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Abstract

We propose a method to solve the non-perturbative renormalization group equations for the n-point functions. In leading order, it consists in
solving the equations obtained by closing the infinite hierarchy of equations for the n-point functions. This is achieved: (i) by exploiting the
decoupling of modes and the analyticity of the n-point functions at small momenta: this allows us to neglect some momentum dependence of
the vertices entering the flow equations; (ii) by relating vertices at zero momenta to derivatives of lower order vertices with respect to a constant
background field. Although the approximation is not controlled by a small parameter, its accuracy can be systematically improved. When it is
applied to the O(N) model, its leading order is exact in the large-N limit; in this case, one recovers known results in a simple and direct way, i.e.,
without introducing an auxiliary field.
© 2005 Elsevier B.V.

1. Introduction

In the last ten years a considerable amount of effort has been devoted to the study of the Non-Perturbative Renormalization
Group (NPRG), and to the development of new approximation schemes to solve the corresponding infinite hierarchy of equations
for the n-point functions [1–4]. In this context, the so-called “derivative expansion” has been widely used. It defines a systematic
approach that has led to many successful applications in a variety of domains [5–7]. However, the derivative expansion is a good
approximation to n-point functions only when the external momenta are smaller than the lowest mass in the problem. In particular,
for massless theories, the derivative expansion provides information only on the n-point functions (and their derivatives) at zero
momenta. This is not enough for applications which require the knowledge of the full momentum dependence of the n-point
functions. In these cases, a new approximation scheme is necessary.

To our knowledge, all efforts in this direction [9] have been based on various forms of the early proposal by Weinberg [8]: one
truncates the infinite tower of flow equations for the n-point functions considering only vertices up to a given number of legs,
possibly using various ansatzes for some of them. This leads to approximations similar to those used when solving Schwinger–
Dyson equations [10]. However, despite the fact that very encouraging results have been obtained problems remain with truncations
around zero external fields [11].

It is then interesting to look for alternative schemes to solve NPRG at finite external momenta and it is the purpose of this Letter
to present a method to calculate correlation functions at arbitrary momenta within the NPRG. As it is the case for the derivative
expansion, the proposed strategy takes into account, at each order, an infinite number of vertices. The accuracy is expected to
be comparable to that achieved with the derivative expansion when it is used to calculate the effective potential. The method
exploits two properties of the NPRG: the decoupling of short wave-length modes, and the analyticity of the n-point functions at
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small momentum (guaranteed by the infrared regulator), in order to neglect some of the momentum dependence in the vertices
which enter the flow equations. Then, it becomes possible to close the infinite hierarchy of equations by calculating vertices at
zero momenta as derivatives of lower order vertices with respect to a constant background field. Although the approximation is
not controlled by any small parameter, its accuracy can be systematically improved, in a way similar to what can be done in the
derivative expansion.

The leading order of the proposed approximation scheme shares some of the nice properties of the leading order of the derivative
expansion, the so-called local potential approximation (LPA): it is exact at one-loop order, and it also reproduces the exact large-N
limit of the O(N) model. Of course, the LPA provides only information on momentum-independent quantities, such as the effective
potential, whereas the present method does not have this limitation. In fact, as an illustration, we use it to solve the NPRG equations
for the full momentum-dependent n-point functions of the O(N) model in the large-N limit. This can be done directly, i.e., without
having to introduce an auxiliary field. To our knowledge, this is the first time that, within the NPRG, such a calculation is done for
this model.

The method presented here is an improvement of the one that we have applied in a previous Letter to the calculation of the tran-
sition temperature of a weakly repulsive Bose gas [12]. Compared to the method proposed in [12], the present one is conceptually
simpler as it involves a single approximation. Its numerical implementation will be discussed in a separate publication [13].

2. The NPRG and the derivative expansion

Let us start by recalling some basic features of the NPRG. Although most of the arguments in this Letter have a wider range of
applicability, we shall consider a scalar field theory defined by an Euclidean action S in d dimensions, of the generic form:

(1)S =
∫

ddx

{
1

2

(
∂μϕ(x)

)2 + V (ϕ)

}
,

where V (ϕ) is a polynomial in ϕ. It is understood that the parameters of the action (hidden in V (ϕ)) and the field normalization
are fixed at a microscopic momentum scale Λ (which may be infinite). The NPRG equations relate the classical action to the full
effective action. This relation is obtained by controlling the magnitude of long wavelength field fluctuations with the help of an
infrared cut-off, which is implemented [1–4] by adding to the classical action (1) a regulator of the form

(2)�Sκ [ϕ] = 1

2

∫
ddp

(2π)d
Rκ(p)ϕ(p)ϕ(−p),

where Rκ denotes a family of “cut-off functions” depending on a parameter κ . The role of �Sκ is to suppress the fluctuations with
momenta p � κ , while leaving unaffected the modes with p � κ . Thus, typically Rκ(p) → κ2 when p � κ , and Rκ(p) → 0 when
p � κ . There is a large freedom in the choice of Rκ(p), abundantly discussed in the literature [14–17].

We denote the effective action in the presence of the regulator by Γκ [φ], where φ is the average field, φ(x) = 〈ϕ(x)〉. When
κ → Λ quantum fluctuations are suppressed and ΓΛ[φ] coincides with the classical action. As κ decreases, more and more quantum
fluctuations are taken into account and, as κ → 0, Γκ=0[φ] becomes the usual effective action Γ [φ]. In other words, as κ decreases
from Λ to 0, Γκ interpolates between the classical action and the full effective action (see, e.g., [5]). The variation with κ of Γκ [φ]
is governed by the following flow equation [1–4]:

(3)∂κΓκ [φ] = 1

2

∫
ddq

(2π)d
∂κRκ

(
q2)[Γ (2)

κ + Rκ

]−1
q,−q

,

where Γ
(2)
κ is the second derivative of Γκ w.r.t. φ (see Eq. (5) below). Eq. (3) is the master equation of the NPRG. Its right-hand

side has the structure of a one-loop integral, with one insertion of ∂κRκ(q2).
As well known [18], the effective action Γ [φ] is the generating functional of the one-particle irreducible n-point functions.

Similarly, for a given value of κ , we define the n-point functions Γ
(n)
κ :

(4)Γ (n)
κ (p1, . . . , pn) =

∫
ddx1 . . .

∫
ddxn−1 exp

{
i

n∑
j=1

pjxj

}
δnΓκ

δφ(x1) · · · δφ(xn)
.

By deriving Eq. (3) with respect to φ, and then letting the field be constant, one gets the flow equations for all n-point functions in
a constant background field φ. These equations can be represented diagrammatically by one-loop diagrams with dressed vertices
and propagators (see, e.g., [19]). For instance, the flow of the 2-point function in a constant external field reads:

∂κΓ (2)
κ (p,−p;φ) =

∫
ddq

(2π)d
∂κRk(q)

{
Gκ

(
q2;φ)

Γ (3)
κ (p, q,−p −q;φ)Gκ

(
(q +p)2;φ)

Γ (3)
κ (−p,p +q,−q;φ)Gκ

(
q2;φ)

(5)− 1

2
Gκ

(
q2;φ)

Γ (4)
κ (p,−p,q,−q;φ)Gκ

(
q2;φ)}

,
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Fig. 1. The two diagrams contributing to the flow of the 2-point vertex. The lines represent dressed propagators, Gκ . The cross represents an insertion of ∂κRk . The

vertices denoted by black dots are Γ
(3)
κ and Γ

(4)
κ .

where

(6)G−1
κ

(
q2;φ) = Γ (2)

κ (q,−q;φ) + Rκ

(
q2).

The corresponding diagrams contributing to the flow are shown in Fig. 1.
Flow equations for the n-point functions do not close: for example, in order to solve Eq. (5) one needs the 3- and the 4-point

functions, Γ
(3)
κ and Γ

(4)
κ , respectively. At this point we observe that because of the shape of the regulator, only internal momenta

q smaller than κ contribute to the flow, i.e., to the integral in the r.h.s. of Eq. (5). One refers to this property as to the decoupling
of high momentum modes. Besides, the regulator insures also that all vertices are smooth functions of momenta. Suppose then that
one wants to calculate n-point functions at small external momenta, say, p2

i � κ2. Then all momenta are small. This, together with

the fact that the n-point functions are smooth functions of the momenta, make it possible to expand the n-point functions Γ
(n)
κ in

the r.h.s. of the flow equations in terms of q2/κ2 and p2/κ2, or equivalently in terms of the derivatives of the field.
Such considerations are at the basis of the derivative expansion, which is usually formulated in terms of an ansatz for the effective

action, rather than in terms of an approximation for the n-point functions. Its zero order, the LPA, assumes that the effective action
has the form:

(7)Γ LPA
k [φ] =

∫
ddx

{
1

2
∂μφ∂μφ + Vk(φ)

}
.

The derivative term here is simply the one appearing in the classical action, and Vk(φ) is the effective potential. The flow equation
for Vκ is a closed equation that is easily obtained by assuming that the field φ is constant in Eq. (3):

(8)∂κVκ(φ) = 1

2

∫
ddq

(2π)d
∂κRκ

(
q2)GLPA

κ

(
q2;φ)

,

with GLPA
κ (q2;φ) given by Eq. (6) in which

(9)Γ (2)
κ (q,−q;φ) = q2 + ∂2Vκ

∂φ2
,

as obtained from Eq. (7)
Higher-order corrections to the LPA include terms in the effective action with an increasing number of derivatives. Although

there is no formal proof of convergence, the expansion exhibits quick apparent convergence if the regulator Rκ(q2) is appropriately
chosen [17,20,21]. In practice, the LPA reproduces well the physical quantities dominated by small momenta (such as the effective
potential or critical exponents) in all theories where it has been tested (see, for example, [5,7]). Higher-order corrections improve
the results. The expansion has been pushed up to third order [21], yielding critical exponents in the Ising universality class as good
as those obtained with the best accepted methods.

3. A new approximation scheme

The derivative expansion, as described above, strictly makes sense only for momenta not much larger than
√

κ2 + m2
κ , where

mκ is the running mass. Thus, at criticality, and in the physical limit κ → 0, it provides information only on n-point functions and
their derivatives at zero momenta. However, by focusing on the n-point functions rather than the effective action, we can generalize
slightly the arguments on which the derivative expansion is based in order to set up a much more powerful approximation scheme.
We observe that: (i) the momentum q circulating in the loop integral of a flow equation is limited by κ ; (ii) the smoothness of
the n-point functions allows us to make an expansion in powers of q2/κ2, independently of the value of the external momenta p.
Now, a typical n-point function entering a flow equation is of the from Γ

(n)
κ (p1,p2, . . . , pn−1 + q,pn − q;φ), where q is the loop

momentum. The proposed approximation scheme, in its leading order, will then consist in neglecting the q-dependence of such
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vertex functions:

(10)Γ (n)
κ (p1,p2, . . . , pn−1 + q,pn − q;φ) ∼ Γ (n)

κ (p1,p2, . . . , pn−1,pn;φ).

Note that this approximation is a priori well justified. Indeed, when all the external momenta pi = 0, Eq. (10) is the basis of the
LPA which, as stated above, is a good approximation. When the external momenta pi begin to grow, the approximation in Eq. (10)
becomes better and better, and it is trivial when all momenta are much larger than κ . With this approximation, Eq. (5), for instance,
becomes:

∂κΓ (2)
κ (p,−p;φ) =

∫
ddq

(2π)d
∂κRk

(
q2){Gκ

(
q2;φ)

Γ (3)
κ (p,0,−p;φ)Gκ

(
(q + p)2;φ)

Γ (3)
κ (−p,p,0;φ)Gκ

(
q2;φ)

(11)− 1

2
Gκ

(
q2;φ)

Γ (4)
κ (p,−p,0,0;φ)Gκ

(
q2;φ)}

.

Note that we do not also assume q = 0 in the propagators. The reason for this will become clear shortly.
Now comes the second ingredient of the approximation scheme, which exploits the advantage of working with a non-vanishing

background field: vertices evaluated at zero external momenta can be written as derivatives of vertex functions with a smaller
number of legs (this observation can be found, in a different context, in [1] and in [22]):

(12)Γ (n+1)
κ (p1,p2, . . . , pn,0;φ) = ∂Γ

(n)
κ (p1,p2, . . . , pn;φ)

∂φ
.

To prove this relation, expand Γk[φ] around an arbitrary constant field φ0:

(13)Γκ [φ] =
∑
n

1

n!
∫

ddx1 · · ·ddxn

[
φ(x1) − φ0] · · · [φ(xn) − φ0]Γ (n)

κ (x1, . . . , xn;φ0).

Since Γκ [φ] does not depend on φ0, ∂Γκ [φ]/∂φ0 = 0. Taking the derivative of Eq. (13) with respect to φ0 one then gets:

(14)
∫

ddy Γ (n+1)
κ

(
x1, x2, . . . , xn, y,φ0) = ∂Γ

(n)
κ (x1, x2, . . . , xn,φ

0)

∂φ0
,

from which Eq. (12) follows after a Fourier transform. By exploiting Eq. (12), one easily transforms Eq. (11) into a closed equation
(recall that Gκ and Γ

(2)
κ are related by Eq. (6)):

(15)∂κΓ (2)
κ

(
p2;φ) =

∫
ddq

(2π)d
∂κRκ

(
q2)G2

κ

(
q2;φ){(

∂Γ
(2)
κ (p,−p;φ)

∂φ

)2

Gκ

(
(p + q)2;φ) − 1

2

∂2Γ
(2)
κ (p,−p;φ)

∂φ2

}
.

It is interesting to emphasize the similarity of this equation with Eq. (8): both are closed equations because the vertices appearing
in the r.h.s. have been expressed as derivatives of the function in the l.h.s. This is the main result of this Letter.

The approximation scheme presented here is similar to that used in [12]. There also the momentum dependence of the vertices
was neglected in the leading order. However, further approximations were needed in order to close the hierarchy. The progress
realized here is to bypass these extra approximations by working in a constant background field.

The construction of closed equations for the n-point functions with arbitrary n (n � 3) follows the same lines as that of the
equation for the 2-point function. The flow equation for Γ

(n)
κ involves all m-point functions with m � n + 2. Since the r.h.s. of the

flow equations have the structure of one-loop integrals, the contributions involving Γ
(n+1)
κ and Γ

(n+2)
κ are of the types shown in

Fig. 2. When the loop momentum entering these vertices is taken to be zero, in line with Eq. (10), the vertex of order n + 1 has one
leg at zero momentum and the vertex of order n + 2 has two; thus, according to Eq. (12), they can be written as derivatives of the
n-point function Γ

(n)
κ . It follows that the equation for Γ

(n)
κ is a closed equation, assuming of course that all other functions Γ

(m)
κ

with m < n are determined similarly.
One can go beyond the leading order approximation, based on Eq. (10), in the following way. Focusing on Eq. (5) for

Γ
(2)
κ (p,−p;φ) one can solve simultaneously the flow equations of Γ

(2)
κ , Γ (3)

κ and Γ
(4)
κ , with no approximation in the flow equation

for Γ
(2)
κ , but using (10) in the right-hand side of the flow equations for Γ

(3)
κ and Γ

(4)
κ . In this way one would determine Γ

(3)
κ and

Γ
(4)
κ with a “leading order” precision and Γ

(2)
κ with a “next-to-leading order” one. By iterating the procedure, which amounts to

including more equations, one would get better approximations for a larger number of n-point functions. It is easily verified that
such an iterative approximation scheme reproduces perturbation theory at high momenta: for instance, if the bare vertices of the
theory are momentum-independent, the leading order approximation contains the exact one loop (this is only true if we keep q in the
propagators, as we did in (11)). More generally, a simple analysis shows that to get the expression of a given n-point functions at or-
der m loop, one has to consider all equations up to that for the (n+ 2m− 2)-point function. (In a theory with momentum-dependent
bare vertices, perturbation theory is also reproduced, but more flow equations are required to match perturbation theory at a given
number of loops.) Of course, such a scheme is not only accurate at high momenta, where it reproduces perturbation theory, but also
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Fig. 2. The two diagrams contributing to the flow of the n-point vertex and containing vertices with more than n legs.

in the small momentum, possibly critical, regime, where its accuracy is at least comparable to that of the derivative expansion. In
practice, the scheme that we have described may become rapidly cumbersome. However, it can be simplified by using a further
approximation consisting in a systematic expansion in q2/κ2 of the n-point functions in the right-hand side of flow equations. This
further approximation preserves the essential property of leading to a closed set of equations. We have solved the flow equation for
the 2-point function in leading order and obtained results which are comparable to those obtained in [12]. More complete numerical
studies will be presented in a forthcoming publication.

4. The O(N) model in the large-N limit

We turn now to the O(N) model in the large-N limit, where analytical results can be obtained. Our goal here is twofold. First,
to prove that, in its leading order, our approximation is in fact exact in the large-N limit. Second, to solve analytically the NPRG
equations and find the n-point functions in a direct way, i.e., without introducing an auxiliary field, as commonly done [23].

The large-N limit of the O(N) model within the NPRG has been thoroughly studied in [24], where it is shown that the effective
action takes the form:

(16)Γκ [φ] =
∫

ddx

{
1

2
∂μφa∂μφa

}
+ Γ̂κ [ρ],

where ρ(x) = φa(x)φa(x)/2, a = 1, . . . ,N . Using this expression, the authors of Ref. [24] show that the LPA flow equation for the
effective potential is exact. Moreover, they find an interesting analytical solution of the equation. However, the use of (16) in the
flow equation of a n-point function at zero field does not give a closed equation [25]. In this section we obtain a system of closed
equations that can be solved analytically.

We shall again focus, for the sake of illustration, on the 2-point function. Its exact flow equation in an external field is the
generalization of Eq. (5)) to the O(N) model:

∂κΓ
(2)
ab (p,−p;κ;φ) =

∫
ddq

(2π)d
∂κRκ

(
q2){Gij

(
q2;κ;φ)

Γ
(3)
ajk(p, q,−p − q;κ;φ)Gkl

(
(q + p)2;κ;φ)

× Γ
(3)
blm(−p,p + q,−q;κ;φ)Gmi

(
q2;κ;φ)

(17)− 1

2
Gij

(
q2;κ;φ)

Γ
(4)
abjk(p,−p,q,−q;κ;φ)Gki

(
q2;κ;φ)}

.

At this point, it is useful to recall the structure of the n-point functions of the O(N) model in the large-N limit. These are obtained
by taking the functional derivatives of (16), letting the background field to be constant, and then taking the Fourier transform. We
obtain in this way the following expressions for the 2-, 3- and 4-point vertices:

(18)Γ
(2)
ab (p,−p;κ;φ) = (

p2 + V ′
κ(ρ)

)
δab + φaφbΓ̂

(2)
κ (p,−p;ρ),

Γ
(3)
abc(p1,p2,p3;κ;φ)

(19)= φaδbcΓ̂
(2)
κ (p1,−p1;ρ) + φbδacΓ̂

(2)
κ (p2,−p2;ρ) + φcδabΓ̂

(2)
κ (p3,−p3;ρ) + φaφbφcΓ̂

(3)
κ (p1,p2,p3;ρ),

Γ
(4)
abcd(p1,p2,p3,p4;κ;φ)

= δabδcd Γ̂ (2)
κ (p1 + p2,−p1 − p2;ρ) + δacδbd Γ̂ (2)

κ (p1 + p3,−p1 − p3;ρ) + δadδbcΓ̂
(2)
κ (p1 + p4,−p1 − p4;ρ)

+ δabφcφdΓ̂ (3)
κ (p1 + p2,p3,p4;ρ) + δacφbφdΓ̂ (3)

κ (p1 + p3,p2,p4;ρ) + δadφbφcΓ̂
(3)
κ (p1 + p4,p2,p3;ρ)

+ δbcφaφdΓ̂ (3)
κ (p2 + p3,p1,p4;ρ) + δbdφaφcΓ̂

(3)
κ (p2 + p4,p1,p3;ρ) + δcdφaφbΓ̂

(3)
κ (p3 + p4,p1,p2;ρ)

(20)+ φaφbφcφdΓ̂ (4)
κ (p1,p2,p3,p4;ρ).
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As for the propagator, it can be written in terms of its longitudinal and transverse components:

(21)Gab

(
p2;φ) = GT

(
p2;ρ)(

δab − φaφb

2ρ

)
+ GL

(
p2;ρ)φaφb

2ρ
,

with

(22)G−1
T

(
p2;κ;ρ) = p2 + V ′

κ (ρ) + Rκ

(
p2), G−1

L

(
p2;κ;ρ)=p2 + V ′

κ(ρ) + 2ρΓ̂ (2)
κ (p,−p;ρ) + Rκ

(
p2).

We can now replace these expressions in Eq. (17) and keep only the leading terms in 1/N . To do so, notice that the non-trivial
large-N limit of the O(N) model is obtained when the effective action Γκ is considered to be of order N and the φ field of order√

N (see, for example, [24]). Then, the 2-point function is of order 1, the 3-point function of order 1/
√

N and the 4-point function
of order 1/N . Simple counting of N factors in the flow equation (17) gives a right-hand side of order 1/N . Thus, the only way of
having both sides of order 1 is to collect an explicit N factor from the trace of an identity matrix. The surviving terms yield:

∂κΓ
(2)
ab (p,−p;κ;φ) = N

∫
ddq

(2π)d
∂κRκ

(
q2)G2

T

(
q2;κ;ρ)

(23)

×
{
−1

2
δabΓ̂

(2)
κ (0,0;ρ) + φaφb

(
Γ̂ (2)

κ (p,−p;ρ)
)2

GT

(
(p + q)2;κ;ρ) − 1

2
φaφbΓ̂

(3)
κ (p,−p,0;ρ)

}
.

Now comes the important observation: the vertices contributing to the flow in the large-N limit are q-independent. That means
that our leading order approximation becomes exact in the large-N limit of the O(N) model, as anticipated. Notice that for this to
be true, we need to keep the q dependence of the propagators in the flow equations. However, in the large-N limit, the momentum
dependence of the transverse propagator (the only one appearing in (23)) is simply the bare one, as shown in Eq. (22).

Substituting in Eq. (23) the expression (18) of the 2-point function and performing the tensor decomposition, one obtains the
system of equations:

∂κV ′
κ (ρ) = −N

2
V ′′

κ (ρ)

∫
ddq

(2π)d
∂κRκ

(
q2)G2

T

(
q2;κ;ρ)

,

(24)

∂κ Γ̂ (2)
κ (p,−p;ρ) = N

∫
ddq

(2π)d
∂κRκ

(
q2)G2

T

(
q2;κ;ρ){(

Γ̂ (2)
κ (p,−p;ρ)

)2
GT

(
(p + q)2;κ;ρ) − 1

2

∂Γ̂
(2)
κ (p,−p;ρ)

∂ρ

}
,

where we have used, as in Eq. (12),

(25)Γ̂ (2)
κ (0,0;ρ) = V ′′

κ (ρ), Γ̂ (3)
κ (p,−p,0;ρ) = ∂Γ̂

(2)
κ (p,−p;ρ)

∂ρ
,

which allowed us to close the equations. In the equations above, V ′
κ (ρ) and V ′′

κ (ρ) denote, respectively, the first and second deriva-
tive of the effective potential with respect to ρ.

The first of Eqs. (24) is simply the derivative of the equation for the potential in the large-N limit which was solved analytically
using two different methods [24,26]. The second equation, which, to our knowledge, has not been presented before in the literature,
can be solved also using any of these two methods. Here we present the solution using the method of [26].

To this aim, we set W = V ′
κ(ρ), and use (κ,W) as independent variables instead of (κ, ρ). In order to do so, we introduce the

inverse function relating ρ to W :

(26)ρ = fκ(W)

so that

(27)∂κfκ(W) = −f ′
κ(W)∂κW(ρ), f ′

κ(W) = 1/W ′(ρ),

where f ′ and W ′ are the derivatives of f and W with respect to their respective arguments. Making the change of variables in
Eq. (24), and using the relations (27), one gets:

∂κfκ(W) = N

2

∫
ddq

(2π)d

∂κRκ(q2)

(q2 + W + Rκ(q2))2
,

(28)∂κ

(
Γ̂ (2)

κ (p,−p;ρ)
)−1 = −N

∫
ddq

(2π)d

∂κRκ(q2)

(q2 + W + Rκ(q2))2

1

(q + p)2 + W + Rκ((q + p)2)
.

At this point we observe that the right-hand sides of both the expressions above are total derivatives:∫
ddq

d

∂κRκ(q2)

2 2 2
= −∂κ

∫
ddq

d

1
2 2

,

(2π) (q + W + Rκ(q )) (2π) q + W + Rκ(q )
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∫
ddq

(2π)d

∂κRκ(q2)

(q2 + W + Rκ(q2))2

1

(q + p)2 + W + Rκ((q + p)2)

(29)= −1

2
∂κ

∫
ddq

(2π)d

1

q2 + W + Rκ(q2)

1

(q + p)2 + W + Rκ((q + p)2)
.

This allows us to integrate analytically the equations. For the potential, one obtains the well-known result [5,26]. By imposing the
initial condition that for κ = Λ the 4-point function is the bare vertex, we get from Eq. (20)

(30)Γ̂
(2)
κ=Λ(p,−p;ρ) = u

3
,

corresponding to a φ4 interaction in the classical action, of the form (u/4!)(φaφa)
2. We then obtain the longitudinal part of the

2-point function (in the limit Λ → ∞):

(31)Γ̂ (2)
κ (p,−p;ρ) = u

3

1

1 + Nu
6

∫ ddq

(2π)d
1

q2+W+Rκ(q2)

1
(q+p)2+W+Rκ((q+p)2)

.

This is the usual sum of bubbles in large N , which can be found using other methods [23]. Notice, however, that our solution follows
directly from the NPRG without introducing any auxiliary field. The dependence on W reflects the presence of the background field:
W plays here the role of a (field-dependent) “mass term”.

The same method can be applied to the other n-point functions. The calculations are straightforward, but the explicit results
involve lengthy expressions. Let us just give here the result for the 3-point function:

Γ̂ (3)
κ (p1,p2,p3;W) = NΓ̂ (2)

κ (p1,−p1;W)Γ̂ (2)
κ (p2,−p2;W)Γ̂ (2)

κ (p3,−p3;W)

(32)×
∫

ddq

(2π)d
GT

(
q2;κ;ρ)

GT

(
(q + p1)

2;κ;ρ)
GT

(
(q − p3)

2;κ;ρ)
.

5. Conclusions and perspectives

In this Letter we have presented an approximation scheme to solve the NPRG equations and obtain the n-point functions for any
external momenta. Our proposal is as general and systematic as the derivative expansion: results can be systematically improved as
one can write, at any order, a closed set of equations. We have provided here, as an illustration, an application to the O(N) model
in the large-N limit: there, the method turns out to be exact at leading order, and it provides an economical procedure to obtain the
analytical expressions of the n-point functions at arbitrary momenta. Clearly, however, the method is more general. It is based on
an approximation that can be exported to other field theories. Work on such extensions, in particular to gauge theories, is underway.
This, as well as numerical studies for physically interesting problems, will be reported in forthcoming publications.
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