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a b s t r a c t

The Generalized Fermat Problem (in the plane) is: given n ≥ 3 destination points find the
point x̄∗ whichminimizes the sum of Euclidean distances from x̄∗ to each of the destination
points.The Weiszfeld iterative algorithm for this problem is globally convergent,
independent of the initial guess. Also, a test is available, à priori, to determine when x̄∗ a
destination point. This paper generalizes earlier work by the first author by introducing an
asymmetric Euclidean distance in which, at each destination, the x-component is weighted
differently from the y-component. A Weiszfeld algorithm is studied to compute x̄∗ and
is shown to be a descent method which is globally convergent (except possibly for a
denumerable number of starting points). Local convergence properties are characterized.
When x̄∗ is not a destination point the iteration matrix at x̄∗ is shown to be convergent
and local convergence is always linear. When x̄∗ is a destination point, local convergence
can be linear, sub-linear or super-linear, depending upon a computable criterion. A test,
which does not require iteration, for x̄∗ to be a destination, is derived. Comparisons are
made between the symmetric and asymmetric problems. Numerical examples are given.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A classical locational problem originally solved by Fermat is: given the location of three vertices of a triangle, find the
point (source) which minimizes the sum of the distances to the vertices. Its generalization to n non-collinear points in the
plane (destination points) and to distances which are weighted Euclidean distances, is sometimes called the Generalized
Weber Problem. An efficient, reliable method for solving this problem is essential, for example, as a subroutine for solving
location–allocation problems inwhich there ismore than one source [1,2]. TheGeneralizedWeber problemhas been studied
extensively both theoretically and for the purpose of applications [3–10]. [11] studies weighted (symmetric) Euclidean
distances sorted in deceasing order. Extensions toweighted powers of Lp distances are studied in [12,13]. Further extensions
to spaces more general than Euclidean are studied in [14] which also gives an excellent bibliography of relevant literature.
These papers use a Weiszfeld algorithm. A Newton-type acceleration of the Weiszfeld algorithm is given in [15]. A Primal-
Dual Interior-Point Method is given in [16]. In these studies the distance to a destination is symmetric, that is for each
destination the x-component and y-component are weighted equally.
In this paper, which extends the results in [7], we consider only the classical Fermat Location problem with the

generalization that the Euclidean distances can be asymmetric i.e. for each destination point x̄j the weight of the x-
component wxj and the weight of the y-component wyj may be unequal. An example in practice of such an asymmetric
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weighting might be the following. A plant is to be located at a point x̄ which minimizes the cost of transportation to n
warehouses, located at x̄j, j = 1, . . . , n. However, the cost of transporting to x̄j in the north direction y, may be higher than
in east direction x. This may be due to winds from the north at x̄j, poor roads heading north, or mountainous country. It is
natural then to include this asymmetry in the mathematical model.
In Section 2, we state the problem, and in Section 3 we formulate an extension of theWeiszfeld algorithm [17]. Section 4

shows that this iterative algorithm is a descent method which is globally convergent except for a denumerable set of
initial points. Section 5 characterizes local convergence when the minimizer x̄∗ is not a destination point. We compute
the iteration matrix and prove that it is a convergent matrix, hence the rate of convergence is linear. Section 6 characterizes
local convergence when x̄∗ is a destination point, so the iteration matrix at x̄∗ is not defined. Nevertheless, a convergent
factor λ is computed. If 0 < λ < 1 convergence is linear, if λ = 1 convergence is shown to be sub-linear, and if λ = 1
convergence is super-linear. Numerical examples are given. Finally, we compare some properties of the symmetric and
asymmetric problems in Section 7.

2. Statement of problem

Given n points in the plane, x̄i =
[
xi
yi

]
not collinear, and non-negative weightswxi , wyi , i = 1 . . . n. Let x̄ =

[
x
y

]
be a point

in the plane. Define the asymmetric Euclidean distance from x̄ to x̄i

di(x̄) ≡
√
w2xi(x− xi)

2 + w2yi(y− yi)
2. (1)

The asymmetric Fermat location problem is to find x̄which minimizes the sum of the distances from x̄ to x̄i

f (x̄) =
n∑
i=1

di(x̄). (2)

Each di(x̄) is convex. The x̄i are not collinear, so that f (x̄) is a strictly convex function of x̄. Therefore, the minimizing point
of f is unique. We now formulate an algorithm to find

min
x̄
f (x̄). (3)

3. The algorithm

The algorithm is derived formally by setting to zero the gradient of f (x̄) when x̄ is not one of the destination points x̄i.
Note that

∂di(x̄)
∂x
=
w2xi(x− xi)

di(x̄)
,

∂di(x̄)
∂y
=
w2yi(y− yi)

di(x̄)
(4)

so that

∂ f
∂x
=

∑
i

w2xi(x− xi)

di(x̄)
= 0,

∂ f
∂y
=

∑
i

w2yi(y− yi)

di(x̄)
= 0.

This leads to the iteration

x =

∑
i

w2xi
xi

di(x̄)∑
i

w2xi
di(x̄)

≡ Hx(x̄), y =

∑
i

w2yi
yi

di(x̄)∑
i

w2yi
di(x̄)

≡ Hy(x̄). (5)

x̄ = H(x̄) ≡
[
Hx(x̄)
Hy(x̄)

]
for x̄ 6= x̄i. (6)

In order to define H(x̄) at a destination point x̄j rewrite (5) as

Hx(x̄) =

w2xj
xj

dj(x̄)
+
∑
i6=j

w2xi
xi

di(x̄)

w2xj
dj(x̄)
+
∑
i6=j

w2xi
di(x̄)

=

xj +
dj(x̄)

w2xj

∑
i6=j

w2xi
xi

di(x̄)

1+ dj(x̄)

w2xj

∑
i6=j

w2xi
di(x̄)

→ x̄j, as x̄→ x̄j. (7)
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Similarly,

Hy(x̄)→ ȳj, as x̄→ x̄j. (8)

Therefore, we define

H(x̄j) ≡ x̄j. (9)

A non-destination point is the uniqueminimizer x̄min if and only if (6) is satisfied. Later, we derive a criterion for a destination
point x̄j to be the minimizer. This criterion is computable à priori, and does not require iteration.
The iteration algorithm we study is

x̄k+1 = H(x̄k), k = 0, 1, . . . , where x̄0 is arbitrary. (10)

We will show that x̄k converges to x̄min for all x̄0 except for a set of measure zero. The iteration (7) is a descent method, that
is

f (x̄k+1) ≤ f (x̄k) (11)

and equality holds if and only if x̄k+1 = x̄k = x̄min. A convenient choice for x̄0 is obtained by minimizing

g(x̄) =
n∑
i=1

d2i (x̄). (12)

Set the gradient of g(x̄) to zero and use (4):

∂g
∂x
= 2

∑
i

di
∂di
∂x
= 2

∑
i

w2xi(x− xi) = 0

so that

x0 =

∑
i
w2xixi∑
i
w2xi

. (13)

Similarly

y0 =

∑
i
w2yiyi∑
i
w2yi

. (14)

Now let Xmin = mini xi, Xmax = maxi xi, Ymin = mini yi, Ymax = maxi yi. Then from (5)

Xmin =

∑
i

w2xi
Xmin
di(x̄)∑

i

w2xi
di(x̄)

≤ x ≤

∑
i

w2xi
Xmax
di(x̄)∑

i

w2xi
di(x̄)

= Xmax

Ymin =

∑
i

w2xi
Ymin
di(x̄)∑

i

w2xi
di(x̄)

≤ y ≤

∑
i

w2xi
Ymax
di(x̄)∑

i

w2xi
di(x̄)

= Ymax. (15)

Thus, for all k ≥ 1, x̄k and x̄min are in the rectangle Xmin ≤ x ≤ Xmax, Ymin ≤ y ≤ Ymax, that is, in the smallest rectangle
parallel to the coordinate axes that contains all the destination points.
Now the iteration (5) can be written as

xk+1 = Hx(x̄k) =

∑
i

w2xi
xi

di(x̄k)∑
i

w2xi
di(x̄k)

= xk −

xk −
∑
i

w2xi
xi

di(x̄k)∑
i

w2xi
di(x̄k)



= xk −

∑
i

w2xi
(xk−xi)

di(x̄k)∑
i

w2xi
di(x̄k)

= x̄k −
1∑

i

w2xi
di(x̄k)

∂ f
∂x
(x̄k). (16)
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Similarly,

ȳk+1 = ȳk −
1∑

i

w2yi
di(x̄k)

∂ f
∂y
(x̄k). (17)

So,

x̄k+1 = x̄k − D(x̄k)∇f (x̄k) (18)

where

D =


1∑

i

w2xi
di(x̄k)

0

0
1∑

i

w2yi
di(x̄k)

 . (19)

Since D is a diagonal matrix (not a full matrix), we call the iteration scheme a ‘‘gradient-like’’ method with pre-computed
step size.

4. Descent method

We now show that the algorithm is a descent method.

Theorem. The iteration x̄k+1 = H(x̄k) is a descent method for any x̄0, that is

f (H(x̄k)) ≤ f (x̄k) for k = 0, 1, 2, . . . . (20)

The equality holds if and only if H(x̄∗) = x̄∗, i.e. x̄∗ is the unique minimizer of f.

Proof. Let

F(γ , η) =
∑
i

[w2xi(γ − xi)
2mxi + w

2
yi(η − yi)

2myi ] (21)

where mxi and myi are positive functions of wxi , wyi , xi, yi, and x̄. F(γ , η) is a strictly convex function of γ and η with a
unique minimum at γ ∗ and η∗ computed from

∂F
∂γ
=

∑
i

2w2xi(γ − xi)mxi = 0,
∂F
∂η
=

∑
i

2w2yi(η − yi)myi = 0

γ ∗ =

∑
i
w2ximxixi∑
i
w2ximxi

, η∗ =

∑
i
w2yimyiyi∑
i
w2yimyi

. (22)

For any x̄, letmxi = myi = mi = 1/di(x̄). Then

γ ∗ =

∑
i

w2xi
xi

di(x̄)∑
i

w2xi
di(x̄)

= Hx(x̄), η∗ =

∑
i

w2yi
yi

di(x̄)∑
i

w2yi
di(x̄)

= Hy(x̄) (23)

and F(γ ∗, η∗) ≤ F(γ , η). The equality holds if and only if (γ ∗, η∗) = (γ , η). Let (γ , η) = (x, y). Then

F(γ ∗, η∗) =
∑
i

[
(Hx(x̄)− xi)2

w2xi

di(x̄)
+ (Hy(x̄)−i)2

w2yi

di(x̄)

]
=

∑
i

d2i (H(x̄))
di(x̄)

≤

∑
i

[
(x− xi)2w2xi
di(x̄)

+
(y− yi)2w2yi
di(x̄)

]
=

∑
i

d2i (x̄)
di(x̄)

=

∑
i

di(x̄)

= f (x̄). (24)
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Now
di(H(x̄)) = di(x̄)+ di(H(x̄))− di(x̄)
d2i (H(x̄)) = d

2
i (x̄)+ 2di(x̄)[di(H(x̄))− di(x̄)] + [di(H(x̄))− di(x̄)]

2

d2i (H(x̄))
di(x̄)

= di(x̄)+ 2[di(H(x̄))− di(x̄)] +
[di(H(x̄))− di(x̄)]2

di(x̄)
(25)

and from (24) we have∑
i

{di(x̄)+ 2[di(H(x̄))− di(x̄)]} +
[di(H(x̄))− di(x̄)]2

di(x̄)
≤ di(x̄)

so
2
∑
i

[di(H(x̄))− di(x̄)] ≤ 0

f (H(x̄)) =
∑
i

di(H(x̄)) ≤
∑
i

di(x̄) = f (x̄). (26)

The equality holds if and only if H(x̄) = x̄.
It is possible for an iterateH(x̄k) to equal x̄k for finite k. If x̄k is not a destination point then x̄k is x̄min, the uniqueminimizing

point. However, if x̄k is a destination point, say x̄j then the iteration stops at x̄j which is not necessarily the minimizer. It is
shown in [9] that this can occur only for a denumerable number of starting points x̄0. Except for these starting points the
iteration always converges to the unique minimizer x̄min.
We study the rate of convergence to x̄min. We show that when x̄min is not a destination point the rate of convergence is

linear in the sense described later.When x̄min is a destination point the rate of convergence can be linear, sub-linear or super-
linear. We also give a criterion, computable à priori from the given data,for x̄min to be a destination point. If this criterion is
used initially then is never necessary to be concerned whether the iteration converges to a non-destination point.

5. x̄min is not a destination point

Local convergence of the iteration scheme x̄k+1 = H(x̄k) to x̄min is determined by the eigenvalues of the matrix H ′(x̄min).
In Appendix we show that

H ′(x̄min) =



∑
i

w4xi
(x−xi)2

d3i (x̄)∑
i

w2xi
di(x̄)

∑
i

w2xi
w2yi

(x−xi)(y−yi)

d3i (x̄)∑
i

w2xi
di(x̄)∑

i

w2xi
w2yi

(x−xi)(y−yi)

d3i (x̄)∑
i

w2yi
di(x̄)

∑
i

w4yi
(y−yi)2

d3i (x̄)∑
i

w2yi
di(x̄)


x̄=x̄min

=

(
a b
c d

)
≡ A. (27)

If wxi 6= wyi for some i, the matrix H
′(x̄min) = A is not symmetric. The eigenvalues of A are the roots of λ2 − (a + d)λ +

(ad− bc) = λ2 − (tr A)λ+ det A = 0.

λpm =
1
2
(a+ d±

√
(a+ d)2 − 4(ad− bc))

=
1
2
(a+ d±

√
(a− d)2 + 4bc) ≥ 0. (28)

A short computation shows that the larger eigenvalue λ+ < 1 if and only if tr A− det A < 1, that is∑
i

w4xi
(x−xi)2

d3i (x̄)∑
i

w2xi
di(x̄)

+

∑
i

w4yi
(y−yi)2

d3i (x̄)∑
i

w2yi
di(x̄)

−


∑
i

w4xi
(x−xi)2

d3i (x̄)∑
i

w2xi
di(x̄)

∑
i

w4yi
(y−yi)2

d3i (x̄)∑
i

w2yi
di(x̄)

−

∑
i

(
w2xi

w2yi
(x−xi)(y−yi)

d3i (x̄)

)2
∑
i

w2xi
di(x̄)

∑
i

w2yi
di(x̄)

 < 1

or (∑
i

w4xi(x− xi)
2

d3i (x̄)

)(∑
i

w2yi

di(x̄)

)
+

(∑
i

w4yi(y− yi)
2

d3i (x̄)

)(∑
i

w2xi

di(x̄)

)
−

{(∑
i

w4xi(x− xi)
2

d3i (x̄)

)(∑
i

w4yi(y− yi)
2

d3i (x̄)

)

−

(∑
i

w2xiw
2
yi(x− xi)(y− yi)

d3i (x̄)

)2 <

(∑
i

w2xi

di(x̄)

)(∑
i

w2yi

di(x̄)

)
.
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This leads to(∑
i

w2xiw
2
yi(x− xi)(y− yi)

d3i (x̄)

)2
<

(∑
i

w2xi

di(x̄)
−
w4xi(x− xi)

2

d3i (x̄)

)(∑
i

w2yi

di(x̄)
−
w4yi(y− yi)

2

d3i (x̄)

)

=

(∑
i

w2xi(w
2
xi(x− xi)

2
+ w2yi(y− yi)

2)− w4xi(x− xi)
2

d3i (x̄)

)

×

(∑
i

w2yi(w
2
xi(x− xi)

2
+ w2yi(y− yi)

2)− w4yi(x− xi)
2

d3i (x̄)

)

=

(∑
i

w2xiw
2
yi(y− yi)

2

d3i (x̄)

)(∑
i

w2xiw
2
yi(x− xi)

2

d3i (x̄)

)
.

Now let ai =
wxiwyi (x−xi)

d3i (x̄)
, bi =

wxiwyi (y−yi)

d3i (x̄)
. By Schwarz’s inequality (

∑
i aibi)

2
≤ (

∑
i a
2
i )(
∑
i b
2
i ). The equality holds if and

only if ai = kbi for some k and all i, that is, if (x− xi) = k(y− yi) i.e. the destination points (xi, yi) are collinear, contrary to
assumption. Therefore strict inequality holds. We have shown that λ+ ≡ ρ(A), the spectral radius of A is strictly less then
1, i.e. A is a convergent matrix.
Since A is not symmetric ‖A‖22 6= ρ

2(A). Instead, ‖A‖22 = ρ(A
TA). The explicit computation of ρ(ATA) is cumbersome so

we use the following property.
Let A ∈ Cn×n be a non-singular matrix. For any ε > 0 there is a constant M such that ‖Ak‖2 ≤ M(ρ(A) + ε)k for all

non-negative integers k ([18], page 359, P 7.3.1.). Now A in (27) is non singular because

det(A) =

(
1/
∑
i

w2xi

di(x̄)

)(
1/
∑
i

w2yi

di(x̄)

)∑
i

w4xi(x− xi)
2

d3i (x̄)

∑
i

w4yi(y− yi)
2

d3i (x̄)
−

(∑
i

w2xiw
2
yi(x− xi)(y− yi)

d3i (x̄)

)2 .
By Schwarz’s inequality, the last factor is non-negative and equals zero if and only if (x− xi) = k(y− yi) for some k and all i.
This is impossible because the destination points are assumednot to be collinear. Thus det(A) is positive andA is non singular.
We have already shown that ρ(A) < 1.We can now choose ε > 0 small enough so that η = (ρ(A)+ε) < 1 so ‖Ak‖2 ≤ Mηk.
Define the error vector at iteration k as ēk ≡ x̄k− x̄min. Then for x̄k near x̄minēk = x̄k− x̄min ≈ H ′(x̄min)(x̄k−1− x̄min) = Aēk−1 ≈
A2ēk−2 ≈ · · · ≈ Akē0 where ē0 = x̄0 − x̄min is the error vector at the initial guess. Thus, ‖ēk‖2 = ‖Akē0‖2 ≤ Mηk‖ē0‖2 with
η < 1, that is, at iteration k,M times the initial error is reduced in the 2-norm by a factor ηk, where η is arbitrarily close to
ρ(H ′(x̄min)).

5.1. Numerical examples

In example 1, 300 destination points x̄i (see Fig. 1(a)) and their respective x and yweightswxi , wyi , i = 1, . . . , 300 were
chosen from a random number generator. The initial guess was x0 = 10, y0 = 0 and the iteration was terminated with a
convergence tolerance 10−8 which was at iteration number 43. Fig. 1(b) shows the ratio ‖x̄i+1 − x̄min‖2/‖x̄i − x̄min‖2 which
converges to the calculated convergence factor λ+ = .63323. The predicted convergence factor is λ+ = ρ(H ′)(x̄min) =
.63331 Fig. 1(c) shows the convergence of the objective function.
In example 2, 500 destination points and their respective x and yweights were again chosen at random (see Fig. 2(a) and

(c)). Since ‖x̄i+1− x̄min‖2 ≈ λ+‖x̄i− x̄min‖2 ≈ λi+‖x̄1− x̄min‖2, it follows that log ‖x̄i− x̄min‖2 ≈ i log λ++ log ‖x̄1− x̄min‖2.
This is shown in Fig. 2(d), a semilog plot which is a straight linewith slope≈ log λ+. Fig. 2(b) shows ‖x̄i− x̄min‖2 as a function
of the iteration number i.

6. x̄min is a destination point

6.1. A criterion for x̄min to be a destination point

Wederive a criterionwhich can be computed àpriori from the destination points and theirweights,without any iteration,
for the unique minimizing point to be a destination point. The objective function f (x̄) is given in (2).
Given any destination point x̄j, rescale f with respect to the distance dj associated with x̄j. Let x′ = wxjx, y

′
= wyjy and

let x′i = wxjxi, y
′

i = wyjyi. Now the objective function given in terms of x
′ and y′ is

f (x̄′) =
√
(x′ − x′j)2 + (y′ − y

′

i)
2 +

∑
i6=j

√√√√w2xi

w2xj

(x′ − x′i)2 +
w2yi

w2yj

(y− y′i)2. (29)
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We compute the rate of change of f at x̄′j along a unit vector z̄ =
[
z1
z2

]
, z21 + z

2
2 = 1.

f (x̄′ + tz̄) = t +
∑
i6=j

√√√√w2xi

w2xj

(x′j + tz1 − x
′

i)
2 +

w2yi

w2yj

(y′j + tz2 − y
′

i)
2. (30)

So

∂ f
∂t
(x̄′ + tz̄) = 1+

∑
i6=j

w2xi
w2xj
(x′j + tz1 − x

′

i)z1 +
w2yi
w2yj
(y′j + tz2 − y

′

i)z2√
w2xi
w2xj
(x′j + tz1 − x

′

i)
2 +

w2yi
w2yj
(y′j + tz2 − y

′

i)
2

∂ f
∂t
(x̄′ + tz̄)|t=0 = 1+

∑
i6=j

w2xi
w2xj
(x′j − x

′

i)z1√
w2xi
w2xj
(x′j − x

′

i)
2 +

w2yi
w2yj
(y′j − y

′

i)
2

+

w2yi
w2yj
(y′j − y

′

i)z1√
w2xi
w2xj
(x′j − x

′

i)
2 +

w2yi
w2yj
(y′j − y

′

i)
2

= 1− R′xjz1 − R
′

yjz2 (31)

where

R′xj =

w2xi
w2xj
(x′i − x

′

j)√
w2xi
w2xj
(x′j − x

′

i)
2 +

w2yi
w2yj
(y′j − y

′

i)
2

, R′yj =

w2yi
w2yj
(y′i − y

′

j)√
w2xi
w2xj
(x′j − x

′

i)
2 +

w2yi
w2yj
(y′j − y

′

i)
2

. (32)

Define R̄j
′
=

[
R′xj
R′yj

]
, |R̄j
′
| =

√
R′2xj + R

′2
yj . The greatest descent at x̄j

′ is in the direction z1 =
R′xj
|R̄j
′
|
, z2 =

R′yj
|R̄j
′
|
. Then in order

for x̄j′ to be the minimizing point we must have 1−
R̄j
′
·R̄j
′

|R̄j
′
|2 |
≥ 0 or 1− |R̄j

′
| ≥ 0, 1 ≥ |R̄j

′
|. In terms of x, ywe have

R′xj =
1
wxj

∑
i6=j

w2xi(xi − xj)√
w2xi(xi − xj)

2 + w2yj(yi − yj)
2
=
Rxj
wxj

. (33)

Similarly,

R′yj =
Ryj
wyj

and |R̄j
′
|
2
= R̄′2xj + R̄

′2
yj =

R2xj
w2xj

+

R2yj
w2yj

. (34)

Finally, the destination point x̄j is the minimizing point if and only if

1 ≥

√√√√ R2xj
w2xj

+

R2yj
w2yj

. (35)

Note that ifwxj = wyj = wj then the criterion is 1 ≥
1
wj

√
R2xj + R

2
yj orwj ≥ |R̄j| as in [9].

6.2. Rate of convergence to a destination point

Define

Gx,j(x̄) ≡
∑
i6=j

w2xixi
di(x̄)

, gx,j(x̄)
∑
i6=j

w2xi

di(x̄)

Gy,j(x̄) ≡
∑
i6=j

w2yiyi
di(x̄)

, gy,j(x̄)
∑
i6=j

w2yi

di(x̄)
. (36)



I. Norman Katz, S.R. Vogl / Computers and Mathematics with Applications 59 (2010) 399–410 407

By the definition of Hx(x̄) in (5) it follows that

Hx(x̄) =
xj +

dj(x̄)

w2xj
Gx,j(x̄)

1+ dj(x̄)

w2xj
gx,j(x̄)

. (37)

For x̄ near x̄j, we have

Hx(x̄) =

(
xj +

dj(x̄)
w2xj

Gx,j(x̄)

)(
1−

dj(x̄)
w2xj

gx,j(x̄)+
d2j (x̄)

w4xj

g2x,j(x̄)

)
+ O(d3j (x̄))

= xj +
dj(x̄)
w2xj

(Gx,j(x̄)− xjgx,j(x̄))−
d2j (x̄)

w4xj

gx,j(Gx,j(x̄)(x̄)− xjgx,j(x̄))+ · · · . (38)

Noting that from the definition of Rx,j in (33) we have

Gx,j(x̄)− xjgx,j(x̄) =
∑
i6=j

w2xixi
di(x̄)

− xj
∑
i6=j

w2xi

di(x̄)
=

∑
i6=j

w2xi(xi − xj)

di(x̄)
≡ Rx,j (39)

and (38) becomes

Hx(x̄) = xj +
dj(x̄)
w2xj

Rx,j −
d2j (x̄)

w4xj

gx,jRx,j + · · · . (40)

Similarly,

Hy(x̄) = yj +
dj(x̄)
w2yj

Ry,j −
d2j (x̄)

w4yj

gy,jRy,j + · · · (41)

and

H(x̄) = x̄j + dj(x̄)R̂j − d2j (x̄)g̃j(x̄)R̂j + · · ·

R̂j =
[
R̂x,j
R̂y,j

]
=


Rx,j
w2x,j
Ry,j
w2y,j



ĝj =
[
ĝx,j
ĝy,j

]
=


gx,j
w2x,j
gy,j
w2y,j

 (42)

and g̃j is the diagonal matrix

g̃j =
(
ĝx,j 0
0 ĝy,j

)
. (43)

We now express the error at the (r + 1)st iterate i.e. its distance to the minimizing destination point x̄j, in terms of in
terms of the distance dj(x̄) associated with x̄j. Since x̄r+1 = H(x̄r), from (42) with x̄ = x̄r we have

d2j (x̄
r+1) = w2xj(x

r+1
− xj)2 + wyj(y

r+1
− yj)2

= w2xj [dj(x̄
r)(R̂x,j − dj(x̄r)ĝx,j(x̄r)R̂x,j)]2 + w2yj [dj(x̄

r)(R̂y,j − dj(x̄r)ĝy,j(x̄r)R̂y,j)]2 + · · ·

= d2j (x̄
r){w2xj R̂

2
x,j(1− 2dj(x̄

r)ĝx,j(x̄r)+ · · ·)} + d2j (x̄
r){w2yj R̂

2
y,j(1− 2dj(x̄

r)ĝy,j(x̄r))} + · · · . (44)

Therefore,

d2j ( ¯xr+1)

d2j (x̄r)
= w2xj R̂

2
x,j + w

2
yj R̂
2
y,j − 2dj(x̄r){w

2
xj R̂
2
x,jĝx,j(x̄

r)+ w2yj R̂
2
y,jĝy,j(x̄

r)} + · · · . (45)
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Table 1
Comparisons.

Property Asymmetric (Eq. no.) Symmetric

Solution domain Enclosing rectangle (15) Convex hull
Algorithm ‘‘gradient-like’’ (18) Gradient
Global convergence Descent method (25) Same

Local convergence
Convergence matrix Not symmetric (27) Symmetric

Rate of convergence Linear
To a non-destination λ+ = ρ(H ′(x̄min))(28) Same

Criterion for convergence (35) and (46)
to destination x̄j λj =

√
R2xj/w

2
xj + R

2
yj/w

2
yj ≤ 1 λj = |R̄j|/wj ≤ 1

Rate of convergence Superlinear if λj = 0
to destination x̄j Linear if 0 < λj < 1

Sublinear if λj = 1 Same

Now define

λj ≡

√
w2xj R̂

2
x,j + w

2
yj R̂
2
y,j =

√√√√R2x,j
w2xj

+
R2y,j
w2yj

. (46)

Since x̄r converges to the minimizing point x̄ = x̄j if and only if 0 ≤ λj ≤ 1, it follows from (46) that there are three
possibilities:
1. λj = 0, that is Rx,j = Rx,j = 0. Then convergence to the minimizing point x̄ = x̄j is super-linear.
2. 0 < λj < 1. Then convergence is linear, with reduction factor λj at each iteration.
3. λj = 1. Then (46) becomes

d2j ( ¯xr+1)

d2j (x̄r)
= 1− 2dj(x̄r){w2xj R̂

2
x,jĝx,j(x̄

r)+ w2yj R̂
2
y,jĝy,j(x̄

r)} + · · ·

= 1− 2dj(x̄r)

{
R2x,j
w2xj

ĝx,j(x̄r)+
R2y,j
w2yj

ĝy,j(x̄r)

}
+ · · ·

= 1− dj(x̄r)θ + · · · (47)

where θ = 2{
R2x,j
w2xj
ĝx,j(x̄r) +

R2y,j
w2yj
ĝy,j(x̄r)}. Note that θ > 0 for all r . In this case, convergence is sub-linear with the reduction

factor approaching 1 as r →∞.

6.3. A numerical example

Three destination points x̄1, x̄2, x̄3 are at the vertices of a triangle (Fig. 3(a)). The weightswx1 , wx2 , wx3 , wy1 , wy2 , wy3 are
such that (35) is satisfied for x̄1, that is λ1 = .8533 < 1 (Fig. 3(c)), so the destination point x̄1 is the minimizing point. Note
that all the iterates are in the enclosing rectangle−.5 ≤ x ≤ 1,−

√
(3)/2 ≤ y ≤

√
(3)/2 but none are in the convex hull of

the destinations. Since from (45) d1(xi+1) ≈ λ1d1(xi) ≈ · · · ≈ λid1(x̄1) (Fig. 3(b)), we have log(d1(xi+1)) ≈ i(log λ1)+d1(x1).
This is as shown in Fig. 3(d) where the semilog plot is a straight line with slope log λ1.

7. Comparison

In Table 1, some salient features of the asymmetric and symmetric problems are compared. Common properties are:
the algorithms for both methods are descent methods which are globally convergent (except for a denumerable number of
starting points); when the solution is not at a destination the algorithm is locally convergent linearly; when the the solution
is at a destination the algorithm’s local convergence can be linear, sub-linear, or super-linear; there is a computable criterion
for the solution to be at a destination. The differences are: in the symmetric case all iterates are in the convex hull of the
destinations, in the asymmetric case they are in the smallest rectangle which contains all the destinations; in the symmetric
case the algorithm is a gradient method, in the asymmetric case it is a ‘‘gradient-like’’ method.
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a b

c d

Fig. 3.

Appendix

In this Appendix, we derive the expression for H ′(x̄min) ≡ ∂2H
∂ x̄2
in (27). From (27) we have

∂Hx
∂x
=

∑
i
−
w2xi
xi
∂di
∂x (x̄min)

d2i (x̄min)∑
i

w2xi
di(x̄min)

+

∑
i

w2xixi
di(x̄min)


−1(∑

i

w2xi
di(x̄min)

)2 ∑
i

−
w2xi

d2i (x̄min)
∂di
∂x
(xmin)


=

∑
i
−
w2xi
xiw2xi (xmin−xi)

d3i (x̄min)∑
i

w2xi
di(x̄min)

+

∑
i

w2xixi
di(x̄min)


1(∑

i

w2xi
di(x̄min)

)2 ∑
i

w2xi

d3i (x̄min)
w2xi(xmin − xi)

 .
From (5) with x̄ = x̄min we have

xmin
∑
i

w2xi

di(x̄min)
=

∑
i

w2xixi
di(x̄min)

, ymin
∑
i

w2yi

di(x̄)min
=

∑
i

w2yiyi
di(x̄min)

so

∂Hx
∂x
=

∑
i
−
w2xi
xiw2xi (xmin−xi)

d3i (x̄min)∑
i

w2xi
di(x̄min)

+ x
∑
i

w2xi

di(x̄min)


1(∑

i

w2xi
di(x̄min)

)2 ∑
i

w2xi

d3i (x̄min)
w2xi(xmin − xi)
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=

∑
i

w4xi
(xmin−xi)2

d3i (x̄min)∑
i

w2xi
di(x̄min)

.

Similarly for ∂Hy
∂y .

∂Hx
∂y
=

∑
i
−
w2xi
xi
∂di
∂y (x̄min)

d2i (x̄min)∑
i

w2xi
di(x̄min)

+

∑
i

w2xixi
di(x̄min)


−1(∑

i

w2xi
di(x̄min)

)2 ∑
i

−
w2xi

di(x̄min)
∂di
∂y
(xmin)


=

∑
i
−
w2xi
xiw2yi (y−yi)

d3i (x̄min)∑
i

w2xi
di(x̄min)

+

∑
i

w2xixi
di(x̄min)


1(∑

i

w2xi
di(x̄min)

)2 ∑
i

w2xi

d3i (x̄min)
w2yi(y− yi)

 .
Again from (5)

∂Hx
∂y
=

∑
i
−
w2xi
xiw2yi (ymin−yi)

d3i (x̄min)∑
i

w2xi
di(x̄min)

+ x
∑
i

w2xi

di(x̄min)


1(∑

i

w2xi
di(x̄min)

)2 ∑
i

w2xi

d3i (x̄min)
w2yi(ymin − yi)


=

∑
i

w2xi
w2yi

(xmin−xi)(ymin−yi)

d3i (x̄min)∑
i

w2xi
di(x̄min)

.

Similarly for ∂Hy
∂x . This gives

H ′(x̄min) =



∑
i

w4xi
(x−xi)2

d3i (x̄)∑
i

w2xi
di(x̄)

∑
i

w2xi
w2yi

(x−xi)(y−yi)

d3i (x̄)∑
i

w2xi
di(x̄)∑

i

w2xi
w2yi

(x−xi)(y−yi)

d3i (x̄)∑
i

w2yi
di(x̄)

∑
i

w4yi
(y−yi)2

d3i (x̄)∑
i

w2yi
di(x̄)


x̄=x̄min

as in (27).
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