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Abstract

In this Letter we investigate the evolution of a class of cosmologies fueled by quintom dark energy and dark matter. Quintom dark energy is a
hybrid of quintessence and phantom which involves the participation of two real scalar fields playing the roles of those two types of dark energy.
In that framework we examine, from a dynamical systems perspective, the possibility that those fields are coupled among them by considering
an exponential potential with an interesting functional dependence similar but not identical to others studied before. The model we consider
represents a counterexample to the typical behavior of quintom models with exponential potentials because it admits either tracking attractors
(w = 0), or phantom attractors (w < −1).
© 2006 Elsevier B.V.
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1. Introduction

Understanding the nature of dark energy has become a joint
non-trivial pursuit of an everyday growing number of cosmol-
ogists. It is expected that the large investment which is being
made in technical and human resources will pay off in the form
of a deeper understanding of the link between the physics gov-
erning the universe at the classical and quantum levels.

Abundant observational evidence supports the view that the
universe is currently undergoing accelerated expansion [1–6]
due to a time-evolving component of unknown nature called
dark energy. Peculiarly, in most of the analyses the best agree-
ment with observational data is provided by models in which,
as time goes forward, the dark energy equation of state para-
meter w = p/ρ crosses the w = −1 divide (to become even
more negative). However, among recent studies using newest
SN data, some suggest the convenience of the phantom divide
crossing may just be an illusion due to systematic errors in
observations [7], whereas some others conclude that phantom
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dark energy models are comfortably allowed [8]. The number
of studies with a negative regard on the existence of a w < −1
epoch are still scarce, and to add to the problem results have
strong dependence on the chosen parametrization of w in terms
of redshift [9], so there is not a full consensus about the ob-
servational preference of the phantom divide crossing. For this
reasons, we feel much has to be done yet before one can def-
initely say the scale tilted to one side, so continuing to get
deeper insight into models which do the crossing seems still
justified.

Some interesting general aspects of the problem of the phan-
tom divide crossing were discussed in [10], where the viability
requirements on the equation of state and sound speed were
analyzed. Even though, some of realizations of the crossing
can have an extradimensional origin, either in the brane [11]
or the string gas context [12], scalar field models in standard
four-dimensional physics are the most popular options of the
inventory. The impossibility of the occurrence of the transition
in traditional single field models [13] has motivated much ac-
tivity in the construction of two field models that do the job.
Examples of explicit constructions can be found in [14–16,22],
but perhaps the class of models which have received most at-
tention are quintom cosmologies [17–22].
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Other worth mentioning alternatives are models in the
framework of scalar–tensor theories [23], a single field pro-
posal involving high order derivative operators in the La-
grangian [24], a model with a single dynamical scalar field
coupled to an a priori non-dynamical background covariant vec-
tor field [25], and an interacting Chaplygin gas [26]. We stick
here to the main stream and consider quintom cosmologies as
well.

The cosmological evolution of quintom models has been ex-
amined using standard dynamical systems techniques in [20]
and [21]. In these references an isotropic and homogeneous
universe was supposed to be filled with dark matter and dark
energy, and the potential of the latter was chosen to be of expo-
nential form. The difference between [20] and [21] is that in the
second case the potential accounts for an interaction between
the conventional and the phantom scalar fields. Here we re-
visit quintom models from the dynamical systems perspective,
but make a choice of potential which is closely related to that
in [21], but which at the same time does not include it as a par-
ticular case. The subtle difference of our choice has unexpected
consequences. Firstly, there exists the possibility that quintom
dark energy (with fairly general initial conditions) tracks dark
matter, thus meaning that avoidance of tracking behavior in
quintom models is not generic. Secondly, in some cases for
which the parameters in the potential exclude the tracking at-
tractor, then the model may have a purely phantom attractor,
i.e. this will be models in which w relaxes to be less than −1
(see related results in [28]). This is the converse of the behavior
observed in previously studied models with exponential poten-
tials, in which the late-time asymptotic behavior corresponded
simply to w = −1, despite the presence of a transitory epoch
with w < −1.

This suggests that one cannot naively expect that the passage
from non-phantom to phantom behavior in dark models mixing
scalar fields with canonical and non-canonical kinetic terms is
going to happen in all circumstances, for instance interaction
among the fields can make such transition impossible. In our
opinion, this finding shows the casuistic of the evolutionary be-
havior of quintom dark energy models is in fact richer than was
known up to the date, and makes it a subject of study worth of
further investigations.

2. The model

We investigate the evolution of a spatially flat Friedmann–
Robertson–Walker (FRW) spacetime filled with dark matter
with energy density ρm and quintom dark energy with energy
density ρde and pressure pde. As often done, dark energy will
be assumed to be minimally coupled to matter, but peculiar ef-
fects could happen if this assumption were relaxed, as shown
for instance in [27].

Our model is assumed to obey the standard Friedmann equa-
tion and energy conservation equations, that is,

(1)3H 2 = ρm + ρde,

(2)ρ̇de + 3H(ρde + pde) = 0,

(3)ρ̇m + 3Hρm = 0.
Here and throughout overdots denote differentiation with re-
spect to cosmic time t , H = ȧ/a is the Hubble factor, and a is
the synchronous scale factor.

Combining Eqs. (1)–(3) one obtains the evolution equation
of H , i.e.,

(4)−2Ḣ = ρm + ρde + pde.

Dynamical systems are a well-known tool for depicting the
asymptotic (and sometimes the intermediate) behavior of cos-
mological models by making use of the concepts of past and
future attractors. We, thus, take advantage of that fact and ap-
ply it to the model under consideration. One of the first tasks
involved in this protocol is introducing a set of convenient (ex-
pansion normalized) variables which allow casting the conser-
vation equations and the evolution equation of H as a dynam-
ical system, subject to a constraint arising from the Friedmann
equation (1).

In our quintom cosmologies a minimum of four variables are
needed to construct an autonomous dynamical system, but be-
cause of the existence of the constraint one can always “forget
about” the evolution of one of the variables. Let us consider just
for a while we are using n variables which we will denote as xi .
The equations will be of the form

(5)xi ′ = f i
(
x1, x2, . . . , xn

)
.

The primes are used to denote differentiation with respect to
an alternative new time variable τ which has to be chosen upon
convenience dictated by the normalization of the variables (here
a very standard choice will suffice).

The next step in the study of the evolution of our dynamical
system is to find its fixed (or critical) points (x1�, x2�, . . . , xn�),
which are given by the conditions

(6)f i
(
x1�, x2�, . . . , xn�

) = 0.

The stability of the fixed points (x1�, x2�, . . . , xn�) is then an-
alyzed by studying the linearized dynamical system obtained
by expanding the n evolution equations about those fixed
points (as explained in many seminal references, e.g. [29]).
Afterward, one tries solutions in the form (x1, x2, . . . , xn) =
(c1, c2, . . . , cn)e

λt in the linear approximation, and finds that
their characteristic exponent λ and the constant vector (c1, c2,

. . . , cn) must be respectively an eigenvalue and an eigenvector
of the matrix

(7)

⎛
⎜⎜⎜⎜⎝

∂x1 ′
∂x1

∂x1 ′
∂x2 · · · ∂x1 ′

∂xn

∂x2 ′
∂x1

∂x2 ′
∂x2 · · · ∂x2 ′

∂xn

...
...

. . .
...

∂xn ′
∂x1

∂xn ′
∂x2 · · · ∂xn ′

∂xn

⎞
⎟⎟⎟⎟⎠

(x1,x2,...,xn)=(x1�,x2�,...,xn�)

.

Let us now describe the basics of the character of the fixed
points depending on the values of the characteristic exponents.
If the real part of the three characteristic exponents is nega-
tive, the fixed point is asymptotically stable, i.e., an attractor.
On the other hand, it is enough to have (at least) one charac-
teristic exponent with positive real part to make the fixed point
asymptotically unstable, i.e., a repellor. This repellor is a sad-
dle point if at least one of the other characteristic exponents has
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a negative real part, in which case there is, apart from the un-
stable manifold, a stable manifold containing the exceptional
orbits that converge to the fixed point. The case in which the
largest real part is precisely zero must be analyzed using other
methods, because the linear analysis is inconclusive. The geo-
metric form of the orbits near the fixed point is determined by
the imaginary part of the characteristic exponents. If the three
are real the fixed point is a node. A couple of complex con-
jugate exponents lead, except in degenerate cases, to either a
spiral center, a focus, or a spiral saddle (the orbits are helices
near the fixed point). The first case occurs when the real part of
the complex exponents vanishes, whereas the second and third
cases will arise when the sign of real exponent and the real parts
of the complex exponents are respectively equal or different. In
addition, when one of the exponents is null the point is not hy-
perbolic and therefore structural stability cannot be guaranteed
(the geometric form of the trajectories may change under small
perturbations).

In the next sections we are going to present our quintom
model and will study its evolution equations. We will find and
characterize the fixed points and we will analyze the cosmo-
logical consequences of the results obtained. Special attention
will be paid to the possibility these models offer to explain the
passage from a conventional to a phantom equation of state.

3. Phase-space

Let us assume our dark energy comprises the contribution of
two interacting scalar fields φ and ϕ satisfying separate energy
conservation equations, that is,

(8)ρde = 1

2
φ̇2 − 1

2
ϕ̇2 + V (φ,ϕ)

and

(9)φ̈ + 3Hφ̇ + ∂φV (φ,ϕ) = 0,

(10)ϕ̈ + 3Hϕ̇ − ∂ϕV (φ,ϕ) = 0.

The choice of potential is crucial to our discussion, we will
set

(11)V = V0e
−√

6(m̄φ+ñϕ),

with m̄, ñ and V0 positive constants. This kind of potential was
considered to account for the interaction of conventional scalar
fields for instance in [31].

Under the latter assumptions one can present Eqs. (2)–(4) in
the form of a dynamical system. This is done by making the
following convenient choice of variables:

xφ = φ̇√
6H

, xϕ = ϕ̇√
6H

,

(12)y =
√

V√
3H

, z =
√

ρm√
3H

,

which renders the Friedmann equation as

(13)x2
φ − x2

ϕ + y2 + z2 = 1.
Eq. (1) leads to the constraint (13) which allows considering
only the evolution of those three variables solely (the evolu-
tion of the fourth one been determined by the evolution of the
former). In this case we will choose z as the variable one can
mostly do without.

In this Letter we will only be concerned with expanding uni-
verses, that is, in what follows we will restrict ourselves to
H � 0 or equivalently to y � 0. Combining expressions (1)–
(4), (9)–(12), the following evolution equations are obtained:

(14)x ′
φ = 1

3

(
3m̃y2 + (q − 2)xφ

)
,

(15)x′
ϕ = −1

3

(
3ñy2 − (q − 2)xϕ

)
,

(16)y′ = 1

3

(
1 + q − 3(m̃xφ + ñxϕ)

)
y.

Here primes denote differentiation with respect to a new time
variable τ = loga3 and q ≡ −äa/ȧ2 stands for the deceleration
factor. Explicitly

(17)q = 1

2

(
3
(
x2
φ − x2

ϕ − y2) + 1
)
.

The evolution equations of variables xφ , xϕ and y form a 3D
dynamical system defined on the phase space

(18)Ψ = {
(xφ, xϕ, y): 0 � x2

φ − x2
ϕ + y2 � 1

}
.

Thus, the phase space trajectories live in a hyperboloid.
The linear analysis described above tells us the 3D dynami-

cal system under consideration has at most three isolated points
(depending on the values of m̃ and ñ). We will denote them
as O , T and P . In addition, there are two curves (hyperbolas)
of non-isolated fixed points, and we will denote them as C±.

Some information regarding the dynamical character of
those fixed points is presented in Tables 1, 2. Below we will
complete that information with an identification of the cosmo-
logical models represented by the fixed points of our system,
and in the case of the isolated fixed points we will also comment
on their geometry. Finally, we will support our findings with
numerical simulations. Note that in the case of 3D dynamical
systems it is in general difficult to retrieve enough information
on the system without resorting to numerical experiments [30].
The need to employ numerical tools is particularly manifest in
the problem we are concerned with, because the asymptotic and
intermediate behavior stand on the same basis of importance.
Bear in mind that we do not only want to show our system ad-
mits solutions with equation of state parameter w > −1 and
other with w < −1, but we also want to show that a transition
between such solutions can occur without too much fine-tuning
in initial conditions. In our case

(19)w = x2
φ − x2

ϕ − y2

x2
φ − x2

ϕ + y2
,

and we will evaluate the latter at the fixed points.
In broad terms, if one of the asymptotic limits of our model

is to give good description of the universe at present it must be
an accelerating solution. Thus, non-accelerated solutions must
be asymptotically unstable, or put another way, they must be
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Table 1
Location, existence and deceleration factor of the critical points for m̄ > 0, ñ > 0 and y > 0

Name xφ xϕ y Existence q

O 0 0 0 All m̄ and n 1
2

C± ±
√

1 + x∗
ϕ

2 x∗
ϕ 0 All m̄ and n 2

P m̃ −ñ
√

1 − m̃2 + ñ2 m̄2 − ñ2 < 1 −1 + 3(m̃2 − ñ2)

T m̃

2(m̃2−ñ2)
− ñ

2(m̃2−ñ2)

1
2
√

m̃2−ñ2
m̄2 − ñ2 � 1/2 1

2

Table 2
Eigenvalues, dynamical character and equation of state parameter of the fixed points for m̃ > 0 and ñ > 0. We use Δ =

√
−7 + 4/(m̃2 − ñ2)

Name Eigenvalues Dynamical character w

O
(− 1

2 ,− 1
2 , 1

2

)
Unstable Undefined

C±
(
1,0,1 − ñx∗

ϕ ∓ m̃

√
1 + x∗

ϕ
2 )

Unstable 1

P (−1 + 2(m̃2 − ñ2),−1 + m̃2 − ñ2,−1 + m̃2 − ñ2) Stable if m̃ <

√
1
2 + ñ2, unstable otherwise −1 + 2(m̃2 − ñ2)

T
(− 1

2 ,− 1
4 (1 + Δ),− 1

4 (1 − Δ)
)

Stable if either Δ2 < 0 or if 1 > Δ, unstable otherwise 0
disfavored by initial conditions. In this sense only the cases in
which P is stable would be satisfactory.

As can be deduced from Tables 1, 2, many of the features
of our dynamical system depend on the value of the quantity
m̃2 − ñ2. One can easily realize why such quantity may be of
relevance just by noticing

(20)6
(
m̃2 − ñ2) =

(
V,φ

V

)2

−
(

V,ϕ

V

)2

,

i.e. the quantity marking the existence of one attractor or the
other compares the slope of the potential in two different di-
rections, or equivalently it compares how fast the fields release
(gain) potential energy when they roll down (climb up) the po-
tential. Unlike in single scalar field models with exponential
potentials, one can have accelerated expansion even if the po-
tential is not too shallow, what matters here is not how flat the
potential is, but rather whether it is much flatter in one direction
that in the other.

After these preliminary remarks, let us now be more specific
about the dynamical character of the isolated and non-isolated
fixed points of our system.

The point O represents a matter dominated decelerating so-
lution. It is a saddle, and its unstable character (see all four
figures) agrees with what one might have anticipated. Such so-
lutions are only expected to be relevant at early times. The
variables we are using do not allow to determine the value of
equation of state parameter corresponding in this case (because
we do not know the values of the different ratios between xφ , xϕ

and y). This task would possibly require defining an alternative
set of coordinates more suitable for an early time description,
but this is of little interest in the context of this Letter.

The curves C± represents solutions in which the contribu-
tion of matter and the potential energy to the total energy den-
sity is negligible. These solutions are therefore of stiff-fluid type
(w = 1), which in turn correspond to a decelerating universe.
The unstable character of these solutions means they are disfa-
vored from the initial conditions point of view, and therefore it
is unlikely they can represent the final stage in the evolution of
our universe.
Further interesting remarks concerning the curves C± are
in order to help anticipate the intermediate behavior of our
dynamical system. In the invariant set y = 0 which contains
the point O as well as the curve C± we have identified the
monotonic function K, which is defined as

(21)K = x4
φ

(1 − x2
φ + x2

ϕ)2
.

It satisfies

(22)K′ = −2K,

so as expansion proceeds K decreases. This monotonic function
takes its maximum and minimum values at x2

φ − x2
ϕ = 1 and

xφ = 0, so typically trajectories will transit between C± and O ,
and one will be able to say the curves C± are local sources. This
appreciation is supported by the four figures.

The point T represents a solution in which quintom dark en-
ergy tracks matter (the equation of state of the quintom fluid is
dust-like), and when such point exists it is asymptotically sta-
ble, i.e. an attractor. This late-time asymptotic state represents a
decelerating cosmological model in which the fractional energy
densities of matter and dark energy are proportional. Given its
eigenvalues structure this solution is either a saddle, a focus, or
a stable node. Since these solutions do not match the observed
universe at present, a quintom model admitting such attractor
is not satisfactory. Peculiarly, the existence of this solution is
completely inherent to the interaction between the two fields.
There is no equivalent solution in the quintom models studied
by [20,21]. Its existence, in our setup at least, indicates quintom
models admit other attractors than phantom or de Sitter ones, a
fact which has not been noticed in the literature before (as far
as we are concerned).

The point P represents a solution in which quintom dark
dominates over matter (the equation of state of the quintom
fluid corresponds to a fluid that redshifts faster than dust), and
it is an attractor only when its existence precludes that of the
point T . This late-time asymptotic state does not necessarily
represents an accelerating cosmological model, that depends on
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Fig. 1. Phase-space trajectories of the 3D system for m̃ = 0.5 and ñ = 0.6.

Fig. 2. Phase-space trajectories of the 3D system for m̃ = 0.75 and ñ = 0.05.

the quantity m̃2 − ñ2. Given its eigenvalues structure this solu-
tion is either a saddle or a stable node. The accelerated solutions
associated with this fixed point can provide a good representa-
tion of the observed universe at present. The potential we have
chosen here allows this fixed point be characterized by w < −1,
whereas in the quintom models studied by [20,21] the attractor
had w = −1 necessarily.

According to their eigenvalues, in principle the fixed points
T and P could respectively have three and two different dy-
namical behaviors.1 However, in some cases one point has a
specific dynamical behavior which enforces the non-existence
of the other point. Additionally, the existence conditions of
these points on one hand, and numerical analysis on the other,
will help us identify the heteroclinic sequences of these mod-
els. Under the assumptions m̃ > 0 and ñ > 0, four cases can be
distinguished (see Fig. 5):

• Case (i) For m̃ <
√

ñ2 + 1/2, the point P is a stable node,
whereas the point T does not exist. The heteroclinic se-
quence in this case is C± → O → P (see Fig. 1).

• Case (ii) For
√

ñ2 + 1/2 < m̃ �
√

ñ2 + 4/7, the point T is
a stable node and the point P is a saddle. For these condi-
tions the heteroclinic sequence is C± → O → P → T (see
Fig. 2).

1 The point T can either be a saddle, a focus, or a stable node. The fixed
point P can be a saddle or a stable node.
Fig. 3. Phase-space trajectories of the 3D system for m̃ = 0.9 and ñ = 0.4.

Fig. 4. Phase-space trajectories of the 3D system for m̃ = 2 and ñ = 0.5.

• Case (iii) For
√

ñ2 + 4/7 < m̃ <
√

1 + n2, the point T is a
stable focus and the point P is a saddle. For these condi-
tions the heteroclinic sequence is the same as in the former
case (see Fig. 3).

• Case (iv) For m̃ >
√

1 + ñ2 the point T is a stable focus
whereas the point P does not exist. The heteroclinic se-
quence in this case is C± → O → T (see Fig. 4).

Before closing this section it is interesting to make a few
remarks about the fractional energy densities Ωm = ρm/3H 2

and Ωde = ρde/3H 2. It is not difficult to see that

(23)

(
Ωm

Ωde

)′
= w

Ωm

Ωde
.

This result can be viewed as a consistency proof of some
of our previous results in the sense that in the course of
the evolution dark energy becomes the dominant component
when w < 0, because in this case it redshifts faster than dark
matter.

Note as well that, unlike in the case of pure phantom dark
energy, here the fractional energy densities of dark energy and
dark matter remain both non-negligible for a long enough time
span, as shown in Fig. 6. So at least this problem which inval-
idates the simplest models with a late-time phantom behavior
[32] is absent from our model.

Needless to say that the trajectories we have presented show
that for a wide range of initial conditions for which w ∼ 1 (close
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Fig. 5. Regions in the (ñ, m̃) plane representing the four cases of existence
conditions and dynamical behavior of the fixed points T and P .

Fig. 6. Typical behavior of the fractional energy densities in the case where the
phantom attractor exists. The dark and light gray lines depict Ωm and Ωde,
respectively.

to the hyperbolas), the region w < −1 is reached provided m̃2 −
ñ2 < 0, so the crossing does indeed occur.

4. Conclusions and future prospects

The construction of possible realizations of a late-time cross-
ing of the w = −1 barrier in dark energy models has become
an active area. Some of the studies take advantage of the dy-
namical systems approach to show such crossing is possible
in a family of models dubbed quintom cosmologies. These are
configurations with two scalar fields, and in these dynamical
systems investigations no other than exponential potentials have
been chosen so far given some underlying physical motivation
and the tractability of the choice. Here we stick to that simple
election too, but consider a specification (still of exponential
form) which is not a particular case of the choices made in
other works. More specifically we have chosen a potential of
the form V = V0e

−√
6(m̃φ+ñϕ) with V0, m̃ and ñ positive con-

stants, whereas (following our notation for simplicity) related
papers considered either V = V01e

−2
√

6m̃φ + V02e
−2

√
6ñϕ [20]

or V = V01e
−2

√
6m̃φ + V02e

−2
√

6ñϕ + λV0e
−√

6(m̃φ+ñϕ) [21],
with V01, V02, and λ positive constants as well.

The potential we have chosen is responsible for an interac-
tion between the fields and leads to some surprises. We have
found that, contrary to previous beliefs, quintom cosmologies
may admit tracking attractors. When the conditions for the ex-
istence of such attractors are not met, one has either phantom
(w < −1) or de Sitter (w = −1) attractors instead. This repre-
sents a departure from the situation described in [20] and [21],
because in those cases the only attractors were de Sitter-like,
although the trajectories ending there had w < −1 transiently
before entering the de Sitter phase.

Thus, the main lesson to learn from our work is that the
passage from non-phantom to phantom behavior is not generic
in dark models mixing scalar fields with canonical and non-
canonical kinetic terms, because interaction among them can
forbidden the transition.
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