
INFORMATION AND CONTROL 22, 132-138 (1973) 

A Fast Expected Time Algorithm for Boolean Matrix 
Multiplication and Transitive Closure 

PATRICK E. O'NEIL* 

Massachusetts Institute of Technology, Department of Electrical Engineering, 
Cambridge, Massachusetts 

AND 

ELIZABETH J. O'NEIL 

University of Massachusetts, Department of Mathematics, Boston, Massachusetts 

A probabilistic algorithm is presented to calculate the Boolean product of 
two n × n Boolean matrices using an expected number of elementary opera- 
tions of O(n2). Asymptotically in n, almost all pairs of matrices may be muhi- 
plied using this algorithm in O(n '+e) elementary operations for any e > O. 

I. INTRODUCTION 

W e  define the  b inary  operators  v and ^ ,  called Boolean addi t ion and 

Boolean mul t ip l ica t ion respectively,  on the  set {0, 1}. I f  a, b e {0, 1} 

a v b  = l O i f a = O a n d b  = 0  
t 1 otherwise  

a ^ b  = ~ l i f a =  1 a n d b  = 1 
(0 otherwise.  

G iven  two n × n (0, 1)-matr ices  A and B, the  Boolean product ,  AB,  
is an n × n matr ix  C such that  

Cij = V (A,~ A Bkj). (1.1) 
l~k~n 
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In what follows, the products of matrices shall be Boolean products unless 
otherwise specified. 

Given a relation R on n objects, (1, 2,..., n}, we speak of its Boolean 
companion matrix A: A(i , j )  = 1 iff iRj. Note that the relation R may not be 
transitive, so it is possible that iRk and kRj  but not iRj. We wish to find the 
transitive closure of R, R*, defined as the relation with the minimum number 
of related pairs which contains R and is transitive. If  R has companion matrix 
A we speak also of the transitive closure of the matrix A, A*, which is the 
companion matrix of R*. It is easily shown [see Furman (1970)] that 
A *  ~ A ( I  v A)  k, for any k ~ n - 1. 

The calculation of A( I  v A) 7~, k ) n --  1 may be done using successive 
squaring in O(log~n) Boolean matrix multiplications. From this it is 
immediate: 

Remark 1.1. I f  the Boolean product of two n × n matrices is computable 
in O(n B) elementary operations (e.g. additions, multiplications, comparisons) 
we may find the transitive closure of any n x n Boolean matrix A in 
O(n ~ " log 2 n) elementary operations. 

An improvement of Munro (1971) lowers the number of elementary 
operations to find the transitive closure to O(nO). Fischer and Meyer (1971) 
demonstrate the converse: that if the transitive closure is computable in 
O(n ~) operators, then so is the Boolean product. 

At present there is only one algorithm known to multiply Boolean matrices 
in O(n B) operations, fi ~ 3. It  has been observed [see Fisher and Meyer (1971), 
Furman (1970), Munro (1971)] that two Boolean matrices may be multiplied 
in O(n 1°g27) operations. One uses the method of Strassen (1969) to obtain the 
real integer product of d and B and normalizes the result by replacing all 
nonzero entries with 1. 

In this paper, we present a new algorithm for the Boolean multiplication of 
matrices. The algorithm is probabilistic in nature; the number of elementary 
operations it performs in multiplying two n × n matrices A and B depends 
explicitly on the structure of A and B. For randomly chosen Boolean matrices 
d and B, we show that this algorithm is performed with an expected number 
of elementary operations of O(n2). Since the Strassen algorithm requires 
cn 1°g~ operations, and log 2 7 ~-~ 2.8, this is a substantial improvement in 
expected operating time. A worse case example is constructed which requires 
this algorithm to perform cn 3 operations. Such cases are rare; asymptotically 
in n, almost all Boolean matrix products are performed more quickly by this 
algorithm than by Strassen's. 

We present this algorithm with an eye toward actual computer applications. 
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I t  is easily coded and requires very little extra storage. The  prospective user is 
advised to " remove"  all cycles in the directed graph of a relation R if his 
intention is to calculate R*. This  may be done in O(n  2) operations [see 
Munro (1971)]. Since the algorithm merges the vertices of a cycle to a single 
vertex, it may have the effect of tremendously reducing the problem. 

II.  THE ALGORITHM 

Given two n × n (0, 1)-matrices A and B, we wish to perform the Boolean 
multiplication A B  = C. First calculate n~ and n B , the number  of ls in the 
matrices A and B respectively. I f  nn > n B , one should use the following 
algorithm to perform the multiplication B t A t  = C ~, thus assuring that the 
matrix with a lower density of ls will be on the left hand side of the product. 
This  precalculation requires only O(n  2) operations. For notation purposes, 
we assume that the problem is still the multiplication A B  = C. 

For each row i of the matrix A, prepare a list, k l  i ~ k2 ~ ~ ".. < k~zto,  

of positions in the row where a 1 occurs. Tha t  is, k / i s  in the list the entry of A 
(i, k / )  is a 1; clearly L(i) is the number  of ls in row i. I t  is only necessary to 
hold in storage the calculated list for one row of d at a time, passing on to the 
next when the values for the corresponding row of C have been determined; 
it is clear that the number  of operations needed to find all of these lists 
is O(n2). 

Given the list k l  ~ < k2 i < "" < k~(i) , we may calculate the value Ci~ as 
follows. Set k = ka i and examine the entry Bk~-. Now proceed inductively: 
I f  B ~  = 1, set Ci~ ~ 1; otherwise set k to the next element in the list and 
repeat this step. I f  at some point the elements of the list have been exhausted 
without setting Ci3 to 1, then set C~j = 0. Repeat this entire procedure for 
each value of j, 1 ~ j ~ n, until the entire i - th  row of C has been determined. 
Proceed to a new row i until all the rows 1 ~ i ~< n have been considered; 
at this point the matrix C will be determined. 

I t  is clear that this is a very straightforward algorithm which takes advantage 
of a peculiar feature of Boolean arithmetic in taking vector inner products; 
once a pair of ls have been found in matching positions of the two vectors 
A i .  and B . j ,  we need proceed no further, since we only require one such 
pair to set the product to 1. 

Consider the following pair of matrices, A and B. 

l01 i f j  is even 
-//it = i f j  is odd; 

l~ if i is odd 
B i j  -~  if i is even. 
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It  is clear that the product A B  is a matrix which is zero in all entries, and 
moreover that the algorithm we have presented will execute cn a operations 
in multiplying A and B. Thus,  a worse case analysis is disappointing. In  the 
next section, however, we show that for " random" matrices _d and B, the 
expected number of operations to form the product A B  using this algorithm 
is O(n2). 

III .  ANALYSIS OF THE ALGORITHM 

We begin this section with a definition. 

DEFINITION. A random Boolean matrix of density p is an n × n matrix X 
whose entries X,~ are independent random variables, taking on the value 1 
with probability p and the value 0 with probability q = 1 - -  p. 

It  should be emphasized that a random Boolean matrix X is not a Boolean 
matrix, since its entries are random variables. Any Boolean matrix X is a 
possible value of the random Boolean matrix X and has an associated prob- 
ability. 

Remark 3.1. Let  X be a random Boolean matrix of density p, and let d 
be a Boolean matrix which contains m ls. Then  the probability P that X 
takes on the value X is given by: 

p :p,,q,2,~ (3.1) 

Proof. This follows immediately from the definition, since m random 
variables Xi~- are required to take on the value 1 (each does so with probability 
p), and n 2 - -  m random variables take on the value 0, each with probability q. 

I t  is clear that a random Boolean matrix X of density p imposes a proba- 
bilistic sample space on the set of Boolean matrices. The  probability assigned 
to each specific matrix is given by Remark 3.1. 

Remark 3.2. In  this sample space all matrices containing exactly m Is, 
for any m, are equally probable. 

Proof. Immediate from Remark 3.1. 
We shall derive the expected number of operations needed by the algorithm 

of Section I I  to multiply two Boolean matrices A and B, where A is a value of 
the random Boolean matrix X of density p and B is a value of the random 
Boolean matrix Y of density p'. We assume p <~ p', i.e. the lower density 
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matrix should be on the left in the multiplication; this was provided for in the 
algorithm. 

Let us find the expected number, Eo, of operations to take the Boolean 
inner product of the two vectors A~, and B , j ,  thus determining Cij.  We may 
add these Eo for each i, j ~ 1 .... , n to find the expected number of operations 
to calculate the product C = A B .  This may be stated as follows: 

Remarh 3.3. The expected number of operations to find the product A B  
is given by n~Eo + O(n2). The second term takes account of the operations 
we perform in precalculation. 

In computing the Boolean inner product of d , ,  and B,~ ,  we may take 
advantage of the precalculation of the positions of ls in A, , ,  given by the 
list hi i < k~ i < "" < hi .  Here we assume j = L(i). We shall deal with this 
assumption later. 

Clearly, the expected number of operations Eo to multiply A** and B , j  
will be proportional to the expected number of times the entries of the vector 
B,~ corresponding to members of the list k~ ~ < k~ i < "" < k / a r e  accessed. 
Referring to the algorithm of Section I I  we see that the probability that the 
first such entry is accessed is 1; the probability that the second entry is 
accessed is equal to the probability that the first entry accessed in B , j  is 0 
and this is given by 1 - -  p ' .  In general, the probability that the m-th entry is 
accessed is given by (1 - -  p,)~-l. Since the number of accesses to the m-th 
entry is either 0 or 1, the expected number of accesses to the m-th entry of 
B, j  is (1 --  p,)m-1. The expected total number of accesses is the sum of the 
expected number of accesses in each possible location and is therefore given by: 

J 
(1 - -  p,)~-x = (1 --  (1 - -  p')~)/p'. (3.2) 

ra=l 

Now we have designated the number of ls in the i-th row of A by j. In 
actuality, this number is a random variable, and is equal t o j  with probability 
(~) p~(1 - -  p)n-a. To complete our calculation of the number Eo of operations 
to determine C,-, we need merely calculate the sum 

5=0 J p~(1-- p )~- ' [ (1 - -  ( 1 - -  p ) )/p ], 0 < p ~ p '  < 1. (3.3) 

Thus, manipulation of the sum (3.3) yields 

E0 

= (1 - -  (1 - -pp ' )n ) /p '  (3.4) 
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THEOREM 3.1. Under the assumption that all Boolean matrices are equally 
likely choices for A and B, the expected number of operations to perform the 
multiplication AB is O(n2). 

Proof. By Remark 3.1, if all entries of a random matrix take on the values 
0 or 1 with equal probability ½, then all matrices occur with equal probability 
2 -~2. By Remark 3.3 we need merely show that n2Eo ~ O(nZ), when 
p = p '  ~ - .  By Eq. (3.4), Eo ~- 2(1--  (~)") -- 0(1), and the proof  is 
complete. 

COROLLARr. With the above assumption ahnost all matrix products AB may 
be calculated in O(n~+ 0 operations, for any E > O. 

Proof. By Theorem 1, the relative proportions of pairs of matrices which 
require more than n ~+~ operations for their multiplication must be O(n-~). 

A more involved calculation under the assumption of Theorem 1 reveals 
that, asymptotically in n, the value of nZEo is normally distributed about 2n ~, 
with a standard deviation of ~/~ • n. Clearly any matrix products requiring 
cn 2+~ operations, with ~ > 0, are pathological examples. 

In  some applications, there may be reason to believe that the matrices 
A and B will not have a density of ones equal to ½. I f  the probabilities of 
ls in entries of A and B are independent and take on values p and p '  respec- 
tively, 0 ~ p ~ p '  < 1, then Remark 3.3 and Eq. (3.4) will suffice to calculate 
the expected number  of operations to take the product AB. For some very 
small values ofp  andp ' ,  the expected number  of operations to take the product 
may approach n~/L 

Using Eq. (3.4), we can show that the maximum value of Eo over the region 
0 < p ~ p '  ~ 1 will occur when p ~ p '  ~= xn -1/2, where x is the solution 

x~ 
to the equation 1 + 2x 2 ~  e . Approximating, the maximum of Eo is 
0.23nl/2 when p ~= p '  = 1.12n-1/2. Thus,  for 0 < p ~ p '  < 1, 

Eo = O(nl/2).  (3 .5)  

THEOREM 3.2. I f  the probabilities of occurrences of ls in entries of A and B 
are independent and take on values p and p' respectively, 0 < p ~ p' < 1, 
p and p' possibly dependent on n, then the expected number of operations needed 
to find the product AB is O(nS/Z). Furthermore, this estimate is sharp since for 
p --~ p '  ---- 1.12n-a/z, the expected number is 0.23n51 ~. 

Proof. Immedia te  from Eq. (3.5), Remark 3.3 and the above discussion. 
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