into three groups, control group, H/R group and PD50606 plus H/R group (PD50606 group). To achieve a suitable simulated H/R, cardiomyocytes were incubated with serum-free and glucose-free medium under conditions of hypoxia for 20 min, then they were returned to a normoxic environment with the normal culture medium at 37°C for 2 hours. The viability of cultured cardiomyocytes was examined using trypan blue exclusion test. The cytotoxic cytochrome c levels were determined using an ELISA kit. The fluorometric caspase-3 kit was assayed to measure its activity in the cardiomyocytes. The Succi-LLY-AMC was used as a fluorescence substrate to measure of calpain activity in cardiomyocytes. Formation of 2-hydroxyethidium (2-EOH) in cardiomyocytes was measured by HPLC to quantify superoxide production.

RESULTS After subjected to I/R, the viable rod-shaped cells were decreased to 37.8% in I/R group when compared with the control group (75.6%), while the calpain inhibitor PD50606 prevented 15% of the rod-shaped cells against H/R-induced cell death. Similarly, compared to I/R group, PD50606 inhibited myocardial apoptosis by decreasing caspase-3 activity 65% and cytochrome c release 47%. Calpain activity was increased 58% in the H/R-cultured cardiomyocytes, yet blunted to 23% by PD50606. Compared to control group, the supernatoids (2-EOH) was overproduced 5.43-fold and 4.22-fold, respectively, in I/R and PD50606 group. 2-EOH was partially prevented by PD50606.

CONCLUSIONS Calpain inhibitor PD50606 can effectively reduce H/R injury by reducing oxidative stress mediated myocardial apoptosis. It is plausible that calpain inhibition would be an effective method for protecting the cardiomyocytes from H/R injury.

GW26-e2452 A Study in Construction of Short Hairpin Small Interfering RNA Expression Vector Target Lectin Like Oxidized Low Density Lipoprotein Receptor-1 Gene and Its Effect on foam cells
Huiyu Yang, Yunfei Bian, Bin Liang, Rui Bai, Zhiming Yang
Department of Cardiology, The Second Hospital of Shanxi Medical University

OBJECTIVES To construct the short hairpin small interfering RNA (shRNA) eukaryotic expression vector specific to mouse lectin like oxidized low density lipoprotein receptor 1 (LOX-1) Gene and to observe its silencing effect on LOX-1 in RAW264.7 cells.

METHODS (1) The pLOX-1-shRNA expression vector was constructed by gene recombination. Then transfected into the cultured RAW264.7 cells. At 48 h after Transfection, the expression of LOX-1 mRNA in RAW264.7 cells were determined by semi-quantitative RT-PCR, the expression of LOX-1 proteins examined by Western blot.
(2) Oil Red O Dyeing experiment was used to show the cellular lipid droplets in lipid-loaded cells. The method of cholesterol oxidase assay was performed to determine the content of cellular cholesterol. the ability of uptake Dil-ox-LDL in RAW264.7 cells was assayed by fluorescence microscopy.

RESULTS pLOX-1-shRNA expression vector was successfully constructed. Transfection of pLOX-1-shRNA expression vector into RAW264.7 cells down regulated the expression level of LOX-1 gene, as compared with the control Group, transfection of the RAW264.7 cells with LOX-1 shRNA led to a remarkable reduction of the number macrophages transformed into foam cell, and could suppress the uptake of ox-LDL.

CONCLUSIONS The pLOX-1-shRNA expression vector can inhibit The expression of LOX 1 in RAW264.7 cells and the transformation of the macrophage into foam, which may be beneficial in searching new gene therapy of atherosclerosis.

GW26-e2469 Study on Anti-atherosclerosis Mechanism of Yang Xin Shi
Liang Hou, Yanchun Ding
Department of Cardiology V, the Second Affiliated Hospital of Dalian Medical University, Dalian 1160027, China

OBJECTIVES To provide experimental basis for revealing the mechanism of yang xin shi in prevention and treatment of coronary heart disease, we observe its effects on macrophage inflammatory activation and polarity switch by cultivating the human monocytoid cell line THP-1 with Yang Xin Shi.

METHODS Human THP-1 cells were differentiated into macrophages by the addition of 160 nmol/l phorbol 12-myristate 13-acetate (PMA) for 24 h. We treated macrophages with different concentrations of yang xin shi (10 ng/mL, 50 ng/mL, 100 ng/mL, 200 mg/mL) for 12 h, then we stimulated these cells by OX-LDL and detected the secretion of monocyte chemotactic protein 1 (MCP-1) and macrophage migration inhibition factor (MIF) by Enzyme-linked immunosorbent assay (ELISA), and the membrane molecule CD16, CD68 were tested by flow cytometry.

RESULTS 1. Yang xin shi could inhibit the expression of MCP-1 and MIF from the cell culture supernatants as a dose-dependent manner. With the increasing concentrations of Yang xin shi, the secretion of MCP-1 (control: 33.30±2.37 pg/mL; 10 mg/mL: 26.78±1.48 pg/mL; 50 mg/L: 25.73±1.25 pg/mL; 100 mg/L: 20.95±2.09 pg/mL; 200 mg/L: 8.53±1.79 pg/mL) and MIF (control: 18.65±0.13 ng/mL; 100 mg/L: 15.50±0.27 ng/mL; 50 mg/L: 9.07±0.26 ng/mL; 100 mg/L: 4.85±0.12 ng/mL; 200 mg/L: 4.58±0.36 ng/mL) decreased. The difference was statistically significant.
2. Yang xin shi could change the expression of CD16 and CD68 as a dose-dependent manner, the mean fluorescence intensity (MFI) of 100mg/L group could significantly up-regulated the expression of CD16 and CD68 (CD16: 96 vs 71.2; CD68: 91.6 vs 54.7). As the concentration increased, the expression of CD16, CD68 were down-regulated in 200mg/L group (CD68:80.6; CD68:72.1)

CONCLUSIONS Yang xin shi may execute its anti-atherosclerotic effect by inhibiting macrophage inflammatory activation and affecting polarity switch.

GW26-e2492 Dynamic research on the heart failure model caused by transverse aortic constriction in Kunming mice
Hongjian Lian, Wei Wang
Beijing University of Chinese Medicine

OBJECTIVES Transverse aortic constriction is widely used to induce heart failure by increasing afterload. It was believed that different pathological and functional changes may appear during a long period after TAC surgery. But comprehensive and dynamic researches about TAC model were still limited. In this study, we try to explore these dynamic pathological and functional changes in TAC mice by multi-measurement during 16 weeks.

METHODS 150 healthy KM mice were divided into two groups randomly: TAC (operated with TAC) group (n=90) and Sham-operation (SH) group (n=60). Pathological, functional detection was performed at 6 different time-points, including 2 weeks, 4 weeks, 6 weeks, 8 weeks, 12 weeks and 16 weeks after surgery. Symptoms and signs of animals were observed and recorded. Echocardiography was used in evaluation of cardiac function and structure by detecting left ventricular mass (LVM) and left ventricular mass index (LVMI), measuring the thickness of anterior or posterior wall, the diameter and volume of left ventricular at both systolic and diastolic stage and analyzing left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVEF%). After gross anatomy and general observation of heart, the heart was weighed and heart/body index was calculated. Haematoxylin-eosin stain and Masson stain were performed to show the histological of heart.

RESULTS (1) Compared with SH, LVM, LVMI and heart/body index of TAC group increased significantly (P<0.05, P<0.01) from 2 to 16 weeks after surgery. LVEF started to reduce after 6 weeks (P<0.05, P<0.01), LVFs started to reduce significantly after 4 weeks (P<0.05, P<0.01). The thickness of left ventricular wall started to thicken significantly after 2 weeks (P<0.05, P<0.01). Left ventricular end-diastolic diameter (LVIDd) and left ventricular end-systolic diameter (LVIDs) started to increase significantly after 6 weeks (P<0.05, P<0.01). Left ventricular internal diameter (diastolic) and left ventricular end-diastolic volume started to reduce significantly after 12 weeks (P<0.05, P<0.01).

(2) Heart tissue morphology showed vessel wall thickening after 2 weeks. Myocardial hypertrophy appeared after 4 weeks. Lesions aggravated with widened myocardial fiber gap after 12 weeks.

(3) Manifestations of pulmonary congestion were visually observed at each time point. Animals of TAC group were observed with locomotor activity decrease after 4 weeks, swollen soles after 8 weeks, and respiratory distress followed by sudden death after 12 weeks.

CONCLUSIONS Transverse aortic constriction could successfully induce elevated afterload of KM mice and cause Myocardial Hypertrophy/Heart failure in mice. From 2 to 8 weeks after surgery, left ventricular hypertrophy appeared in the TAC mice. According to clinical judgment in the diagnosis of congestive heart failure, this period belonged to pre-clinical stage of heart failure. Similarly,