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In this article, examples are given to prove that the graded scaled ordered
K-group is not the complete invariant for a C*-algebra in the class of unital
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the case of simple such C*-algebras, it has been proved that the above 1nvar1ant is
the complete invariant by George Elliott and the author.) These examples prove
that the classification conjecture of Elliott for the case of non simple real rank zero
C*-algebras should be revised—one needs extra invariants. The obstruction prevent-
ing two such C*-algebras with the same graded scaled ordered K-group from being
isomorphic is that they have different unsuspended E-equivalence types (a refine-
ment of KK-equivalence type of C*-algebras due to Connes and Higson). In this
article, it is proved that for the above class of inductive limit C*-algebras, the
obstruction of unsuspended E-equivalence type is the only obstruction (ie., if two
C*-algebras in the class are unsuspended E-equivalence, then they are isomorphic).
It is a surprise that in the case of simple such C*-algebras, or even the case of
C*-algebras with finitely many ideals, the obstruction will disappear (see Section 4).
© 1998 Academic Press
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1. INTRODUCTION

The establishment of Brown Douglas Fillmore theory [ BDF, BDF1]
and Kasparov KK-theory [K] have significant impact in the study of
operator algebras, differential geometry, global analysis (see [ BC, BD,
BDT, C, Cl1, CM, CS, Dol, Do2, DHK, DHKI1, DW, K1, K2], etc.).

K-theory and K-homology of C*-algebras with some extra structures
become powerful tools for the classification of C*-algebras (see [ Cu, ElI3,
PV, Rf]). (For a C*-algebra A, we call K*4 the K-homology of A, since
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K*(C(X)) = K,(X) which is the K-homology of the space X.) We refer the
reader to [ Bl1] and [ Do] for basic theory of K-theory and K-homology.

Comparing with the celebration classification of amenable von-Neumann
algebras of Connes, Haagerup, Krieger and Takesaki, Elliott initiated a
project with the ambitious goal to be a classification theory for all
separable nuclear C*-algebras. The theory is rapidly growing. Right now
there are many beautiful classification results for two special cases: 1, the
C*-algebras are of real rank zero, and, 2, the C*-algebras are simple.
(A survey will appear in Elliott’s Lecture on 1994 International congress of
mathematicians.)

In [Zh], Zhang proved that the ideal lattice of a C*-algebra of real rank zero
and stable rank one is reflected by the ideal lattice of K,(A4) as an ordered
group, hence any ordered isomorphism of K, groups of such two C*-algebras
gives an isomorphism of the ideal lattices of the two C*-algebras. Because
of Zhang’s result, for quite some time, people believed that the graded
ordered K-group with dimension range (K,(A4), K,.(4),,2,.(A4)) of a
C*-algebra is the complete invariant for the C*-algebra in the class of
separable nuclear C*-algebras of real rank zero and stable rank one, at
least for the C*-algebra in the class which consists of C*-algebras being
expressed as an inductive limit of @* M ini(C(X,. ), where X, ; are
finite CW complexes with uniformly bounded dimensions for all » and i.
(See [Bl, BK, DN, Ell, Elll, Ell2, EE, EG, EG1, EGLP, EGLP1, DN, GL,
Lin, Linl, P, Ph, Su], etc.) In particular, if dim(X, ;) <3 for all » and i,
then it is proved (see [ EG1]) that the above-mentioned invariant is the
complete invariant for the following two important cases:

(1) the limit algebra A is simple, or
(2) H*(X, ) are torsion free for all X, ;.

In this article, we will construct two non-isomorphic unital C*-algebras
A and B of real rank zero (and therefore of stable rank one, sce [EG1])
which are inductive limits of @i, M, (C(X, ) and @ M, }
(C(Y,. ;)), respectively, with (K,(A4), K (A4),,1,)=(K.(B), K (B),,1g),
where X, ; and Y, ; are 2-dimensional finite CW complexes, [#, i] and
{n, i} are positive integers. This disproves the conjecture of Elliott (see
[Ell] and [EIl1]): the graded ordered K-group with dimensional range is
the complete invariant for a separable nuclear C*-algebra of real rank zero
and stable rank one. (This means Elliott’s classification conjecture for non
simple real rank zero case should be revised—one needs extra invariant.)
The obstruction preventing them from being isomorphic is that they have
different unsuspended FE-equivalence types (the notion of unsuspended
E-equivalence type which is called asymptotic isomorphism type in [ D]
will be introduced in Section 2, also see [CH, CH1, D and DL]). In this
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article, we also prove the following: If A and B are C*-algebras of real rank
zero which can be expressed as inductive limits of @* , M i i (C(X, 1))
and @/, M, ,(C(Y, ), respectively, with X, ,, Y, , 2- dlmensmnal finite
CW complexes, then A4 is isomorphic to B if and only if 4 is unsuspended
E-equivalent to B (i.e., the above obstruction is the only obstruction). As
pointed out in 4.24 of [EGI1], in the above result, one can replace
D, M, 7(C(X, ) by D, P niMpn iy (C(X,, ) P, and D, M, ;
(C(Y, ) by @}, Q, My, 4(C(X, ) O, . P, and Q,, are projections
in the corresponding C*-algebras.

Surprisingly, if we further suppose that the algebra 4 has at most finitely
many ideals (or equivalently, the ordered K,-group has at most finitely
many ideals), then the unsuspended E-equivalence type of A is completely
determined by its graded scaled ordered K-group. This is also true for some
other cases such as when K,(A4) are torsion free. All these results are
proved in Section 4. The results in Section 4 have several interesting
applications. They can be used to construct examples with certain special
properties (See 4.17 and 4.18). Also, applying the result in Section 4, we
know that for above non isomorphic C*-algebras 4 and B,

AQM=BRM,

for a certain UHF algebras M.

In our counterexample, we have constructed two inductive limit systems

=1im(4,, ¢, ,) and B=1lim(B,, ¥, ), with 4, =B, and K. ¢, ,,= K. ¥, ..
and therefore 4 and B have same graded scaled ordered K-group On the
other hand, in the construction, one will see that K*¢,, ,, # K*y, ,,. And
we will carefully use the differences between K*¢, ,, and K*y, ,, to make
different unsuspended E-equivalence types for 4 and B. (One needs to
notice that K, (A4)=K,(B) implies that K*(4)=K*(B), so the limit
algebras have same K-homology group too.) It is mysterious why such con-
struction can not be carried out for the case of simple inductive limit
C*-algebras, even for the case of C*-algebras with finitely many ideals, for
which it will be proved that the scaled ordered K-group is the complete
invariant (see Section 4)—at these cases, K*¢, ,, will not give any thing to
the limit algebras more than those informations stored in K, ¢, ,, even
though at each finite stage, K*¢, ,, can not be recovered from K,¢,, ,,.)

The unsuspended E-equivalence type does not like the invariant in the
classical sense (i.e., associate a C*-algebra with a group, or semi-group, or
a number), even though one can regard it as an invariant in abstract sense.
We leave the following problem open: find suitable invariant for real rank
zero, stable rank one, separable, nuclear C*-algebras including our exam-
ples. For real rank zero inductive limit algebras (with dim(X,, ;) <3), if we
further suppose that A is simple or K, (A4) is torsion free, then the scaled
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ordered K-group is the complete invariant. Therefore the new invariant
should involve ideals of 4 and the torsion part of K,(A4), and perhaps
some extra structure on K-homology group K*(A). Also the new invariant
should be reduced to the graded scaled ordered K-group at the case that
the ordered K,-group of 4 has finitely many ideals or the case that K, 4
are torsion free. We will present a possible invariant at the end of the
paper.

In this article, all the CW complexes are assumed to be connected. And
also, we call @5, M, 4(C(X, ) a direct sum of matrices over X,, ;.

The materials are organized as follows. In Section 2, we will prove the
above-mentioned classification result (i.e., classification by using unsus-
pended E-equivalence type) and give several equivalent conditions. In
Section 3, we will give the example to prove that the unsuspended E-equiv-
alence type is not completely determined by the graded ordered K-group
with dimension range for the above class of C*-algebras. In Section 4 we
will prove that, in several special cases, the unsuspended E-equivalence
type of a C*-algebra is completely determined by its graded scaled ordered
K-group (or graded ordered K-group with dimension rage in the non-unital
case). And therefore in those special cases, the graded scaled ordered
K-group for a C*-algebra is the complete invariant. The results in Section 4
generalize several main results in [ EG1].

We will assume that the readers of this article are familiar with the
materials in [EG1]. So we would often refer to [EG1] to avoid the
repetition.

2. UNSUSPENDED E-EQUIVALENCE, SHAPE EQUIVALENCE,
AND ISOMORPHISM

First we would like to review the construction of the asymptotic
homotopy category due to Connes and Higson [ CH, CH1], (the notion
was given by Dadarlat [D]). We will quote some notation from [CH,
CHI, D and DL] (for more details, please see [D]).

DerFNITION 2.1. Let 4 and B be separable C*-algebras. An asymptotic
homomorphism from 4 to B is a family of maps {¢,}, [ .. : 4 > B such
that

(1) For all ae A, the maps ¢t — ¢,(a) are continuous, and
(2) Foraed, beA, and AeC,
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lim [¢(a+2b)—¢(a) =29 (b)] =0;

1 — oo

lim (¢ (ab)—¢(a)-¢,b)] =0;

t— o0

lim ||¢(a*) — (¢ (a))*| =0.

t— o

DEFINITION 2.2. Two asymptotic homomorphisms {¢,} and {¢}} are
asymptotically equivalent if

lim ||¢(a)—¢(a)| =0

t— o0

for each a e A4.

2.3. Let B be a C*-algebra. Denote by C,([ 1, + o0), B) the C*-algebra
of all continuous bounded functions from [1, +o0) to B. Let Cy([ 1, + o0),
B) be the closed ideal of C,([1, + o), B) which consists of functions
vanishing at infinity. Denote

C,([1, +0), B)/Cy([1, + ), B) &4 B_,.

By using lim sup |¢(a)| < |a| ([CH, CH1]), one can prove that an
asymptotic homomorphism from A to B induces a homomorphism from A4
to B, , and that two asymptotic homomorphisms from 4 to B induce the
same homomorphisms from 4 to B, if and only if they are asymptotically
equivalent (see [CH, CH1]). The following lemma is useful (see [ CH,
CH1]).

LemMA 2.4. Let {$,} and {,} be two asymptotic homomorphisms such
that lim, _, , ¢ (a) —y (a)| =0 for every a in a dense subset of A, then {¢,}
and {y,} are asymptotically equivalent.

2.5. For a C*-algebra B, let B[0, 1] denote the C*-algebra C([0, 1], B)
~B® C[0, 1]. Two asymptotic homomorphisms {¢,}, {i/,}: A > B are said
to be homotopy equivalent, write as {¢,} ~ {y,}, if there is an asymptotic
homomorphism {®,}: 4 — B[0, 1], such that the restrictions of @, at 0 and
1 are equal to {¢,} and {y,}, respectively. Notice that asymptotic equiv-
alence implies homotopy equivalence.

The set of homotopy equivalence classes of asymptotic homomorphisms
from A4 to B is denoted by [A4, B]. The homotopy equivalence class of an
asymptotic homomorphism {¢,}: 4 — B is denoted by [¢,] or [¢]. We
reserve the notation [ 4, B] for the set of homotopy equivalence classes of
* -homomorphisms from 4 to B.
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2.6. Connes and Higson defined the composition of homotopy equivalence
classes of asymptotic homomorphisms: [4, B] x [B, C] — [4, C], ie., for
any asymptotic homomorphisms {¢,}: 4 > B and {,}: B— C, one can asso-
ciate a {0,}: 4 — C, and the homotopy equivalence class [0,[(2 [y,] < [¢,])
depends only on the homotopy equivalence classes [¢,] and [y]. Further-
more, they proved the associativity of the composition.

The following definition of asymptotic homotopy category can be found in

[D].

DEerFNTION 2.7.  The asymptotic homotopy category is defined to be the
category whose objects are all the separable C*-algebras and whose maps
are homotopy equivalence classes of asymptotic homomorphisms. Two C*-
algebras 4 and B are equivalent in the asymptotic homotopy category if
there are asymptotic homomorphisms {¢,}: 4 > B and {y,}: B— A4 such
that

[W.]-[¢]=1lid]eld, A]  and  [¢]°[v,]=[ids]<]B, B].

In this circumstance, we also say that 4 and B are unsuspended E-equivalent
to each other. (More precisely, one may prefer to call them unsuspended
unstabilized E-equivalent.)

It is evident that the unsuspended E-equivalence type of a C*-algebra is
an isomorphic invariant and a homotopic invariant of the C*-algebra. An
interesting result in [ D] shows that the unsuspended E-equivalence type is
also a shape equivalent invariant of the C*-algebra.

28. In [CH, CHEl], Connes and Higson defined that E(A4, B)=
[SA® A", SB® 4], where SA and SB are suspensions of 4 and B, respectively,
and 7 is the algebra of compact operators on a separable infinite dimen-
sional Hilbert space. And they proved that E(A4, B) =~ KK(A, B), provided
that both 4 and B are K-nuclear C*-algebras. Using obvious map:
[A4, B] - [SA® A", SB® #'] = E(A, B), one can prove that unsuspended
FE-equivalence implies E-equivalence, and therefore implies KK-equivalence
for K-nuclear C*-algebras.

Any asymptotic homomorphism {¢,}: A > B gives an element (denoted
by [¢,]xx) in KK(A, B). Also {¢,} induces a group homomorphism
[9,]4: Ky(A)— K (B). It can be described as follows. We only describe
[9,]: Ko(A) — Ky(B) (it is similar to describe the map for K;). Suppose
that 4 and B are unital. {¢,} induces asymptotic homomorphisms from
M,(A) to M, (B) for all positive integers n (still denote them by {¢,}). For
any [ p] e Ky(A), represented by a projection p e M,(A), one knows that,
l¢(p)>—d(p)| and [¢(p)—¢(p*)| are very small when ¢ is large
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enough. Therefore there is a projection ¢ € M,(B) with ||g— ¢ (p)| small.
One can define [¢,] ([ p]) =[¢] € Ky(B). This definition can be extended
easily to all the elements in K,(A4). For the non-unital case, let A*, B* be
the C*-algebras by adjoining the units to 4 and B, respectively. Then {¢,}
induces a unital asymptotic homomorphism {¢,"}: 4* > B*. And {¢,}
defines [¢,"[,: Ko(A™")— Ko(B*). It is obvious that [¢," ] (Ki(A4))<=
Ky(B), when one regards K,(A4) and K,(B) as the subsets of K,(4") and
Ko(B™), respectively. [¢,], is defined to be [¢," ], |x,4)- It is easy to see
that [¢, ], takes K, (A4), to K (B),, and X' (A4) to X (B). That is [¢,] xx €
KK(A, B), 5. (The notations of K,(A4),,2,(A) and KK(A, B), - can be
found in Section 1 of [ EG1] which were quoted from [ DN] and [Ell].)
The following lemma is evident.

LEMMA 2.9. If an asymptotic homomorphism {¢,}: A— B induces an
unsuspended E-equivalence between A and B, then its KK-element [¢,] xx
induces an isomorphism between (K, (A), K (A4),,2.(A4)) and (K, (B),
K. (B),,2(B)). Also, any stable unsuspended E-equivalence between
AR A and B A" induces an isomorphism between (K, (A4), K. (A) ) and
(K. (B). K,(B), ).

LeEmMmA 2.10. Suppose that A and B are separable nuclear C*-algebras of
real rank zero and stable rank one. If {$,}: A— B is an asymptotic homo-
morphism with [§,],: Ko(A)—> KoB) being the zero map, then {¢,} is
asymptotically equivalent to the zero asymptotic homomorphism.

Proof. Since A and B have the cancellation of projections, [¢,], =0 on
Ky(A4) implies that lim,_, _, ||¢,(p)|| =0 for any projection p € A. The lemma
follows from the fact that the set of finite linear combinations of projections
is a dense subset of 4. (Notice that A4 is of real rank zero.) Q.ED

2.11. If A is of real rank zero and stable rank one, we know that
(K,(A4), K, (A),) forms a graded ordered group. (For the definition of
K, (A), we refer the readers to [ Ell] and [DN].) We call an ordered sub-
group H(<G) of an ordered group (G, G, ) an ideal if it satisfies the
following: x> y>0 and x e H implies y € H. As pointed out in [Ell] and
[EG1], the ideal structure of (K,(A4), K,(A4) ) are completely determined
by the ideal structure of (Ky(4), K,(A) ). Also, the ideals of 4 are one-to-
one corresponding to the ideals of (Ky(A), Ky(A4) ). The correspondence is
defined by sending I < A to K,(I) = Ky(A4). (Notice that the ideal I can be
recovered from K,(/)( = K,(A)) as it is generated by projections p € A with
[p]1eKy(I).) Based on the above, one knows that if 7 is an ideal of 4 and
J i1s an ideal of I, then J is an ideal of 4. We will make use of this fact
several times.
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In the rest of this section, we will always suppose that the C*-algebras
are separable, nuclear, of real rank zero, and of stable rank one (except in
Remark 2.22).

2.12. Assume that (K, (A), K, (A4),,2,.(A4)) and (K (B), K.(B),,
2 (B)) are isomorphic to each other. Then for any isomorphism between
them, there is a KK-equivalence aeKK(4, B), » with inverse fe
KK(B, A), s which induces the isomorphism. As in 2.11, any ideal I of 4
corresponds to an ideal K(I) of Ky(A). Similarly, «,(K(I)) = Ko(B) is an
ideal of K,(B) which corresponds to an ideal J< B. In such a way, every
ideal I of A corresponds to an ideal J of B. We call such a pair (/,J) a
corresponding pair of ideals (under a or «,). We say that the KK-equiv-
alence a (or f) keeps the ideals if

lia,n X X5 5y =0€KK(I, B/J)
and
ign XPBxXm n=0eKK(J, A/)

for any corresponding pair of ideals (7, J), where i, ; € KK(I, A) and
i ;)€ KK(J, B) are induced by the inclusion maps, and 7, ,, € KK(A4, A/I)
and 7z ; € KK(B, B/J) are induced by quotient maps. We will use the
notations i, ,, and 7, ,, throughout this paper.

The following lemma follows from 2.10.

LemMa 2.13. Suppose that A and B are separable nuclear C*-algebras of
real rank zero and stable rank one. Then any unsuspended E-equivalence
(asymptotic homomorphism) {¢,}: A — B (with inverse {\,}: B— A) induces
a KK-equivalence [¢,]xx € KK(A, B) , s (with inverse [{,]xx € KK(B,
A) . s) which keeps the ideals

We need the following definition (see [ EfK ]).

DErFINITION 2.14.  Two inductive limit systems A4 =1im (4, ¢, ,,) B=
lim (B, ¥, ,) are said to be shape equivalent, if there are subsequences
{ki}, {1;} and &;: A, — B, and ;: B, — A, such that

nioCi~n ¢k,, kipy: Ay, _’Ak,.+,
and
Civ1oMi~n lp/i, Loy B, - Bzms

where ~, means homotopy equivalence between homomorphisms.
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This definition of shape equivalence depends on the inductive limit
sequences. Actually, the fact that the limit C*-algebras are isomorphic does
not imply that the inductive limit systems are shape equivalent.

2.15. In this section, we will classify the real rank zero inductive limit
C*-algebras of (4,=@f M, 1(C(X, )., ,) by the unsuspended
E-equivalence types of the C*-algebras, where X, ; are two-dimensional
finite CW complexes. (As pointed out in Section 4 of [EGI], once the
result has been proved, one can generalize it to the case of
A,=@®f P, M, 1(C(X, )P, ) In the rest of this section, we will
suppose that 4 and B are the C*-algebras of the above form. Without loss
of generality, we will also assume that all connecting homomorphisms ¢, ,,
are unital, and therefore the limit algebras are unital (see 1.2.4 of [ EG1]).
Furthermore, we can suppose that for any p#0e€4,, ¢, ,.(p)#0€A,,.
(Otherwise, ¢,, ,, takes the block where p lives on, to zero in 4,,, so we can
simply delete this block.)

As in [EG1], we will first deal with the case that each space X, ; has
finite (or torsion) cohomology group H*(X,, ;). That is, we first prove the
following theorem.

THEOREM 2.16. Suppose that A and B are unital real rank zero inductive
llml[s of(An = (_B{C,,: 1 M[n, i](C()(n, i))’ ¢nm) and (Bn = @f”: 1 M{n, 1}(C( }]n, i))s
V.. m), respectively, and that X, ; and Y, ; are two-dimensional finite CW

complexes with H*(X, ;) and H*(Y,_,) finite. The following are equivalent:

(1) A is unsuspended E-equivalent to B;

(2) (K (A), K (A),,1,) is isomorphic to (K (B), K.(B) ., 1), and
there is a KK-equivalence a. € KK(A, B) , s ; with inverse f€ KK(B, A) | s
(inducing the isomorphism between (K, (A), K. (A4),.,1,) and (K, (B),
K, (B), , 1)) which keeps the ideals in the sense of 2.12;

(3) The inductive limit systems (A,, ¢, ,,) and (B, ¥, ,) are shape
equivalent,;

(4) A is isomorphic to B.

Proof. (1)=(2) is Lemma 2.13, (3)=(4) is a special case of
Theorem 2.2 in [ EG1], and (4)=>(1) is evident. So we need only prove
(2)=(3).

Suppose that « and f are as in (2). By Theorem 2.39 of [ EG1] (notice
that Ky(X,, ,) = H* (X, ,) and Ky( Y, ;) = H*(Y,, ;) are finite groups), passing
to subsequences {k,}, {/,}, there is a KK-theory intertwining (see the proof
of Theorem 4.7 in [EGI1]): «,eKK(A4y,B, ), =1 and f,eKK(B,,
Ay, ) +. 5.1 such that the following diagram
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biey. ks Bicy. ks
Ay, Ay, Ay, — — A4
AT
v v
B, —%2, B, —2%, B, — ... — B
1 2 3

commutes at the level of KK, i.e.,

joon X ﬁn = [¢/cn, k”+]] EKK(Ak”9 Al\i’l+l)’
Boxou =¥, , 1€KK(A4,, 4, ),

w ‘n+1 n+1

an X [lpln, oc] = [¢k“, oo] XO('GKK(AI(”» B)
and
Bux[¢x,,, 1=10; .1xpeKK(B,, A).

To save the notations, we suppose k,=n, /,=n. That is, the following
diagram commutes at the level of KK:

A, b1,2 A, b3 Ay—s o= A
1Ay
B2 g, 2B ... B

For each ideal /< A4, by 4,1 (or In A,), we denote the ideal of 4,
generated by those projections (in A,) whose images under ¢, ., are in
Ic A. 1t is easy to see that A4, n I consists of several whole blocks of 4,,.

(Warning: our definition of 4, n [ is different from the ordinary one, by
which, 4, NI was defined to be the collection of all the elements in 4,
whose images under ¢, . are in 1)

For each ideal I < A, since I is generated by the projections in /, we have
two inductive limit sequences:

A T2 g AT A AT o s AnI(=1)

and
9 o
A A, A T2 A4, AT—23 A Ay AT —> - —> AJA A,
where ¢, ,, ; are the restrictions of ¢, ,, on 4,1 and ¢}, , are the
quotient maps of ¢, ,,,: 4, > A,, (modulo 4, N 1).
The above notations are also used for B and the ideals J of B (with B
in place of 4, B, in place of 4,,, J in place of I, and y,,_,, in place of ¢, ,,).
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We are going to prove the following assertion. Notice that KK(A4,,
B,)=®,®,;KK(A,, B}). We will use ()"’ to denote the component in
KK(A!, B/) of the given element in KK(4,, B,,).

Assertion. For each fixed block A4’ of 4, if m>n large enough, then
a, X[, ..]1€KK(A4,, B,,) satisfies that for any block B/, of B,,, one of the
following is true:

(1) (o, x[¥, 1) € KK(A4,,
ment in Ky(B7),

(i) (o, x [, ,1)"/=0€KK(4,, B},).

B/)) takes 1 4 to a strictly positive ele-

For each block A’ of 4,, let I= A be the ideal generated by A’ (ie.,
generated by the images of all elements of 4! under ¢, . ). Then A4 =
A, n I (warning: they may not be equal). Let J be the corresponding ideal
in B (or equivalently, K,(J) is the corresponding ideal of Ky(/) under «).

Weuse i, ,€KK(A,n1 A, and i, , € KK(B,nJ, B,) to denote the
KK elements induced by the inclusions, and =, , € KK(4,, 4,/4, N 1),
75, ;) € KK(B,, B,/B, nJ) to denote the KK elements induced by quotient
maps. Also let i, € KK(A4), A,) and i 5, € KK(B,, B,) denote the inclu-
sions. We need to use the following equations:

i(An,I) X [¢n wl= [¢n 0, 1% L n eKK(A4,n1, A4)

and

B, 5 % [W: oo,J] = [lpn o] X Ty € KK(B,, B/J).

By o, x[{,, .1=[0,. .]xa, we know that

i(An, n X%, XTg g X [lﬁZ . 7]
=i, X0, X[, IX7g,
=14, 1 X [dn, ] X0 XT(p
=[0n o 1] Xi(a, 1y XUXT (5 )

=[¢, ./ 1x0=0eKK(A4, N1, B/J).

(Notice that i, ;) Xxaxm , =0, since a keeps the ideals in the sense of
2.12.)
Therefore there is an m, such that

. x _
L, 1 X%, XTg g X [lpn, ml,.l] =0.
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Hence

i(A,,,l) X(xn X [WH,ml] Xn(Bml“]):O. (*)

The rest of the proof (proof of the assertion and the theorem) will
depend only on the above equation (and the corresponding equation for
f.,). The above equation implies that

i(A;) ><O(n X [l//n,m]] (B ):0'

mp>

Since B,, nJ consists of several whole blocks of B,, , we can suppose
that B,, —B(”@B(z) where BV =B, nJ and B =B /B, 0 J. If one
chooses m to be my, it is clear that for any block Bf - 'inside B?),
(i) (ot X [¥o,m, 1) )>/ =0 holds (from the above equation). But it is not clear
(even not true) that for any block in B'"), (i) in the assertion holds. We
need to choose a larger m (m>=m,) to guarantee (i) of the assertion holds.

Since ¢, ..(A!) generates I, we know that [¢, ], (1 ) & xeK(I)
satisfies the condition that for any y € K,(I), there is a positive integer 7 >0
with x> y. Hence, for any z e K(J), there is an integer ¢ with ra,(x)>z
in K(J), where a: K (4)— K, (B) is induced by «a € KK(A, B).

Since [, ] (150) €Ko(J) and [, ] xa=0o, X[, ], there are
an m>m,; and a positive integer ¢, with

tl((a’n X [lpn,m])* (IAZ)) 2 [lpml,m]* (lB“))'

One can write B, = B® @ B™, where B® consists of all the blocks B/

with the property that there is a B,’,', < B with ¢ ,’,1, ’.#0 (ie, there is a

block in B'" whose image under ¢, ,, has non-zero 1ntersection with B/),
and B consists of all the other blocks. Then it is obvious that there is a
t, with

t2([wml,m])* (13“)) = 13(3).

Hence

ty - 132, X [P, 1) s (1)) 2= 1500

That is, for each block in B, (i) of the assertion holds. Since for each
block B, of B, (a, X[, 1)/ =0, one can see easily, from the defini-

tion of B<4), that for each block in B™, (ii) of the assertion holds. This
proves the assertion.

One needs to notice that, once m satisfies the condition in the assertion,
any number larger than m also satisfies the condition (see 1.6.5 and 1.6.6
in [EG1]). So one can choose a common m for all blocks A4’, of 4,,.
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By passing to subsequences {4, }, { B, } (we still denote them by {4,}
and {B,}, ie., suppose that k,=n, [,=n), we can assume that
a, € KK(A,, B,) satisfies that for each block 4!(<=4A4,) and B/(<B,),
either

(i) «,’€KK(A4,, B}) take 1, to a strictly positive element in
Ko(Bj), or

(i) «5/=0.

Also we can suppose that [, satisfies the same condition. Notice that the
above condition is exactly the condition (3) of Theorem 3.23 in [ EG1].
Since it only involves 2-dimensional finite CW complexes here, the condi-
tion (1) and (2) of Theorem 3.23 in [ EG1] automatically hold. Applying
the theorem (passing to subsequence again), «, and [, can be realized by
homomorphisms &,, 4, - B, and #,: B, > A4,,,. (2)=(3) follows from
Theorem 3.25 in [ EG1]. Q.ED

One needs to notice that we use the following strategy. Once «,, (or f,,)
satisfies ( = ), then it can be composed with [, ] (or [¢, ., ,.]) to be
realized by a homomorphism for large enough m. This strategy will be also
used in Section 4.

2.17. Our next task is to remove the restriction that H*(X, ;) and
H?(Y, ;) are finite. In this circumstance, one only has (1) <> (2) < (4). That
is, in general, the particular inductive limit systems may not be shape
equivalent to each other, even though the limit algebras are isomorphic. An
example was given in the introduction of [ EG] (see p. 264-265), where
two non shape equivalent inductive limit systems were constructed for the
C*-algebra of the tensor product of a Bunce-Dedden algebra with itself.

The idea of the proof is inspired by Section 5 of [ EG1]. First, as in 5.9
and 5.15 of [EG1], we can suppose that each X, ; (and Y, ;) has one of
the following special forms.

(0) X={pt}, we call it type 0;

(1) X=S"or[0,1], we call it type I;

(2) H'(X)=0, H*X) finite, we call it type II;
(3) X=2S2 we call it type IIL

(Since it only involves 2-dimensional spaces, we do not have two other
types of spaces (types III and V in [ EG1]). Our type III is the type IV in
[EGI1].)

2.18. Let A=Ilim(4,,¢, ,), where A4,=@ A,=P M, ,(C(X,. ),
and X, ; are the spaces of type 0, I, II, III in 2.17. We say that 4/, is of type
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0, I, IT or III according to X, ; being of type 0, I, II or III. As in [ EG1],
we denote A0= @ (41)° & @ My, 1(Co(X,, ), and rd, & 4,/A2, where
Co(X,. ;) is the set of continuous functions on X,, ; which vanish at a certain
fixed base point of X, ,.

Suppose that X is of type 0, I, or II, (not of type III), one can check that

KK(Co(X), Co(8%)) =0,

using 23.1.1 of [BI1]. (Note that K,(C(X)) is free.) If 4’ is not of type 111

(ie., X, ; #S?), and A}, is of type I (ie. X, ,, ,=S?), then ¢y’ . (the
partial map of ¢, ,,H) 1nduces an element [¢:/ 1€ KK(A,, A} ) with

zero component in KK((A4)° (A7

n+1

)%)=0 (see Section 1.6 of [EG1]).
Suppose that ¢/ . (1, )= Ped], , and that ¢}/  (e,)=ped], |,

where e;; is a matrix unit of M, 1(C)=Al. Then one can identify

PAJ P with M, ,(pA], p). Define the homomorphism (¢:7 )"
Al_)PAn+1PCAn+]by
(@7 1) (f)=flxo) P
Ji(x0) p, S12(x0) P, s fl[n, i](xo)P
AN ePA{1+1P
f[n, il 1(x0) P, f[n, i AXo) Py s f[n, i1n, f](xo)l’

where x, € X, ; is the base point. Then

(6501 1=1(5) ) 1€ KK(A4,, 4], ).

We can define ¥, ,,,: 4, > A4,,, by
N {(‘/J’L]wr i if A’ isnotof type Il and A’ , | is of type III,

nn+1"

ij i
Gl otherwise.

By Corollary 2.25 of [EG1], lim(4,, , ,,) is also of real rank zero.
Using Theorem 3.25 of [EGl], one can prove that lim(4,, ¢, ,) and
lim(A4,, ¥, ,,) are shape equivalent. Hence lim(4,, ¢, ,,) =lim(4,, ¥, ,.).

Notice that y,, , ., satisfies the following condition.

(xx): for each block A4’ of non type III and block A4/
Yl (A (= A], ) s of finite dimensional.

The above condition (xx) is an analogy of the property (SH) in [EG1].
One can verify that , ,, also satisfies the condition (%) for arbitrary
m>n.

Based on the above argument, we can always suppose that in any inductive
limit A =1im(4,, ¢,,,,), ¢,...» satisfies the condition () for each n and m.

, of type III,

n—+

n,m
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The following result is an analogy of Theorem 5.23 in [ EG1] (but not
a direct consequence of it, since ¢, , does not have property (SH) with
respect to the block A’ of type II, and A/, of type I). However the proof
is also a complete analogy of that of Theorem 5.23 in [ EG1]. Instead of
giving the complete proof of it, we will point out the only difference.

LemMa 2.19. Let A=lm(A,, ¢, ,,) be a real rank zero inductive limit
algebra as in 2.18 (i.e., X, ; are of the special forms and @, ,, satisfy (xx)).
For any finite set Fc A, and ¢>0, there are an A4,,, ¢, ,,: A, = A,, and a

sub-algebra B < A,,, satisfying the following conditions:

(1) dist(¢,,, (S ), ¢h.m(f)) <70 for any f e F;
(2) dist(¢), ,.(f), B) <2¢ for any feF;

(3)  #,.m(1.4)€ B for each block Al of A,;

(4) If A is of types 0, I, 11, then ¢, ,(A’) <= B;
(5) If A/, is of types 0, I, I, then A/ < B,

(6) B is a direct sum of matrices over 2-dimensional finite CW com-
plexes of special forms of types 0, I, II (without III, i.e., without S?).

The only difference from the proof of Theorem 5.23 of [ EG1] is that we
need to rearrange the index set J%, J5 (k=0, 1,2, 3). What we need to do
is to group those indices with blocks of types 0, I, II into J*, and those
indices with blocks of type III into J%. For example.

JO={i| Al if of types 0, 1, IT}
and
JS={i| A’ if of type III}.

The main point of grouping the blocks is to ensure that the image of the
homomorphism from a block with index in J¥ (k=0, 1, 2) to a block with
index in J4 "' is a finite dimensional C*-algebra. With this in mind, the
proof is a complete repeat of that of Theorem 5.23 of [EG1] (see [ EG1]
for details).

By using the above lemma, one can prove the following.

COROLLARY 2.20. Suppose that A is a real rank zero inductive limit of
direct sums of matrices over arbitrary 2-dimensional CW complexes. Then A
can be rewritten as a real rank zero inductive limit of direct sums of matrices
over 2-dimensional CW complexes X, ; with H*(X,, ;) being finite.

n, i
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The following is the main result of this section.

THEOREM 2.21. Suppose that A and B are unital real rank zero inductive
limits of (A4,= @, My, A(C(X, ), $,.,) and (B, = @®'r, M, ,(C(Y, ),
W, m)> respectively, where X, ;, Y, ; are arbitrary 2-dimensional finite CW
complexes. The following are equivalent.

(1) A is unsuspended E-equivalent to B.

(2) (Ky(A), K (A4) ., 1,) is isomorphic to (K,(B), K.(B),, 1),
and there is a KK-equivalence on oeKK(A, B), s, with inverse
PeKK(B, A) . s (inducing the isomorphism between (K, (A), K (A4),,1,)
and (K. (B), K(B) ,, 1)) which keeps the ideals in the sense of 2.12.

(3) A is isomorphic to B.

Notice that the systems (4,, ¢, ,,) and (B,, ¥, ,), may not be shape
equivalent to each other in the above result.

Remark 2.22. Instead of the algebras of real rank zero, one may con-
sider those algebras 4 and B which satisfy that K,(4) and K (B) have large
denominators (see [ N]) in the sense that for any nonzero projection p € 4
(or B) and positive integer n, there are a projection ge A (or B) and an
integer m with n[q] <[p]<m[q]. One can prove that (K,(A4), K, (A4) )
and (K, (B), K, (B) . ) are still ordered groups. Under this circumstance, we
will only consider such special ideals of 4 (or B) that are generated by the
projections inside themselves, in 2.12. One knows that any KK-equivalence
xe KK(A4, B) . s (with inverse fe KK(B, A), » ) induces a one-to-one
correspondence between those special ideals of 4 and of B. We say that «
(with inverse f) keeps the ideals, if the two equations in (2.12) hold for
those special ideal pairs. One can prove that (1)<>(2) in Theorem 2.21
still holds in this case (see Proposition 5.33 of [EG1]). But in general,
they do not imply (3), since the C*-algebras may not be of real rank zero.
(Notice that, for inductive limit 4 of direct sums of matrices over finite
CW complexes with uniformly bounded dimension, if K,(A4) has large
denominations, then it is unsuspended E-equivalent to a real rank zero
such inductive limit, see Proposition 5.33 of [EGI1].)

3. NON ISOMORPHIC C*-ALGEBRAS WITH
THE SAME K-THEORY

In this section, we will construct two C*-algebras 4 and B (in the class
introduced in Section 2) which have the same graded scaled ordered K-group

(K*(A): K*(A)+ ’ IA) = (K*(B)’ K*(B)+ H IB)a
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with no KK-equivalence a € KK(A, B) . 5 | keeping the ideals in the sense
of 2.12. Hence A4 and B are not isomorphic and not unsuspended E-equiv-
alent to each other. This proves that the condition (2) in Theorem 2.16 and
2.21 is strictly stronger than that

(K*(A)> K*(A) + lA)

12

(K*(B)a K*(B) + lB)

3.1. Let A, B and C be C*-algebras for which the universal coefficient
theorem holds. One has

0 — Ext'(K,(A4), K,(B)) = KK(A, B) > Hom’(K,(A), K (B)) =0,
where
Ext'(K,(4), K ,(B)) =Ext(K,(4), Ko(B)) ® Ext(K,(4), K,(B))
and
Hom"(K,(4), K, (B)) = Hom(K(A4), K((B)) ® Hom(K,(A4), K,(B)).
First, if
aeExt! (K (A), K,(B)) < KK(A, B)
and
BeExt' (K, (B), K,(C)) < KK(B, C),

then ax f=0¢e KK(4, C).
Second, if

ae Ext(K;(A4), K;, (B)) < KK(A, B) (i=0,1 (mod 2))
and fe KK(B, C), then
ax feExt(K;(4), K, ,(C)) = KK(A4, C)
and a X f depends only on a and the component of

() € Hom (K (B), K,(C))
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in Hom(K,, (B), K, (C)). Actually ax feExt(K;(4), K;,(C)) can be
described as follows (as in the theory of homological algebra). Since
Ext(-, -) is a covariant factor of the second variable, the group homo-
morphism p(f) (considered as an element in Hom(K,, (B), K, (C))
induces a map

Ext(K;(4), K; . (B)) = Ext(K;(4), K; . ,(C)).

And ax f is the image of a under the above map.
Finally, if

P e Ext(K,(B), K, ,(C)) = KK(B, C)
and a € KK(A4, B), then a x f# depends only on f and the component of
)(a) e Hom"(K,,(A), K ,(B))

in Hom(K;(4), K;(B)). Notice that Ext(-, -) is a contravariant factor of
the first variable.
The above facts were used in [ EG1].

3.2. Let P? be the real projective space defined by identifying all the
pairs of antipodal points of S It is well known that H*(P?)=27/2Z =17,
and that H'(P?)=0. From [DN], we know that

KK(Co(P?), Co(S1)) =kk(S', P?) =2,

where kk(Y, X) is the set of homotopy classes of homomorphisms from
Co(X) to Co(Y)® A

Also we know that m,(P?)=Z,. Let a: S'— P? be the generator of
n,(P?) (which keeps the base point). Then « induces a homomorphism
a*: Co(P?) = Co(S'). And a is the generator of KK(C,(P?), Cy(S')) =
kk(S', P?)=7Z,. (We will not prove this fact, since we are not going to use
it.) Also from [ DN], one knows that

KK(Cy(P?), Co(P?)) =kk(P?, P?) =2,
KK(Cy(S"), Cy(S")) =kk(S', S") =2,

and

KK(Cy(S"), Co(P?)) =kk(P?, S")=0.
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3.3. In this section, we will only make use of one space X=P?v S!,
the wedge of X and S'. One knows that

KK(Cy(X), Co(X)) = KK(Cy(P?), Co(P?)) @ KK(Cy(S"), Co(S™))
@ KK(Co(P?), Co(S")) @ KK(Cy(S"), Co(P?))
=7, ®IDZ, DO.
As in 4.3 and 4.4 of [EG1], we can write
KK(Co(X), Co(X)) = KKpom( Co( X), Co(X)) @ KK o Co( X), Co(X)),

where  KK.((Co(X), Co(X)) = Ext! (K, (Co(X)), K4(Co(X))) = KK(Co(X),
Co(X)).

Using the decomposition in Section 1.6 of [ EG1], we know that
KK(C(X), C(X)) = KK(Cy(X), Co( X)) @ KK(C, C)
@ KK(C, Cy(X)) @ KK(Co(X), C)
=KK(Co(X), Co( X))@ 2D Z, ®O.

(Notice that KK(Cy(X), C)=0.)
For our convenience, we will write

KK(C(X), C(X))=KK(C, C)® KK(Cy(P?), Co(P?))
® KK(C, Co(P?)) @ KK(Cy(S"), Co(S1))
@ KK(Co(P?), Co(S1))
=Hom(K,(C), K,(C))
@® Hom(K(Co(P?)), Ko( Co(P?)))
@® Hom(K(C), Ko( Co(P?)))
@® Hom(K,(Co(S")), K1(Co(S1)))
@ Ext(Ko(Co(P?)), Ki(Co(S")))

=101, L, 01D 7Z,.

Using the above decomposition, we can write each «a € KK(C(X), C(X)) as
the following:

X=0p) F o)+ A3+ AT A5 ELDL, DL, DLD Z,.
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Comparing the natural decomposition in Section 4 of [ EG1]:
KK(C(X), (X)) = KKpom( C(X), C(X)) ® KK C(X), C(X)),

one knows that a5, € KK, and all the other four terms «,,, &), &3, and
o4 are in KK ... We will use the above decomposition through this sec-
tion. That is, for each a e KK(C(X), C(X)), we will write

o= (“(1): X2y, %(3)> X(4)» O‘(S))~

One needs to notice that ae KK(C(X), C(X)), if and only if either
%1y >0 or (ag), %), X3y, %4)) =0, but a5, may not be zero.

If ae KK(C(X), C(X)) and peKK(C(X), C(X)), then axf can be
described as follows

and
(X f)(s)=0s) X Bay+ a2y X fs).

(Please see 3.1.)
If a= (O‘(l)s X(2)s X(3)> X(a), 0‘(5)) € KK(MICI(C(X))’ M/CZ(C(X))) +, 2.1 then it
is automatically true that o, =k,/k, € Z.

34. We would like to introduce two unital real rank zero inductive
limit C*-algebras 4 =1im(4,, ¢, ,) and B=Ilim(B,,y, ,) in which
A, =B, for all n.

We will choose A, to have one block, 4, to have two blocks, and in
general A4, to have n blocks. That is, 4, =4, A,=A D A3, ., A,=A) ®
A2@ --- @ A”. Similarly, B, has n blocks, ie., B,=B! @B @ --- ® B".
Also, we assume that A, = B!, =M, ;(C(X)), (X as in 3.3), where [n, i]
are certain positive integers to be determined later on.

3.5. Before we construct our C*-algebras, we would like to recall a
result in [ EG1]. We say that « € KK(C(X), C(X)) is L-large (where L >0)
if the element « ;) € KK(C, C) = Z (induced by «) satisfies «;,> L. By using
3.23 and 3.27 of [EG1], one knows that for any ¢ >0, there is an / such
that any /large KK-element o= (o), %), 0, (4, 2s)) € KK(M, (C(X)),
M, (C(X))) . 5.1 (e, ky/k, =) can be realized by unital homomorphism
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¢: M, (C(X)) > M, (C(X)) with SPV(¢) <& (see Section 1.4 of [EGI1] for
definition of SPV). (We suppose that «;,=0, for simplicity, i.e., we sup-
pose that a takes a trivial projection to a trivial projection.)

3.6. We will specify what [n i] should be. First, we will give several
properties of ¢./ ., and v/  , and those properties will determine
Gpnsts Wnne1 Up to inner equlvalence and homotopy equivalence (also,
the numbers [#, i] are determined by those properties too, certainly with
unital property of ¢, , .1, ¥, ,41)

We require that the KK-elements (457, .1 1€ KK(A], A}, ) and
(V. .11€KK(B,, B}, ) have the following components:

(1) [¢i§,{4+1]<1>: [lpi;,{7+l](l)

1,(>0)eKK(C,C)(=2) if j=i
0 if j<i’

(2) [¢§2,‘/},+1](2>=[‘Ml,‘iﬂ](z)

_{leKK(CO([P’z),CO(Pz))zz if j=i+1

1o if j#i+1’
(3) [¢n n+l](3) [ltbn n+1](3)_OEKK((E CO( )) :ZZ9 for all i’ .]
(4) [¢Z,JQ+1](4)=[lpii,'£,+1](4)

_{1EKK(CO(SI),CO(S1))=Z if Jj=i

R if jAi
{1€KK(C0( 2), Co(Sh) if j=i

(5) [¢n n+l](5) lf ]751’

(V57115 =0 for all 7, j.
From the above, we have the following properties:
(6) [¢:7%111y=0([¥;7 111, =0, resp.) implies that [¢}7,,,]1=0
(L5011 =0, resp.);
(1) [ ns1]nom = [V v 1 Inom-

By 3.5, if /, is large enough, then one can choose unital homomorphisms

2,{1+19 lﬁn n+1° M[n 1](C(X)) - M/n~[n, I](C(X))
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with the above KK components and with SPV(¢%/ . ) and SPV(¢%.” , )
being as small as one wishes. To make ¢, ,,, and V¥, , ., unital, we let

[n+1,i]1=1,([n 11+ [n2]+[n 3]+ - +[ni]).

(This makes [, ,,1]1€KK(4,. 4, ), s, and [, ]1€KK(B,,

B,.1) . s1.) By making suitable choice of /, (large enough), one can

define (;5,, wils Waunat to satisfy the above conditions (1)-(5), and

SPV(¢;7, 1) <e&,, SPV(y.7 ) <e, for given small numbers ¢,. Hence we

can make 4 =1lim(4,, ¢, ,,) and B=1lim(B,,, ¥, ,,) to be of real rank zero.
Since [¢n n+1]hom [lrbn n+l:|homs one knows that

(K*(A)’ K*(A)+ 4 IA)

1

(K*(B), K*(B) + IB)

We will prove that the condition (2) of Theorem 2.21 does not hold, and
therefore A4 2 B.

3.7. Before we give the proof, we would like to explain the homo-
morphisms ¢,, .1, ¥, .. by the following pictures (actually, the following
diagram will explain (1)—(5) of 3.6). (If no arrow is indicated between the
given blocks, it is understood that the map is zero.)

(1) [¢nn+1](1) ['//nn+1](1)EKK(C C)= KK(VAI r4
given by

Z) are

n+])

Al A

(2) [0 1 Je =LVl 1] e KK(C(P?), Co(P))(=2,) S KK(4))",

(47, )°) are given by

n+1
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AR
1 3]
A2 A2
1 @ 1 ®
Ai O A; O ‘A:l3 ...... ;

3) [¢2‘2+1]<3)—[!ﬁ2‘2+1] 5 =0eKK(C, C\(P*))(=KK(rd,, (4;,,,)");

(4) [9n0 1l =050 1] eKK(C(SY), Co(SH)(=Z) = KK(4,)",

(A7 )°) are given by

n+1
A3
0 @
Al - Az e
0 @ 0 S
A% - A% - Aé ...... ;

(5) [457%11s) €Ext(K(Co(P?)), Ki(CofSY) (=2Z5) <KK(4,)",

(A7, ,)°) are given by
A
0 D
A2 - A2
0 & 0 @
Ai - A% - A:1’> ...... R

and [V, ,1])=0 for any n.
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LemMA 3.8. The following are true:

leZ,, if j—i=m—n_
0eZ,, if j—i#m—n’
lez, if i=j )
0eZ, if i#j’
leZ,, if i<j<m—n+i—1
0ez,, otherwise
1 if j<m—1
0 if j=m

Proof. Tt is a direct calculation to prove the above results by using 3.3
and (1)—(5) of 3.6. We will only prove (10) which is the only one that
seems not completely trivial. By (1) and (6), we know that if j<i, then
[4;7,1=0, and therefore [¢},7,15,=0. If m=n+1, (10) is true by defini-
tion (see (5)). Suppose that (10) holds for m, >n, we are going to prove
(10) for m=m + 1. One has that

(8) [¢2,j}n](2):[¢2,{n](2>:{
9) [4:7.]4= [‘//2;’}”]<4>={

(10) [¢n m](5 {

, in particular,

(10") [‘15}:%](5) :{

(¢ ml+l](5 Z [45" n1l](2) x [¢21|j;m1+1](5)
+Z [¢n ml (5) X [¢;;,'1{m1+1](4)

y (9) and the induction assumption,

the Second term = [¢n ml](S) X [¢{;;1{n71+ 1](4)
1 if i<j<m—n+i—1
0 otherwise.

=[¢;7., 15 x1= {

By (8) and (5), the first summation includes only one non zero item
which is for t —i=m, —n and j=1t. This item is
[¢f§,'{¢11+1](5) = [(’52;%1](2) X [¢7];11],-m1+1:|(5)
=1x1=1€7,,

where j=m, —n+i=(m;+1)—n+i— 1. This ends the proof. Q.ED

Lemma 39. A and B have exactly countably many ideals A=1, o
I,oILs..and B=J, > J, > J;..., respectively. And correspondingly, (K ,(A4),
K. (A4),) and (K. B),K.(B),) have countably many ideals K,(A)=
K. (1,)> K, (I5)... and K (B)=K,(J,) > K, (J,) > ..., respectively.
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Proof. Suppose I, is the ideal generated by the image of 4! (or equiv-
alently by the image of 4! or A' @A *' @ --- @ A" for any n>1i). It is
obvious that 4 =1, o1, o 1;... is a sequence of ideals of 4. Since 4 is of
real rank zero, any ideal of A is generated by the projections in the ideal.
Suppose [ is an ideal of A. For any projection p € I, there are an A4, and
a projection g€ A, with [ p]=[¢]. One can write g=¢, ® ¢, D --- D q,,,
where ¢; € A'. Let i be the minimum integer with ¢; # 0. Then ¢, generates
A’ and therefore ¢ generates I;. Hence for such i, I, = I If we take i, >1
to be the minimum of all the above i (for all projections p € I), then one
can prove that I, > 1 Hence I;, =1 Q.E.D

3.10. One can prove that K,(4) and K,(B) are countable direct sums
of Z. We can write

K(4)=G, 06, @ -
and

K\(B)=H, ®@H,® ---,
where each of G, and H, is equal to Z, and

Gi=[¢; 1 (Ki(A4))=[0,, .14 (Ki(4}))  (for n=i)
and

Hi=[; . 1 (Ki(B)) =, .14 (Ki(B)))  (for n=i).
One can also prove that
G, <K, (I) and G, K. ).
Notice that,
(9,014 (Ki(4,)) =6, @G, ® - @G,
and
[V o 1s (Ki(B,)=H, &@H, @ --- ®H,,

for any n.

3.11. Suppose that a € KK(A4, B), 5 (with inverse fe KK(B, A) , s 1)
keeps the ideals, i.e., the condition (2) of Theorem 2.16 holds. First from
the ideal structure of 4 and B (Lemma 3.9), one knows that
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By the definition of that « (with inverse ) keeps the ideals, one has that
ip xaxm, =0 and i;xfxm, =0,

where i, € KK(I;, A) and i, € KK(J;, B) are induced by the inclusion maps,
and 7, eKK(A A/I;) and =, € KK(B, B/J;) are induced by the quotient
maps. We will also use the notation

i4 1) EKK(A, @A @ - @A, A,)
to denote the inclusion, and the notation
Tia 1) €KK(A,, A,/A, @A @ - @A) =KK(A4,, AL® - ®@A,")

to denote the quotient map. The notation iz ,, and 7 _,, are defined
similarly.

As in the proof of Theorem 2.16, one can prove that, there is a KK-
theory intertwining

bry k bry. &
1k 2. k3

Ay, Ay, Aiy—> - — 4
B Vi B Viy. 1y - ... — B.

h L h

That is «, xp,= [¢A” koo o Baxa, =1y, 5o ds [¢k”,cﬁ]xa=anx

[V, land [{, 1xp= ﬁn X [(j)km, « ]. We will finally introduce a con-
tradiction based on the above assumption, and hence prove that such o
and f do not exist.

LemMA 3.12. For any f3, € KK(B, , Ay, ) as above, there isanm>=n+ 1
such that f, x[¢; 14 B satisfies that /= 0e KK(Bj , A}, ) whenever
j<i.

Proof. USiIlg [lrbln, oc] Xﬂ:ﬂ_n X [¢kn+1, w]a and ﬁ*(K*(J,)) :K*(Iz)a one
can verify that (f,), (K.(B))) =K, ((—Bg,-Aj(m) (notice that f,e
KK(B,, Ay ). =) Hence (f,7),=0 whenever j<i. Then for any m,
(B* =0 whenever j<i. By the proof of Theorem 2.16, one can prove
that (5>/) =0 for m large enough and j <i. (Please see the assertion in the

proof of Theorem 2.16 and one needs to notice that o (with inverse f)
keeps the ideals.) Q.E.D

In what follows, we will assume that both a, and f3, satisfy that o/ =0
and B/ =0, respectively, whenever j <i.
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3.13. Consider ([, ..]%xB), (Ki(B,)). This is a finitely generated sub-
group of K,(A)=G, ®G, @ ---. There is an M such that

([V1, 1% Py (Ki(B) SGL @G, D -+ DGy

Lemma 3.14. Suppose that L=M +1,+1, where M is as in 3.13. If
ne KK(B,, Ag) (where R> L) satisfies that

’7 X [¢R 30] = [lpL, oc] XﬂeKK(BL: A),
and that 5~/ =0 whenever j <i, then

[f1. r] # 0y X (V.. 1xneKK(A,, Ag).

Proof. Denote =0, x [, ;IxneKK(A,, Ag). We are going to
prove that the partial KK element ELEThe KK(AL, A%~ satisfies that

(& Lfl‘)(s) =0e Ext(Ky(Cy(P?)), K,(Co(S"))).

Hence V514157, by (10") in Lemma 3.8.
One knows that

fl,Lfl] :Z ai,i % [lp;]]L] % 77_/',L7/].
Hence, by (3.1) and (3.3),

(EMET) s =2 (a1 )5y % [W?’l,jL]m) x (1" "),

i J

+Z oy (2)><[‘p/l 1) X (")
+) (“{’i)(z) X [lpz,jL](z) X (Wj’Lfl')(s)-
ij

We will prove that each of the above terms is 0.

Ist term: From the assumptions, we know that

[V, L] xnx[dr 1=V, 1%

From (3.13), we have

[V, 1%B) Ki(B)SG @G, @ - Gy
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Combining the above two facts, one can prove that
(L. L1 xn)y Ki(B)) SK(AR) ®K (AR @ -+ @K (A7)

(Notice that if xe K (A4z) and x¢ K,(AL)® --- @ K (4Y), then by (9) of
3.8, and 3.10, one has

[¢R,oc]*(x)¢G1 DG, D - DGy,.)

Hence for any i, ([{,, ] x;y)f;‘f”l =0 since L —/, > M. This proves that
the first term is zero.

2nd term: By definition (see (5) of 3.6), [M;}Q](S)zo, for any i, j.
Hence the 2nd term is zero.

3rd term:  We will prove that [}/, ], x(n”*=");s,=0. By (8) of
3.8, we know that if j<i+L—1,—1, then [W’l,jL]a):Q On the other
hand, if j>i+ L—/,—1>L—/,, then from assumption for #, we have

nit-h=0.

Hence (7%~ "), =0. This proves that term (3) is zero. Q.ED

3.15. From KK-theory intertwining diagram in 3.11, we can choose
L=[,>M+I,+1,and n=p, €KK(B, , A, ) with R=k, . Then

]7>< [¢R,3@] = [lerL] Xﬂ
n"/=0 whenever j <i (by 3.12), and
[d1. r]=0y X[, 1xn (see the diagram in 3.11).

This is a contradiction of 3.14. It proves the following main result.

THEOREM 3.16. There are two unital C*-algebras A and B of real rank
zero, which are inductive limits of direct sums of matrices over 2-dimensional
finite CW complexes (i.e., they are in the class of Section 2), with the follow-
ing properties:

(1) (K*(A)’ K*(A)+’ IA);(K*(B)s K*(B)+’ lB) and

(2) there is no such oeKK(A,B), s, (with inverse e KK(B,
A), s1) that it induces isomorphism between the K-group and keeps the
ideals. And therefore A % B.

Remark 3.17. Similarly, one can prove that 4 ® 2 is not isomorphic
to B® 4. That is, 4 and B are not stably isomorphic.
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Remark 3.18. In [D1], Dadarlat proved that if 4 and B are inductive
limits of @% , My, ,(Co(X,)) and @k, M, ,(Co(Y, ) with
sup{dim(X,, ;), dim(Y, ;)} < +oo, then 4 ® # and B® 4 are unsus-
pended E-equivalent to each other if and only if K, (4) =K, (B). (Notice
that, in this case K, (4), =K,(B), ={0}.) One can compare this result
with our example.

Remark 3.19. In comparison with the classification of (separable,
nuclear) C*-algebras of real rank zero and stable rank one, one can con-
sider the classification of (separable, nuclear) purely infinite C*-algebras of
real rank zero ([ Ro, Rol, BEEK, ER, and LP]). For simplicity, let us con-
sider only stable such C*-algebras. In the case of K,(A4) =0, the invariant,
denoted by Py(A4) (which plays the role of X(A4)), is the semi-group of
Murray-von Neumann equivalence (or unitary equivalence) classes of A
(see [Ro]). (It includes K,(A4) as the sub-invariant. And if 4 is simple, then
Ko(A) and Py(A) (=K,(A)11{0}) contain the same information.) In the
case of K,(A4)#0, one needs to consider the graded semigroup P,(A)
which consists of partial unitaries modulo the following equivalence rela-
tion: u ~ v if and only if u*u=uu* is Murray-von Neumann equivalent to
v¥o=vv* and [uP(1—uu*)]=[v@(1—ww*)]eK,(4), where 1 is the
unit of A%, the C*-algebra 4 adjoining a unit. (The author is indebted to
Professor G. Elliott for explaining the above formulation of invariant.)

By using our construction in this section, one can construct two non-
isomorphic separable nuclear purely infinite C*-algebras C and D of real
rank zero which have the same invariant (i.e., P, (C)= P (D)) as follows.
Let E be any simple purely infinite stable C*-algebra with K (E£)=7 and
K, (E)=0. Then P (E)=Py(E)=K,(E)[]{0}. Let

C=AQFE and D=BQ®E,
where 4 and B are the C*-algebras in (3.6). Then
P (C)=P (D).

However, there is no isomorphism between C and D. Otherwise, the
isomorphism will induce a KK-element which keeps the ideals. Repeating
the procedure of this section, one can prove that this is impossible.

Remark 3.20. Using the spirit of this article, one can give examples
with the property in 3.19 within the class of purely infinite real rank zero
C*-algebras to be expressed as the inductive limit of C*-algebras of form
@®: M, ( s ® 0,., where O, are Cuntz algebras with 7, even (one can
always let n,=4). The construction and the proof are even simpler. The
detail will appear elsewhere.
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Remark 3.21. In the construction of 4=Iim,_ .(4,, ¢, ), one sees
that the number of blocks of A4, goes to infinity as n goes to infinity. This
must be the case for such examples. We will prove that if the limit C*-algebra
has finitely many ideals, then the unsuspended E-equivalence type is com-
pletely determined by the graded scaled ordered K-group (see Section 4).

Remark 3.22. In our example, K,(A4) (and K,(B)) has torsion. This
also must be the case. We will prove (in Section 4) that if K, (A) is
torsion free, then the unsuspended E-equivalence type of A is completely
determined by the graded scaled ordered K group. In particular,
AR M,» =~ B® M,., for our examples A and B, where M, is the UHF
algebra with Ky(M,.) = {n/2", n, m are integers}

Remark 3.23. We have seen that, since 4 and B do not satisfy condi-
tion (2) of Theorem 2.21, they are not isomorphic. The inherent cause of
being not isomorphic is that they have different unsuspended E-equivalence
types. When we consider only the inductive limit C*-algebras of direct
sums of matrices over 2-dimensional finite CW complexes, and suppose the
algebras to be of real rank zero, then Theorem 2.21 tells us that the
isomorphic type of a C*-algebra is determined by the unsuspended
E-equivalence type of the C*-algebra, completely. But if we do not assume
that the C*algebras are of real rank zero, then the condition that two
C*-algebras have the same unsuspended FE-equivalence type is much
weaker than the condition that they gave the same isomorphic type, and
the former condition is easier to be satisfied (see Remark 2.22). In the next
section, we also suppose that the algebras are of real rank zero, and we will
prove that, in several cases (with a restriction on the ordered group K, (A4)
for each case), the isomorphic type (and unsuspended E-equivalence type)
is completely determined by graded scaled ordered K-group. However with
the restriction on K,(A4) (in each theorem) and without the condition of
real rank zero, it is still true that the unsuspended E-equivalence type is
completely determined by the graded scaled ordered K-group, provided
that K,(A) has a large denominator. Notice that for non real rank zero
inductive limit C*-algebras (to be isomorphic to each other), there are
other invariants such as ideal spaces (or spectrum) and tracial data besides
the unsuspended FE-equivalence types. But, unlike the unsuspended
E-equivalence type, those invariants are determined by graded scaled ordered
K-groups if the C*-algebras are of real rank zero.

4. RELATED CLASSIFICATION RESULTS

4.1. Suppose that A4 is a unital real rank zero inductive limit of
A,=® M, 1(C(X, ), the direct sums of matrices over 2-dimensional
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finite CW complexes X, ,. In this section, we will prove that the
isomorphism type (and unsuspended E-equivalence type) of A is decided
by its graded scaled ordered K-group completely, at the following two cases
(and some other cases):

(1) A has at most finitely many ideals, or equivalently, (K.(4),
K,(A4),) has at most finitely many ideals;

(2) K,(A) is torsion free.

It is worth while to point out that two related cases have been classified
in [ EG1] as the main results:

(1) A is simple; (Theorem 5.8 of [EG1].)

(2') K,(A4,) is torsion free (or H*(X, ;) is torsion free for each n, i).
(Theorem 5.28 of [EG1].)

In [EG1], the C*-algebra 4 was allowed to be an inductive limit of
A,=@% M, 1(C(X, ) with X, ; being 3-dimensional finitet CW com-
plexes. In this article, for the case (2), we also allow X, ; to be 3-dimen-
sional finite CW complexes. This is a generalization of Theorem 5.28 of
[EG1]. Notice that, it is more natural to put conditions on the limit
algebra A4 than to put that on 4,. In particular, after this generalization,
one knows that 4 ® M,. = B& M, for the non isomorphic C*-algebras 4
and B we constructed in Section 3. However, for the case (1), we only
prove the result for X, ; being 2-dimensional. So we did not obtain the full
generalization of Theorem 5.8 of [EG1]. Case (1) includes all the inductive
limits of @ %, M, 1(C(X,. ;) (dim X, ,<2) with {k,} uniformly bounded
(notice that the limit algebra may not be simple even if one supposes that
k,=2 for all n). This is the reason that the example in Section 3 must
involve unbounded numbers of blocks of A4,,.

The proofs of our generalizations are certainly inspired by the original
proofs of that of the theorems in [ EG1]. It also involves some new ideas.
For instance, we need to use some techniques from homological algebra.
We will not repeat the parts of proofs which have already appeared in
[EG1]. Instead, we will refer to [ EG1] for those parts and emphasize on
the differences (or new ideas).

4.2. Let us deal with case (1) now—suppose that the inductive limits
have finitely many ideals. As in [EGI1], we will start with the case that
there is an additional restriction on the inductive limit sequences—each
space X, ; has the property that H*(X,, ;) is finite.

THEOREM 4.3. Suppose that A and B are unital real rank zero inductive
llmllS Of C_D 1—1 M[n i] C(X ))9 ¢n, m) and ( 1—1 M{n i} (Yn, i))a lpn,m)
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respectively, where X, ,, Y, ; are 2-dimensional finite CW complexes with
H*(X, ), HX(Y, ) finite. And further suppose that A and B have at most
finitely many ideals (or equivalently, (K,(A),K.(4),) and (K, (B),
K. (B), ) have at most finitely many ideals). Then A is isomorphic to B if and
only if

(K*(A)a K*(A)+ > lA) = (K*(B)a K*(B)+ > lB)

4.4. Suppose that 7: (K, (A4), K. (A),,1,4) = (K (B), K. (B),,15)is an
isomorphism. Then 7 induces a correspondence between the ordered ideals
of (K(A), K. (A4),,1,) and that of (K(B), K,(B),, 15). And therefore it
induces a correspondence between the set of the ideals of 4 and the set of
ideals of B. We denote the ideals of 4 by {I,} ..o, and the ideals of B by
{J.} aco> where Q is an index set of finitely many elements. That is, under
the correspondence, I, goes to J, for each a.

It is difficult to prove the property (2) in Theorem 2.16, directly. We will
introduce two other sequences A =lim(4,, @, ,) and B=1im(B,, ¥, ,.),
and prove a weaker analogy of property (2) for 4 and B.

4.5. As in [EG1], we denote 4° By M, 5(Co(X,. ), and B)=
@, My, (Co(Y, ), where Co(X,, ,) and Cy(Y, ;) are sets of continuous
functions on X, and Y, ;, respectively, vanlshlng at given base points of

X, ,and Y, ,, respectlvely And denote r4,=A4,/A° and rB,= B, /B°.

One needs to repeat the construction of 5.3 and 5.4 of [ EG1], to obtain
A=1im(4,.4,,,) and B=lim(B,, ), ,) with the properties that: @, ,, is
homotopic to ¢, ., tﬁn . 18 homotopic to V¥, .. ¢,, (A2 =A%, and
V.l BY) = BY,.

By Theorem 2.2 of [EG1], we need only to prove that 4 =1lim(4,,, d)n m)
and B=Ilim(B,, lﬁ” ) are shape equivalent to each other.

By the following identification

(@), ~
K. (4,) —> K (4,)— - — K, (4)

id id

(¢1,2)
K (A4))—— K (45) — -+ — K, (4),

we can identify (K, (A), K, (A4),,15) with (K,(A4), K,(A4),,1,). In this
way, the ideals of (K (A4 ) K. (4 ) 1,) are one-to-one corresponding to
the ideals of (K*(Z,K (A),,17). Hence {I,} .co are one-to-one corre-
sponding to those ideals of 4 ~ which are generated by the projections in
them. We denote such ideals by {I,} uco- (Notice that this is not a com-
plete list of ideals of A, since A is not of real rank zero.) We understand
that {J,} ..o are the ideals of B which are corresponding to {J{,}L,EQ We
can endow an order structure on Q by the following: a<b if I, =1,
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(or, equivalently, J,cJ,, I,<1I,, or J,cJ,). Notice that the isomor-

phism 7: (K (4), K, (A ) ,1,4) = (K (B), K(B),,1p) induces an isomor-

phism #: (K (A4), K (A),,15) > (K,(B), K, (B),,15) with the property
)-

),
UK (1) =K, (],

4.6. Asin 54 of [EG1], one has an ideal 4° = 4 which is an inductive
limit

A?ﬂ, Agﬂ, A— . — A — ... 4"

and an ideal B° = B which is an inductive limit
B?ﬂ, Bg£> By— ... — B’ — ... B,

Similarly, 7 *(Z ) —> K. (B B) induces an isomorphism from K,(4°) to
K, (B%), ie., (K, (A° ) =K (BO) Let t°=7|, 0. It needs to be noticed
that K, (A4°) = (tor K(A4 1))@ K,(A), where tor G denotes the torsion part of
G for any group G.

Denote I=A4°~T, and J°=B"J,.

As in the proof of Theorem 2.16, for any fixed ideal 7, = A, we define
A, N1, to be the ideal of 4, which is generated by those projections in A4,
whose images (under @, ..) are in T, = A. Obviously 4, 1, consists of
several whole blocks of 4,. We use 4% nT, to denote (4, n1,)°. Then
A% T, (&(A4, n1,)°) consists of several whole blocks of A49.

Also, we have two inductive limit sequences:

A a0 A, AT, A AT, — o — AnT(=1,)
and
AT, —5 A5 T, —=5 AT, — - — AT (=1°).

The above are true since T, is generated by the projections inside the ideal.
It is evident that

K (I7) = K (I,) 0 K (A°) = (tor Ko(T,)) ® K (1,),
and that
K (A°nT)=K (A% K (A4,nT,)=(tor Ko(4,nT,)®K(A, nT,).

For each ideal J, = B, one can define B, nJ,, J°, and B® nJ, similarly.

as
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CoNVENTION 4.7. If D is an ideal of C, we use i ¢, p, to denote the inclu-
sion D < C, and n c p) to denote the quotient map C— C/D. Also we use
them to denote the corresponding KK-theory elements.

LemMMmA 4.8. There is an o’ e KK(A°, B®) with inverse B°e KK(B°, A°)
such that

(i) o induces % K (A°) - K (B°) and that
for each ae Q

ia0, 19 X X7 po_y0) € Ext(K, (1), Ko(B°/J ) = KK(Iy, B°/J )

a’

and
i, g0 X o’ X7 40 g0y € EX(K,(J9), Ko(A°/17)) = KK(J ), A°/I).
49. One needs to notice that if the condition (i) holds, then

I (40, 0 X a® x TT(po, 0 € Eth(K*(IS), K*(BO/JS))

= Ext(K,(I%), Ky(B°/J)) @ Ext(K,(I%), Ko(B°/J2)).

Our condition (ii) says that the ﬁrst component (i.e., the component in
Ext(Ko(I7), K, (B°/J7))) of i 10 xa® X 7oy, is zero. This is weaker than
the condition of keeping the 1dea1 pair (10 JO) (which means both com-
ponents are zero) defined in 2.12 (and used in Theorem 2.16). However this
weaker condition will be enough for the proof of Theorem 4.3.

Suppose that Lemma 4.8 holds. The proof of Theorem 4.3 is similar to
that of 2.16. We discuss it here briefly. (The reader can fill in the details.)

First, by the proof of 5.5 in [EG1], there is an a € KK(A, B), , , with
inverse fe KK(B, A) +. =1 such that

(1) o induces 7: K*(Z) - K*(E);

(2) the following diagrams commute (at level of KK),

A2 B L
[ [ and [AJ igo[
A°—>— B°

where 0= l.(g’ A4%) EKK(AO, Z) and igo= l.(g’ BY) EKK(BO, E)
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One can lift « and f into the following commuting (at level of KK)
diagram

Py k by k ~
Akl 1.7, Akz ko, k3 A/(} A
a]J B azJ % “J[/j

Vi iy, b4
Bll - B’z = B’a B

where a, € KK(A, ., B,), s, and 8, e KK(B,, A ). .. For each ideal
1,, using

. 0 0 0/70
L0, 10) X O X T po s0 € Ext(K,(1,), Ko(B°/J,))
and i xa=a’x iz e KK(A° B), one knows that
LAy XXXT g, 1,
=i(Ao’12) XiAo XO(X?Z(Ej“)
=i(Ao 10) XO(OXiBo Xﬂ.'(g,j“)

l(Ao IO)XO( X T po, J XZ(B/J BYJY)
e Ext(K,(19), K0<B°/J2) x KK(B°/J%, B/T,))
< Ext(K,(I%), Ko(B/T,))  (by3.1).

Using o0, X [, .. ]1=[¢s, . ]xaand 3.1, one can prove that for each n,
there is an m such that (see the proof of () in 2.16)

i(Akn,Ag ATy X0, X [P, ;1% (B, .B, A7,
eExt(K,(4) n1,),Ky(B, /B, nJ,))
Since K,(4y n1,) is a free group, we know
Ext(K, (4}, n1,). Ko(B, /B, n],)=0.

Hence z(A A A7) X %y X [V, ,1x7s B . B ATy = 0. Without loss of
generality, we ¢an suppose that

] 0 7 P
l(Ak”,A,(nmlu) X%y XT(p, By AT, 0.

(That is, use o, x [, , ] to replace a,.)
(One needs to notice that, we can not obtain iz, xaxng5,=0,
since K,(1°) is not a free group (only torsion free) and therefore
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Ext(K,(1°), K,(B/J,)) may not be trivial. However, after passing to finite
stages, we obtain the above required equation.)

Since a induces 7: K (Z)—»K (B), one knows that i(4.7) XXM 7
induces zero map from K (I ) to K ( (B/J,). Passing to subsequence one
can suppose that i Agy Ay~ T) X% X5, B AT, induces zero map from

K, (A, NI, to K.(B, /B, nJ,). Combining this fact, the above equation,
and the decomposmon

KK(4, ~1,,B,/B, nJ,)
= KK(A} n1,, B, /B, nJ,)®KK(r(4,, ~1,), B, /B, "],

one can prove that

l(Ak”, A, N 1) X%y, X 7Z(B,”’ B nT) T 0.

(Here we use the facts that 4 N7, = (A, n1,)° and that K (r(4y, A)
is a free group.) ’
The above equation is exactly the equation (x) in the proof of 2.16. The
rest of the proof is a repetition of the corresponding part of that of 2.16.
Therefore, we know that, to prove Theorem 4.3, one needs only to prove
Lemma 4.8. It is obvious that Lemma 4.8 follows from the next lemma.

LeMMA 4.10. There is a system of KK-equivalences {o,},cqo, %, €
KK(I°,J°) for all aeQ such that
(1) o induces | g0 Ky(I3) = K, (J7), and that
(2) if a<b (and therefore I° =19 and J° = J3), then the diagram
10—
iug,lgﬂ Lug_;ﬁ; (D)
12 e, Jg
commutes up to modulo Ext(K,, K,), i.e.,

i g0y X ot — o, X i 0, € Ext(K(I7), Ko(J7)).

(Lemma 4.8 can be obtained by taking 1= A° and o° = a,).

Proof. We will prove it by induction strategy.

For any a,€Q, denote Q,={a<a,,acQ} and Q, = {a<a0,
aeQ} =Q, Uiayf. Suppose that a,€Q and suppose that 'there is a
system of 'KK- equivalences a, € KK(1°,J9)} . o, such that for each
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a<b<a,, the diagram (D) commutes up to modulo Ext(K,, K,) and that
a, induces 7| 0. We are going to prove that there is an a, € KK(I°, Jao)

ay?

(induces 7|, ,30)) such that for each a <b <aq,, the diagram (D) commutes

up to modulo Ext(K,, K,). We will use (3.1) frequently.
We divide the proof into two situations:

(1) There is an a; <a, such that ae 2, implies a<ay;
(2) There is no such «,.

Suppose that a <b < c. Consider the following diagram

19— J°

]

Ig——» Jg

L

12—».]2.

By (3.1), one can prove that if two small squares commute up to modulo
Ext(K,, K,), then the large rectangle commutes up to modulo Ext(K,, Kj).

Ist Case. To guarantee that the diagram (D) commutes for any
a<b=a,up to modulo Ext(K,, K,), one needs only the following diagram

commutes up to modulo Ext(K, K). The existence of the above «, can be
proved as the proof of 5.5 of [EG1] (considering I ,ng in places of 4°
and B°, respectively, and I, J, in place of A an B, respectively).
(Actually, one can obtain an exactly commutative diagram in above.)

2nd Case. Suppose that {a,,a,,..,a,} is the set of all maximum
elements of Q, . Hence for any i +# j, I “and I ~do not contain each other.
So

I,eI,+1, <1,

1

where T, +1, is the ideal generated by ’uI This proves that 7[,1_—1-7[,/
—I . Therefore

IO +I° IO
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Denote G,=K(! ) for 0<i<k, and H= K(J0 ). Using the above
equation, one can prove that if the map

0:G,®G,— G,

is induced by inclusions (ie., 0|g: G; - G, and H|G G, — G, are inclu-
sions), then it is a sur]ectlon (see the proof of the next lemma)
Choose any «;, € KK(I° g 0 ) which induces the isomorphism

‘E|K*(120): K*(Ia ) K (‘]O )

ag

Let y,= (i 1) X ol — o, X (g0 s eKK(I;,J; ). Since a induces
aq a;
Toy=Tlxus > one knows that
7 € Ext(K,(19), K, (J2))
= Ext(Ko(IZ,.), Kl(JZO)) ® EXt(Kl(IS,), Ko(-]go))-

Write y,=y} +77, where y; € Ext(K((Iy), K (JO)) and 77 e Ext(K,(I3),

(J0 )). We are going to prove that there is a 7' e Ext(Ko(1° ) K (J0 ))
such that

Q0 o, xpt—yi=0 for each i.

a. a

Consider the following complex

A

0« G,

where /7 is induced by inclusions, ie., 4| are the inclusions from G,
to Gy, and %5 is also induced by 1nclu510n but with certain sign correc-
tions, more precisely, for any ge G, n G; (i <)

k
H(g)=gD(—g)eG,®G, =D G;.

i=1
Claim 1. The above sequence is exact (in particular, ker J#; =im 45).

We are going to use this claim to prove the lemma and postpone the
proof of the claim to the next lemma. (One needs to notice that the claim
is not true for arbitrary Abelian group G, with finitely many subgroups
{G,;} whose union generates G,. More precisely, it may not be true that
ker oy =im ;. We need to use certain special properties of those groups,
see next lemma.)
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Let G=(D, <izj<i G0 G))/ker #;. Then we have the following short
exact sequence

i

0« G,

where #; is induced by #;. It induces a long exact sequence of Ext(-, H)
(see [CE]):

k
0 — Hom(G,, H) - Hom < ® G, H> — Hom(G, H)

i=1

g K k ot 3
s Ext(Gy, H) —25 Ext <@ G, H> 2 Ext(G, H) — 0,

i=1
where # *: Ext(X, H) — Ext(Y, H) is induced by group homomorphism
A Y- X
On the other hand, since the diagram (D), for each a <b=a,, is com-

mutative up to modulo Ext(K,;, K,) (the induction assumption), one
knows that

k
%5“<€—) y}>=OeExt< @ G,-r\Gj,H>.

i=1 I<i<j<k

(See (3.1) also.) We argue that

k
.if;k<@ y}>=0eExt(G, H)

i=1

as follows. Consider another short exact sequence
0G< @ G,nG<kerA; 0.
One has the exact sequence

Hom(ker .45, H) — Ext(G, H)—»Ext( ® G,nG, H>.

Isi<j<k
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Since ker 45, a subgroup of @, _,_ ;. G; NG}, is a torsion group (notice
that G,=K,(1°) is a torsion group), and H is a torsion free group, we
know that Hom(ker 245, H) =0. This implies that

Ext(G, H) — Ext < @ G nG, H>
1<i<j<k

is injective. Hence that #"%(@ y))=0 implies that HHP 71)=0. There-
fore

@ y} eimage(A¥).
That is, there exists

' € Ext(Gy. H) = EXX(K,(I},). Ki(J5,) < KK(I},, J%)

ap’ = agy

such that
i 0, XVI _V; =0
ag L2,
for each 1 <i<k (see 3.1). Let

oAy =ty — V' € KK(ISO, JSO).

We know that the diagram (D) for «,, and o, (a;<a,) is commutative up
to modulo Ext(K,, K,) for each 1 <i<k. Therefore it is also true that the
diagram (D) for any a <a, is commutative up to modulo Ext(K,, K,). The
lemma follows routinely from the induction strategy (one can start with all
minimum ideals). Q.ED

LEMMA 4.11. Claim (1) in the proof of Lemma 4.10 is true.
Proof.  Using I} + 12/= I; and Ta,.'i‘ Tuj: 7,,0, we can prove that
0:G,®G, -G,

is surjective as follows, where € is induced by inclusions. Denote
G, = KO(T‘,I_), for 0 <i<k. Suppose that x € G,. Then there is an n such that
xeKyA4, 0120). One can write x= @ x,, where x, € Ky(A4!) and ¢ runs
over the set

0 0
{t1(4,)°c4, 10}
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Since 70 + 72’_ = ng, (4;)° = 4,1, implies either (4,)°< 4, NI or (4)°
c A, mIO Therefore x can be written as x'+x°, where x'eKy(I,)=G,
and x eKO(I 0) G,. This proves that ¢ is surjective. (This fact was men-
tioned in the proof of 4.10.) Hence #, is surjective.

We have to prove im 4, =ker #;. We need only to prove that
ker A, <im ;. (Notice that ker #] >im 4, is obvious and that this fact
makes the sequence be complex.)

Let G, ;=G,nG, & KO(IO)mKO(IO)

We observe that for each i, J1 75]2, I ‘—I r\I +I r\I since
I% = I”n + I . As in the case above, we know ‘that the map

0:G, ; &G, ;, ~ G,

i, ji

(induced by inclusions) is surjective.
Suppose that z; € G, with Y*_, z,=0 (ie., #(D z;)=0). We are going
to construct z, ; € G, N G,(i < j) such that

35/2( @ Zzzj>:@zf-
I1<i<j<k

(One needs to notice that in the construction below, we always have
z; ;=0 for |i—j|=3.)

By using the surjectivity of 0 for i=1, j, =2, j, =3, there are z, , € G, »,
z;.3 €G3 such that

Z1=Z12+ 21 3- (1)
Consider z, =z, +z, , € G,. By surjectivity of ¢ again (for i=2, j, =3, and
Jjo=4), there are z, ; € G5 3, 25 4 €G, 4, such that zy =z, 3+ 2, ,. There-
fore

Zy= —Zy 2+ 233+ 25 4. (2)

Similarly, consider z3=2z;+z, 3+ 2, ; €G3, there exist z; , €G3 4, 235 €
G; s with z3=z; 4+ 2; 5. And so

Z3= —Z13—Z331Z34FZ35. (3)
In general, suppose we have constructed z; ; for i</ (j</+1). We can
consider z;=z,+z, , ;+z;,_, ;. (Notice that z,~,—0 if i<l—2). There are

!
Z11+1€G 115 21,142 €G o such that zj=z, ., +2,,,,. Hence

)= =Zi_o = Zi—vut 21 T 240 (1)
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This procedure can be carried out until /=k — 2. That is we can construct
z; ,€G,; ; for all j=i+1 and j=i+2 except z; ;| €G; _,;, with the
equation (/) for each 1</<k—2. We need to construct z;_; , now.
Adding all the above equations (1), (2), (3), ..., ({), ..., (k —2), one has

vtttz o= st Zi o1V 2o k-
Since %, z,=0, we know
Ik 1T Zk= —Zi_3 k1" Zk—2k—1"Zk—2k-
That is

Ikt Zi_o k1t Zk_3 k1= —Zr—2k— Zk-

Notice that the left-hand side of the above is in G, _, and the right-hand
side of the above is in G,. Let

k= —Zkn k2= Ikt 2 ko1t Zh—a 1 €Gp_y ke
That is,
Ik 1= —Zk—2 k-1 " Zk—3k—1TZk_1k> (k—1)
Zk= T Zk—2k Zk—1,k> (k)
This ends the proof (see (1), (2), ... ({), ... (k—1), (k)). Q.ED

Remark 4.12. Notice that, in (4.10), o, € KK(1°, J°) and «, € KK(19, J9)
(a < b) are only compatible up to modulo Ext(K,, K,). But as in (4.9), after
we lift « to the finite stage «,, we know that a,|, ~7 (or o[, ~,2) and
Wy |4 ~1, (OF 0,4 ~s0) are exactly compatible.

One needs to notice the following fact (which may clear some confusion).
Suppose that o, € KK(A4,, B), a€ KK(A, B) and o' € KK(A, B) satisfy

a0, =[¢, Ixa and  a,=[¢, ]xa
for each n. It is not automatically true that
a=a'
One has only
a—o elim' KK'(A4,, B) < KK(A, B),

where lim' is Milnor’s lim' (see 21.3 of [ Bl1]).
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The following main theorem of this section follows from 2.20 and 4.3.

THEOREM 4.13.  Suppose that A and B are real rank zero unital inductive
limits of direct sums of matrices over arbitrary 2-dimensional finite CW com-
plexes. And suppose that A and B have at most finitely many ideals (or equiv-
alently, (K (A), K (A4),) and (K (B), K.(B) ) have at most finitely many
ideals). Then A is isomorphic to B if and only if

(K*(A)a K*(A)+ H lA) = (K*(B)a K*(B)+ H lB)

The rest of the article is devoted to the proof of the following theorem.

THEOREM 4.14. Suppose that A and B are real rank zero unital inductive
limits of direct sums of matrices over 3-dimensional finite CW complexes
(An = @f‘n: 1 M[n, i](C(Xn, i))! ¢n, m)s and (Bn = @ g": 1 M{n, 1}(C( Yn, i))’ l/jn, m)s
respectively. And suppose that K (A) and K, (B) are torsion free. Then A is
isomorphic to B if and only if

(Ky(A), Ky (4) 1)

I

(K*(B)a K*(B)+ > lB)

4.15. By 5.15 of [EG1], we can suppose X, ; to have the special form
as in 5.9 of [ EG1]. Therefore, there is a natural splitting

KK(AH’ Al‘ﬂ) :KKhom(Ana Am) ®KKCXt(An) Al‘ﬂ)'

Similar to 5.19 of [EGI1], passing to subsequence, one can construct
another real rank zero inductive limit system (4,,, gb,l,qm) with the following
properties:

(1) [d’;‘nm] eI(I{hom("4na Am)a
(2) [¢),] and [4,,] have the same components in

n,m

KKhom(An > Am)

Furthermore, one can suppose that ¢, , satisfy the condition (SH) in
5.18 of [EG1]. Theorem 4.14 follows from Remark 5.27 of [ EG1] and the
following lemma.

Lemma 4.16. lim(4,,, ¢
each other.

) and lim(An,qﬁ,lI’ ) are shape equivalent to

n,m

Proof. Notice that K,(A4,)= @', ®;_,H'(X, ;). We will construct
an intertwining in the level of homotopy, i.e., construct subsequences {k,},
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{1,} with k,<1,<k, ., and homomorphisms &,: 4, — A,, and n,: 4,
Ay, ., such that the following diagram

By ky Bry, ks
Akl Ak», A/(

17171

A,
(S 3
11 iy

commutes at the level of homotopy. From Theorem 3.25 of [EG1], we
need only the above diagram to be commutative at the level of KK
Let k, =1. By K,(A4) torsion free, one can choose /; such that

[¢k1, 11 (tor K (4,))=0.

And define

fl=¢k,,/l-

For the above /,, one can choose k, such that

[41.0,]4 (tor Ky (4,)) =

[¢11 k] (tor K (4,))=0.

And define

1
771:¢11,k2‘

In general, suppose that 4, (or 4, , resp.) has been constructed, we need
to choose /, (or k, ., resp.) such that

[9e, ,1s (tor Ky(A))=0 (o [§} , Ty (tor K,(4,))=

0 resp.)
and define ¢,,: 4, —> A, (orn,: 4, > A,

., resp.) by
én=¢k”,ln (orn,= ¢/ K

- resp.).
In this way, we have constructed the above diagram. We need to prove
that each triangle in the diagram commutes at the level of KK. We need

only prove that the first triangle commutes at the level of KK, the proofs
for other triangles are the same.

First,

[¢n m]hom [¢n m]hom

implies

[¢kl,k2]hom: [fl ><7//l]hom'
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Notice that

LPrp iy dexe = [Pr 1 Jext X [ 91 6y hom + [P, 1, Thom X [ @1, 1y Jexe
and that
[él Xr/l]ext =([¢kl,ll] X [¢}l,k2])exl
= [¢k|,l|]ext X [¢lll,k2]hom + [¢kl,ll]hom X [¢11|,k2]ext-

We know that

[hu, 1 Jexe X LD ik hom =[P, 1, Jexe X [¢11],/c2:|h0m'
Suppose that
E: Ext'(tor K (4,), K, (4;,))( = Ext‘(K*(A,l), K, (4)))
— Ext'(tor K (4y,), K,(4,)
is the map induced by the homomorphism
[Ai, 1,15 tor K, (A, ) — tor K, (4,).

(Here we use the fact that K,(A4,) is finitely generated to guarantee that
Ext(K,(4,), Ky (A4,)) = Ext'(tor K. (4,), K,(Ay,)).) Then [¢kl 1, Thom %
[#:.k,]ext 1s the image of [, i ]e under the map E (see 3.1). But
[A«,.1,1,=0 on tor K, (A4, ) and hence E=0. This proves that

[¢k1, /]]hom X [¢11, kz]cxt = 0 = [¢kl, ll]hom X [¢lll, kz]cxt'
This ends the proof. Q.ED

The following results can be proved similarly (see 5.29 and 5.30 of
[EG1].) We omit the proofs.

ProrosiTION 4.17.  Suppose that A and B are real rank zero unital induc-
tive limits of direct sums of matrices over 3-dimensional finite CW com-
plexes. And suppose that there is no infinitesimal in Ky(A) and K,(B), when
we regard K (A) and K (B) as ordered groups (i.e., for any x #0e Ky(A)
(or Ky(B)), there is a trace T on A (or B) with 1(x)#0). Then A is
isomorphic to B if and only if

(K*(A)’ K*(A)+ 5 lA) = (K*(B), K*(B) + lB)'
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Recently, this proposition was used by Dadarlat and the author to prove
that a certain real rank zero AD-algebra is not an AH-algebra.

ProposITION 4.18.  Suppose that A and B are real rank zero unital induc-
tive limits of direct sums of matrices over 3-dimensional finite CW complexes
X, ., and Y, ; respectively with H*(X, ;) and H*(Y,, ;) finite. And suppose
that K,(A) and Ky(B) are torsion free. Then A is isomorphic to B if and
only if

(K*(A)a K*(A)+ H lA) = (K*(B)a K*(B)+ H lB)

Recently, this proposition was used in [G] to find an example of non-
simple real rank zero inductive limit of direct sums of matrices over
3-dimensional finite CW complexes, which can not be expressed as an induc-
tive limit of direct sum of matrices over 3-dimensional finite CW complexes
with finite H>-groups.

PRrOPOSITION 4.19.  Suppose that A and B are real rank zero unital induc-
tive limits of direct sums of matrices over 3-dimensional finite CW com-
plexes. And suppose that K,(A)=K,(B)=0. Then A is isomorphic to B if
and only if

(Ky(A), Ky (A) 1+, 14) = (Ky(B), Ky(B) ., 1p).

(Notice that Proposition 4.18 is (but Proposition 4.17 is not) a
generalization of 5.29 of [ EG1], and that Proposition 4.19 is a generaliza-
tion of 5.30 of [ EG1].)

Remark 4.20. As pointed out in the introduction, all results in this
article hold for non unital inductive limits and for inductive limits of
direct sums of homogeneous algebras over finite CW complexes
® P, M, 1(C(X, ;) P, ;. Also, all results hold for X, ; to be compact
metrizable spaces of corresponding dimension (i.e., dimension to be 2 or 3),
since by [ Bl] (Proposition 2.3 and its proof), in any inductive limit system,
the compact metrizable spaces can always be replaced by finite CW com-

plexes of corresponding dimension.

Remark 4.21. In this article, the C*-algebras are classified by using
unsuspended E-equivalence types which can be considered to be a refine-
ment of KK-equivalence type. So it is K-theoretical in nature. But this is
not an invariant in the classical sense and it is difficult to tell whether two
C*-algebras have the same unsuspended E-equivalence type (except for the
special cases of this section). We propose the following invariant as a
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possible replacement: the couple (K, (4), 2, (A)) and the triple (KK(A4, A),
[(A4, A® A'], ) together with module structure of K,(A4) regarded as a
module over KK(4, A), where [A, A ® 4] is the set of equivalence class of
asymptotic homomorphisms from 4 to A® # and o [4, AQ A ]| —
KK(A, A) is the canonical map. This invariant involves not only the order
for K-theory but also the order for K-homology. It is not clear yet that, to
what extent, the unsuspended E-equivalence type can be recovered from
the above invariant.

Note added in proof. After this paper has been submitted, Dadarlat and the author com-
plete a paper [ DG], in which we proved a more general classification result in terms of more
sophisticated invariants. The invariants are constructed in a sequence of papers of Dadarlat—
Loring, Eilers, and Dadarlat-Gong, which solve the problem (proposed in the introduction)
of finding suitable invariants for the class of nonsimple C*-algebras of real rank zero
considered in this paper. Theorem 4.14 and Proposition 4.19 are consequences of the results
in [ DG]. But Proposition 4.17 and Proposition 4.18 cannot be recovered from [ DG]. Very
recently, based on the methods used in 4.10 and 4.11 of this paper, Eilers developed techni-
ques which can be used to recover Theorem 4.13 of this paper from [ DG].
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