2008).

Taking into account that angiogenesis is an essential part
of chronic inflammatory diseases and cancer, we hypothe-
sized that DMF, a known effective anti-inflammatory
compound, would also suppress angiogenesis and therefore
might be an effective new anti-angiogenic drug.

To test this hypothesis, human umbilical vein endothelial
cells (HUVECs) were treated with DMF and subjected
to long-term endothelial tube formation assays. Herein,
we demonstrate a profound anti-angiogenic effect that
exceeds the effects of suramin, a known anti-angiogenic

drug. This suppressive action was coincident with a profound
downregulation of VEGFR2 at the transcriptional and
translational levels.

These results provide to our knowledge the first evidence
that DMF is an effective anti-angiogenic drug and define a
mechanism of action for this compound in the treatment
of chronic inflammatory diseases and cancer. In addition, we
provide basic research evidence for the use of DMF in the
treatment of other diseases associated with angiogenesis,
such as cancer.

RESULTS
Dimethylfumarate treatment inhibits basal and VEGF-induced
endothelial cell function

Angiogenesis is an important component of chronic inflam-
matory processes. To analyze whether DMF exhibits distinct
anti-angiogenic effects in addition to its known anti-
inflammatory action, we performed long-term tube formation
assays investigating the effect of DMF on the ability of
HUVECs to form capillary-like structures.

We tested the effect of various concentrations of DMF on
cell proliferation and cytotoxicity using human endothelial
cells; DMF inhibited HUVEC cell proliferation in a dose-
dependent manner, as determined by the BrdU assay
(Figure 1a). This effect could not be abrogated by the
addition of VEGF or basic fibroblast growth factor (Supple-
mentary Figure S1a online), indicating that angiogenic signal-
transduction pathways might be affected by DMF. Interest-
ingly, DMF did not significantly increase HUVEC cytotoxicity
even at high concentrations (Figure 1b), whereas DMF did
induce apoptosis (Figure 1c).

Next, VEGF-induced capillary-like structures formed by
endothelial cells were co-incubated with DMF and analyzed
11 days after seeding onto Matrigel. DMF treatment
significantly inhibited VEGF-induced capillary-like structure
formation, as well as basal tube-like formation, of HUVECs in
Matrigel (Figure 1d and e). The suppressive effect of DMF was
comparable with that of suramin, a known anti-angiogenic
compound. Comparable results were also demonstrated with
basic fibroblast growth factor treatment (Supplementary
Figure S1b and c online). These data suggest that DMF
directly affects endothelial cell capabilities, which most likely
involves the inhibition of VEGFR2 expression, which is the
most important angiogenic receptor.

DMF suppresses VEGFR2 protein expression in HUVECs
We next determined whether the anti-angiogenic effects of
DMF correspond with suppression of VEGFR2 protein exp-
ression, as measured by western blot analysis. Interestingly,
DMF suppressed VEGFR2 protein expression in HUVECs in a
time- and concentration-dependent manner (Figure 2a
and b). In contrast, DMF treatment did not influence the
expression of neuropilin-1 and VE-cadherin (Figure 2a and b).

Cycloheximide, a eukaryotic protein synthesis inhibitor,
was then used to analyze whether VEGFR2 downregulation
was due to a decrease in protein stability (Figure 3). In the
presence of cycloheximide, DMF treatment did not affect
the half-life of VEGFR2 protein, which argues against any
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post-translational mechanism of VEGFR2 downregulation. To
determine whether DMF influenced the VEGFR2 phosphor-
ylation, we used a phospho-specific VEGFR2 antibody to
analyze the receptor phosphorylation status by western blot
analysis; no changes were detected in the phosphorylation
status of the receptor (Supplementary Figure S2 online).

DMF suppresses VEGFR2 steady-state mRNA expression

We then determined whether DMF-induced protein down-
regulation was due to the suppression of VEGFR2 steady-state
mRNA levels by reverse transcription (RT)-PCR analysis.
Consistent with our protein expression data, DMF supp-
ressed VEGFR2 mRNA expression in a concentration- and
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Figure 1. Analysis of endothelial cell function and apoptosis in DMF-treated HUVECs. (a) HUVEC proliferation assay. Cells were treated with the indicated

concentrations of DMF for 24 hours. Data are expressed as the percentage of cell proliferation in relation to vehicle-treated samples (100%; 0.1% DMSO).

Data displayed are representative of at least three experiments that were performed with comparable results. *Po0.05 was considered significant. (b) Colorimetric

assay for the quantification of plasma membrane damage based on the measurement of lactatedehydrogenase activity released from the cytosol of damaged cells

into the supernatant. After seeding HUVECs in 96-well plates, cells were incubated with the indicated concentrations of DMF for 24 hours. Average absorbance

values (mean±SD) from quadruplicate replicates per experimental condition were calculated. Data are expressed as the cytotoxicity (%), as determined according

to the manufacturer’s recommendations. Data displayed are representative of at least three experiments that were performed with comparable results. *Po0.05 was

considered significant. (c) For apoptosis determination, we used a colorimetric assay that quantified histone-complexed DNA fragments. Cells were incubated with

100mM DMF or a solvent control (0.1% DMSO) for 24 hours. Average absorbance values (mean±SD) from quadruplicate replicates per experimental condition

were calculated. The data are expressed as percent apoptosis (%), as determined according to the manufacturer’s recommendations. The data displayed are

representative of at least three experiments that were performed with comparable results. *Po0.05 was considered significant. (d) Two-dimensional, long-term

(11 days) in vitro angioassay of HUVECs that were treated with vehicle (0.1% DMSO), DMF (100mM), or suramin (20mM) in the absence or presence of rhVEGF165

(10 ng ml�1). After 11 days, the cells were fixed and stained for CD31. Images of five representative fields corresponding to the experimental procedures are

presented. Data displayed are representative of three experiments that were performed with comparable results. Bar¼100mM. (e) For proliferating vessel

quantification, we performed a CD31 ELISA using the culture wells of the angioassay according to the manufacturer’s procedures. The data displayed are

representative of three experiments that were performed with comparable results. Average absorbance values (mean±SD) from quadruplicate replicates per

experimental condition were calculated. *Po0.05 was considered significant. DMF, dimethylfumarate; HUVEC, human umbilical vein endothelial cell;

NS, not significant; VEGF, vascular endothelial growth factor.
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time-dependant manner (Figure 4a and b). Recently, it was
demonstrated that VEGFR2 expression is also regulated by a
reduction in VEGFR2 mRNA stability (Meissner et al., 2009).
We therefore used actinomycin-D, a transcription inhibitor,
to determine whether DMF treatment decreased VEGFR2
mRNA stability in HUVECs. In the presence of actinomycin-
D, there was no difference in VEGFR2 mRNA half-life
between the DMF- and vehicle-treated HUVECs (Figure 4c).
Therefore, we determined that there might be additional
control mechanisms at the transcriptional level.

Inhibition of VEGFR2 promoter activity is regulated by a cluster
of two Sp1 transcription factor-binding sites

We then employed luciferase reporter assays to delineate
the underlying molecular mechanisms that mediate DMF-
induced downregulation of VEGFR2 mRNA expression.
Luciferase reporter constructs containing the 50-region of
the VEGFR2 promoter and a series of deletion and mutation
constructs were transiently transfected into vehicle- and
DMF-treated HUVECs.

The analysis of luciferase expression in vehicle- and
DMF-treated cells revealed that basal luciferase activity was
suppressed by approximately 60–80% with the �3.2/þ 268,
�164/þ 268, and �60/þ268 VEGFR2 luciferase constructs
(Figure 5). The �60/þ268 M1, �60/þ 268 M2, and �60/
þ 268 M3 constructs, which harbor site-directed mutations in
the Sp1 sites at �58 bp, �48 bp, or at both sites, respectively,
displayed no significant suppression compared with the non-
mutated reporter plasmids (Figure 5). In addition, mutational
analysis revealed that both Sp1 sites were essential for the
DMF-induced inhibition of VEGFR2 mRNA expression. Muta-
tion of the SP1 sites resulted in the loss of the DMF-induced
suppression of VEGFR2 reporter gene expression. These results
provide strong evidence that VEGFR2 promoter suppression
occurs in an Sp1-dependent manner.

DMF treatment reduces constitutive Sp1-dependent binding
to the VEGFR2 promoter

To determine which nuclear factors bind to the Sp1 binding
site, we performed electromobility shift assays using nuclear
extracts from HUVECs and a 32P-labeled oligonucleotide
probe corresponding to the �85/�31 bp VEGFR2 promoter
sequence containing the Sp1 binding site cluster. In untreated
HUVECs, a distinct complex was observed binding
and shifting the migration pattern of the oligonucleotide
(Figure 6a, lane 1); however, a significant decrease in DNA
binding activity was observed in the lysates of cells treated
with DMF (Figure 6a, lane 2). Competition assays using
excess unlabeled oligonucleotides supported the assumption
that nuclear proteins bind to the �85/�31 bp VEGFR2
promoter sequence in an Sp1 site-specific manner (Figure
6a, lanes 3 and 4). A supershift was observed with addition of
Sp1 or Sp3 antibody (Figure 6a, lanes 5 and 6), confirming
that SP1 and SP3 bind at the VEGFR2 promoter.

We then determined whether DMF modulated the
expression of Sp1 or Sp3 to inhibit VEGFR2 expression.
Western blot analysis was performed to analyze the expres-
sion of Sp1 and Sp3 protein in DMF-treated cells, and we
found that Sp1 and Sp3 protein expression remained
unchanged after DMF treatment (Figure 6b). Therefore, these
findings collectively provide strong evidence that the DMF-
mediated suppression of VEGFR2 transcription is mediated by
one distinct mechanism; Sp1-dependent transactivation of
VEGFR2 is repressed through the reduction of Sp1 binding at
the VEGFR2 promoter.

DISCUSSION
FAEs have been effectively used for the treatment of psoriasis
for decades, and several clinical trials have proven the
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efficacy of FAEs in the treatment of this chronic inflammatory
disease, although the definite mechanisms of action are
still unknown (Yazdi and Mrowietz, 2008). Recent studies
have shown that the anti-inflammatory effects of DMF are
also successful in the prevention of relapsing-remitting
multiple sclerosis or the suppression of melanoma growth
and metastasis (Kappos et al., 2008; Loewe et al., 2006).
These results highlight the growing importance and the
expanding applicability of DMF for clinical use.

Our data has shown that DMF has distinct anti-angiogenic
properties that are in part due to the suppression of VEGFR2
expression. As VEGFR2 is the main receptor involved in
endothelial cell survival, proliferation, and vascular perme-
ability, VEGFR2 suppression by DMF may represent a
critical mechanism by which its anti-angiogenic effects are
mediated.

We provide solid evidence that DMF downregulates
VEGFR2 mRNA expression in HUVECs through a distinct
mechanism; thus, DMF effectively inhibits angiogenesis and
cell proliferation. In addition, we demonstrated that another
pro-angiogenic cytokine, basic fibroblast growth factor, failed
to stimulate angiogenesis during DMF treatment, possibly
revealing another additional mechanism of DMF-dependent
anti-angiogenic action. The expression of other major
angiogenic receptors, such as neuropilin-1 or VE-cadherin,
seems to be insensitive to DMF. VEGFR2 is an important anti-
apoptotic receptor in human endothelial cells; therefore,
receptor downregulation could explain the DMF-dependent
increase in HUVEC apoptosis that we observed. Of course, it
cannot be excluded that further apoptotic pathways
are induced by DMF intensifying apoptosis. Comparable
results were also demonstrated in melanoma cells;
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DMF, dimethylfumarate; VEGFR, vascular endothelial growth factor receptor.

1360 Journal of Investigative Dermatology (2011), Volume 131

M Meissner et al.
Dimethylfumarate Suppress Angiogenesis via VEGFR2



Loewe et al. (2006) showed an increase in apoptosis in DMF-
treated melanoma cells in vitro and in vivo. Interestingly, the
melanoma cell line A375 used by Loewe et al. (2006)
overexpresses VEGF and VEGFR2, favoring cell growth and

survival comparable with human endothelial cells that also
stimulate each other by an autocrine loop (Graells et al.,
2004). The pro-apoptotic action of DMF in these tumor cells
might in part be explained by the suppression of VEGFR2.

Sp1 is a ubiquitously expressed transcription factor that is
particularly important for the regulation of TATA-less genes
that encode housekeeping proteins. This gene family also
regulates most growth factors and receptors (Wierstra, 2008).
Our data indicate that DMF suppresses VEGFR2 transcription
via two Sp1 binding sites in the proximal promoter (between
�60 and �30 bp), thus repressing Sp1-dependent DNA
binding and transactivation. A similar mode of action has
recently been described for the anti-angiogenic effects of
proteasome inhibitors, which mediate suppression by a single
Sp1 site located at the �58-bp position in the VEGFR2
promoter (Meissner et al., 2009). To date, there is no
evidence that DMF can prevent Sp1 binding to target genes;
however, there are reports describing the DMF-induced
regulation of other transcriptional factors. DMF was de-
scribed to be sufficient to suppress the DNA-binding ability of
NF-kB and the nuclear accumulation of the p50 and p65
subunits (Loewe et al., 2002; Gesser et al., 2007). Recently,
Seidel et al. (2009) demonstrated that DMF suppresses the
tumor necrosis factor-a-mediated phosphorylation of the p65
subunit and NF-kB nuclear entry, as well as the NF-kB/DNA
complex formation in airway smooth muscle cells. These
events were partly mediated by the inhibition of mitogen
stress kinase-1 and the subsequent dephosphorylation of Sp1.
These effects might suppress the important inflammatory
effects of NF-kB in asthma and seem to explain the
potentially beneficial effects of DMF on inflammatory
diseases (Seidel et al., 2009).

To date, little is known about the effects of DMF on human
endothelial cells. The published literature mainly concen-
trates on DMF regulation of different endothelial cell
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adhesion molecules, such as ICAM-1, E-Selectin, vascular
cell adhesion molecule-1, or CD62E, whose expression was
suppressed by DMF treatment (Vandermeeren et al., 1997;
Loewe et al., 2001). These reports demonstrate that cell
adhesion molecules are important targets of DMF in the
therapy of chronic inflammatory diseases such as psoriasis.
Rubant et al. (2008) demonstrated that DMF inhibits the
rolling of human peripheral blood mononuclear cells in vivo,
mainly through a P- and E-selectin-dependent manner.
Loewe et al. (2002) analyzed these effects in more detail
and demonstrated that DMF appears to selectively prevent
nuclear entry of activated NF-kB.

Reliable data regarding the effects of DMF on angiogenesis
have not been published. The results of our study demon-
strate that DMF treatment has a significant anti-angiogenic
concentration-dependant effect on human endothelial cells.
Angiogenesis is a key process in the evolution and
maintenance of psoriasis and other chronic inflammatory
diseases, such as inflammatory bowel disease, chronic
obstructive pulmonary disease, and rheumatoid arthritis
(Siafakas et al., 2007; Pousa et al., 2008; Paleolog, 2009).
Interestingly, Sauder et al. (2002) observed that anti-
angiogenic therapy with neovastat, which targets the expres-
sion of VEGF and matrix metalloproteinases, is an effective
treatment option for psoriasis. Therefore, the results of our
study with DMF fit well into the picture of treatment of
chronic inflammatory diseases and broaden the knowledge of
the mode of action of DMF.

Recently, DMF was demonstrated to exhibit profound anti-
tumor effects; Yamazoe et al. (2009) convincingly showed
that DMF inhibits tumor cell invasion and metastasis in a
B16B6 mouse model by suppressing the expression and
activity of matrix metalloproteinases in melanoma cells.
Similar results were presented by Loewe et al. (2006),
showing that DMF is anti-proliferative, pro-apoptotic, and
reduces melanoma growth and metastasis in a severe
combined immunodeficient mouse model. Whether DMF-
dependent anti-angiogenic mechanisms are involved in vivo
in its anti-tumor effects has only recently been addressed by
Valero et al. (2010), who showed that lymphangiogenesis is
inhibited by DMF in a melanoma xenotransplantation model.
Additional in vivo analyses of the inflammatory process and
different tumor diseases are needed to identify the setting, in
which angiogenesis has an important role.

The inhibition of angiogenesis is a key process not only in
preventing inflammation but also in the prevention of
tumorigenesis, and clinical trials targeting angiogenesis have
already begun using tyrosine kinase inhibitors or anti-VEGF
antibodies (Loges et al., 2009; Ribatti, 2009). Therefore, our
study analyzing the impact of DMF on angiogenesis also
delivers previously unreported information regarding the anti-
tumor action of this compound. It can be hypothesized that
the anti-angiogenic action of DMF, conveyed by the
inhibition of VEGFR2 expression, explains the anti-tumor
effects of this compound. Whether this compound might be
beneficial in the treatment of human cancer should be further
evaluated in animal and clinical studies because of the very
low cytotoxic effects seen with DMF.

DMF is a proven anti-psoriatic and anti-inflammatory
compound that has been in clinical use for more than 30
years. In addition to the known anti-inflammatory and anti-
tumor mechanisms mediated by DMF, our study provides to
our knowledge a previously unreported mechanism of action,
and knowing the mechanism by which DMF works might
help in the treatment of diseases associated with increased
angiogenesis.

MATERIALS AND METHODS
Reagents

Recombinant human VEGF165 and basic fibroblast growth factor

were purchased from R&D Systems (Minneapolis, MN). DMF,

cycloheximide, and actinomycin-D were obtained from Sigma-

Aldrich (Hamburg, Germany).

Cell culture

HUVECs were purchased from PromoCell (Heidelberg, Germany)

and were cultured until the fifth passage at 37 1C and 5% CO2 in

Endothelial Cell Growth Medium (Lonza, East Rutherford, NJ).

Cell proliferation and cytotoxicity assay

The effect of DMF on cell proliferation was measured by quantifying

BrdU via a cell proliferation immunoassay from Roche Diagnostics

(Grenzach, Germany). Twenty-four hours after seeding, cells were

serum-starved for 24 hours and incubated with BrdU and DMF at the

indicated concentrations for 24 hours. The cytotoxic potential of

DMF was determined using a lactatedehydrogenase-based cytotoxi-

city detection kit from Roche. Twenty-four hours after seeding, the

cells were incubated with DMF for 24 hours at the indicated

concentrations.

Apoptosis assay

The effect of DMF on apoptosis was analyzed using a Cell Death

Detection ELISA PLUS-Kit from Roche Diagnostics. The assay was

carried out according to the manufacturers’ instructions. Briefly,

synchronized cells (105 cells per 100 ml) were incubated with 100mM

DMF or a solvent control (0.3% DMSO) for 24 hours as indicated.

Cell lysates were placed into a streptavidin-coated microtiter plate

followed by the addition of anti-histone-biotin and anti-DNA-

peroxidase The quantification of the amount of nucleosomes

retained in the immunocomplexes was determined photometrically

using 2,29-azino-bis-3-ethylbenzthiazoline-6-sulfuric acid as the

substrate.

Tube-formation assay

HUVECs and human diploid fibroblasts were co-cultured in 24-well

plates at day 0 (AngioKit, TCS CellWorks, Buckinghamshire, UK).

The cells were then treated with vehicle (0.1% DMSO), DMF

(100mM), VEGF (10 ng ml�1), VEGF and DMF, or suramin (20 mM) for

11 days; the compound concentrations were maintained during the

course of the experiment. Tube formation was assayed at day 11

following fixation and tubule staining with CD31 (platelet/endothe-

lial cell adhesion molecule-1) according to the manufacturer’s

instructions. Images of five representative fields corresponding to the

experimental procedures are shown. Proliferating vessels were

quantified by a CD31 ELISA using the samples from the culture

wells of the AngioKit according to the manufacturer’s procedures.
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Western blot analysis
Protein extracts were prepared as described previously (Meissner

et al., 2008). Following SDS-PAGE and electroblotting, membranes

were incubated with the following primary antibodies: anti-VEGFR2

and anti-neuropilin-1 (R&D Systems), anti-Sp1, clone PEP2, anti-VE-

cadherin, phospho-VEGFR2 and anti-tie-2 (Santa Cruz, Heidelberg,

Germany), and anti-tubulin (LabVision, Fremont, CA). Primary

antibody application was followed by incubation with horseradish

peroxidase-conjugated secondary antibodies (anti-mouse and anti-

rabbit IgG, Amersham, Uppsala, Sweden; anti-goat, Dako, Glostrup,

Denmark). Blots were developed using an enhanced chemilumines-

cence detection system (Amersham) according to the manufacturer’s

instructions.

RNA extraction and RT-PCR

RT-PCR analysis was performed on total RNA (150 ng) extracted

from sub-confluent cell cultures. Total cellular mRNA was isolated

by the RNeasy Mini Procedure (Qiagen, Hilden, Germany) after

DNase digestion. RT-PCR analyses for VEGFR2 and glyceraldehyde-

3-phosphate dehydrogenase were performed with the One Step

RT-PCR Kit (Qiagen). PCR products were resolved by 1–2% agarose

gel electrophoresis, and ethidium bromide-stained bands were

visualized using an ultraviolet transilluminator. The densitometric

analysis was used to quantify band intensities using the public

domain Java image-processing program ImageJ (v1.29 s). Optical

densities of the VEGFR2 bands were corrected for loading

differences based on the corresponding glyceraldehyde-3-phosphate

dehydrogenase bands. The primer sets for VEGFR2 and glyceralde-

hyde-3-phosphate dehydrogenase were previously published

(Meissner et al., 2008).

Transient transfection and analysis of reporter gene
expression

HUVECs (1.0� 105 cells per well in 12-well plates) were transfected

with 0.5 mg of the appropriate firefly luciferase construct and 0.1mg

phRG-TK vector (Promega, Madison, WI) using the SuperFect

transfection reagent (Qiagen). Human VEGFR2 reporter gene

constructs were generously provided by Dr C Patterson (University

of North Carolina, Chapel Hill, NC). Twenty-four hours after

transfection, cells were treated with vehicle (0.3% DMSO) or

with DMF for 24 hours. Luciferase activity was measured with the

Dual-Luciferase Reporter Assay System (Promega).

Preparation of nuclear extracts and gel mobility shift analysis

HUVECs were treated with vehicle (0.1% DMSO) or DMF for

30 minutes. Nuclear proteins were extracted as described previously.

DNA-binding reactions were performed with or without excess

unlabeled competitor, Sp1 consensus oligonucleotide (Promega),

and Sp1 and Sp3 antibodies (Santa Cruz Biotechnology, Santa Cruz,

CA) as described previously (Meissner et al., 2009).

Statistical analysis
The data are expressed as the mean±SD/SE from at least three

independent experiments. Statistical analyses were performed using

the Student’s t-test.
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