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Abstract 

Thermal energy storage systems (TES), using phase change material (PCM) in building walls, has become a hot topic within the 
research community in recent years. As more and more articles have been published, it is essential to review previous work so as 
to have a good knowledge of PCM walls in energy saving. Several aspects are discussed in this review, including the PCM thermo-
physical properties, PCM types, PCM incorporation methods suitable for PCM walls, and specific application methods of PCM 
walls. Although it is known theoretically that PCM walls have a relatively good potential for energy saving, more researches 
focusing on real full-scale buildings and real operation conditions should be done to prove the authenticity and reliability of current 
study.  
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of ISHVACCOBEE 2015. 
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1. Introduction 

As the rapid economic growth worldwide, the supply of the overall energy consumption becomes tense gradually 
[1]. And, the building sector’s energy consumption is the dominant around the world with a total of 30% share of the 
overall energy consumption [2]. Building energy consumption derives from a variety of sources, such as building 
envelope and equipment. Solar energy is believed to be very promising which is not only renewable but also non-
polluting. There is always a time or space contradiction between energy supply and energy demand, such as peak-
valley difference of electrical load and intermittent of solar energy source. Thermal energy storage (TES) can solve 
this contradiction and reduce energy consumption [3]. 
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The ability to store thermal energy is important for effective use of solar energy in buildings. As latent heat storage 
media, phase change materials (PCMs) are a series of functional materials taking advantage of high energy storage 
density in a narrow temperature interval [4]. PCMs added into building walls can make walls with high thermal 
capacity and thus contributes to reducing indoor temperature fluctuation, lessening heating and cooling loads, and 
lowering energy consumption. Moreover, modern construction tends to be lightweight. It would be beneficial to 
integrate PCMs into building walls, which affords an effective way to use solar energy and improve energy efficiency 
of buildings. 

This paper is classified as a review of PCM integrated in building walls (PCMIBW).In this review, the thermo-
physical properties, types, incorporation methods of PCM suitable for PCM walls are illustrated from Section 2 to 
Section 4.Finally, the specific application methods of PCM walls is discussed in section 5. 

2. Phase change material (PCMs) integrated in walls 

2.1. Selection criteria 

Just like not all the PCMs can be used in thermal energy storage, as heat storage materials in building walls, PCMs 
must possess certain desirable thermo-physical, kinetic, chemical, technical, and economic characteristics. But, it must 
be noted that there are scarcely any PCMs that can meet all desirable criteria. In a practical application, thermo-
physical properties such as melting temperature, latent heat of fusion, thermal conductivity and density of solid and 
liquid are the prior considered factors. And then additional measurements will be taken to make up for relatively poor 
properties of picked materials, for example, introducing a nucleating agent to avoid super-cooling and using fin 
designs or graphite to increase thermal conductivity of PCMs [5-7]. 

2.2.  Types of PCMs 

Over 200 compositions, organic and inorganic compounds, eutectics, and other mixtures have been considered as 
promising PCMs. A classification of the substances used for thermal energy storage was given by Abhat in 1983 [8]. 
Based on the chemical composition, the main three groups of PCMs used in building wall application are categorized 
in Fig. 1. Thermal properties of main PCM suitable for building walls discovered in literature are listed in Table 1, 
Table 2 and Table 3. The use frequency of different types PCMs in different areas worldwide are given in 
Fig.2.Though there are maybe some limitations, it also have some representativeness. 
 

 
 
 
 
 
 
 
 
 

 
 
 
Fig. 1.classification of PCMs  

 
 

 

Fig. 2.the use frequency of different types of PCMs in different areas worldwide. 
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Table 1. Thermal properties of paraffin suitable for building walls 
 

PCM 
 

Melting Temperature 
( ) 

Heat of fusion 
( g/k kJ ) 

Thermal conductivity 
( kmw /  

Density 
3/ mkg  

References 
 

n-Heptadecane 19 240 0.21  [9] 
Paraffin C17 21.7 213  817(liquid)754(solid)  [10] 

Paraffin C13–C24 22-24 189 0.21(liquid) 760(liquid)900(solid)  [11-13] 
Micronalr DS5001 26 245   [14] 
Paraffin RT-27 28 179 0.2 800 [15] 
Paraffin RT-18 15-19 134 0.2 756 [16] 
Paraffin C18 28 244 0.148(liquid)  [13,17] 
n-octadecane 28 179 0.2 750(liquid)870(solid) [18] 

 
Table 2. Thermal properties of fatty acids suitable for building walls 
 

PCM 
 

Melting 
Temperature 

( ) 

Heat of 
fusion 

( g/k kJ ) 

Thermal conductivity 
( kmw /  

Density  
3/ mkg  

References 

Capric acid 30.2 142.7 0.2(liquid)0.12(solid) 815(liquid)752(solid)  [19] 
CA and 1-dodecanol (CADE) 26.5 126.9 0.2 (liquid)0.12(solid) 817(liquid)754(solid)  [19] 
Capric acid and palmitic acid 26.2 177 2.2 784  [20] 

Capric acid 30 142.7  815(liquid)752(solid)  [21] 
CA and 1-dodecanol (CADE) 27 126.9  817(liquid)754(solid)  [22] 

MeP+ MeS 23-26.5 180    [23] 
Butyl Stearate-Palmitate 17-20 137.8    [24] 
Eutectic capric-myristic 21.7 155    [25] 
Eutectic capric-stearic 24.7 179    [26] 

Non-eutectic capric- lauric 19.2-20.3 144-150    [27] 
Glycerin 17.9 198.7    [10] 

 
Table 3 Thermal properties of hydrated salts suitable for building walls 
 

PCM Melting 
Temperature 

( ) 

Heat of 
fusion 

( g/k kJ ) 

Thermal conductivity 
( kmw /  

Density  
3/ mkg  

Referen
ces 

Hydrated salt 29 175 1.0 1490 [28] 
CaCl2·6H2O 29 187.49 0.54(liquid)1.09(solid) 560(liquid)1800(solid) [29] 

Mn(NO3)2·6H2O+MnCl2·4H2O 27 125.9 0.6 1700 [30] 
hydrated salts 

[water+CaCl2+ KCl + additives] 
    [31] 

CaCl2.6H2O 29.9 187 0.53(liquid)1.09(solid) 1710(liquid)1530(solid) [32] 
Hydrated salt 31.4 149.9   [33] 

Hydrated salt 25-34 140   [34] 
SP25A8  hydrate salt 26 180 0.6 1380 [15] 

sodium sulfate decahydrate 32.5 180 0.6 1600 [35] 
Eutectic salt 32 216   [36] 

Sodium thiosulfate pentahydrate 40-48 210   [37] 
S27 27 190 0.48(liquid)0.79(solid)  [38] 
L30 30 270 1.02(liquid)0.56(solid)  [38] 

2.3 Means of PCM containment  

PCM can be incorporated into construction materials and elements by direct incorporation, immersion, shape-
stabilization and encapsulation. 

2.3.1 Direct impregnation  

Direct impregnation is the simplest, convenient and economical method in which PCM is directly mixed with 
gypsum, concrete or other porous materials. Khudhair and Farid [39] explained the different impregnation techniques. 
The volume occupied by the PCM in the pores is small enough to prevent from the isolation of the solid PCM crust. 



766   Yaping Cui et al.  /  Procedia Engineering   121  ( 2015 )  763 – 770 

The structure of the porous material transports the heat to the pores. Unfortunately, important leakage has been 
observed, in particularly by Xiao et al. [40]. Cabeza et al. [41] also reported an interaction between the PCM and its 
porous container. This interaction can deteriorate the mechanical properties of the container. 

2.3.2 Immersion 

The immersion technique is an operational approach easily. The construction elements (concrete and brick blocks, 
wallboards), which are dipped into the liquid PCM, absorb the PCM by capillary action. However, it is reported that 
PCM may leak especially after subjected to large number of thermal cycles. Also, it may affect the mechanical and 
durability properties of the construction elements by corrosion. The two points limit the development of this technique. 

2.3.3 Shape stabilization 

In this technique, Shape-stabilized PCM are prepared from a mixture of PCM and a supporting material. First, the 
mixture is melted and mixed with each other at high temperature, then cooled below the glass transition temperature 
of the supporting material until it becomes solid. The most common supporting materials found in literature are high-
density polyethylene (HDPE) and styrene butadiene styrene (SBS). It is reported that these supports prevent the 
leakage of PCM. However, the thermal conductivity of shape stabilized PCM is not very high, resulting in the 
limitations of its application in latent heat storage systems. 

Some researches on the preparation of shape stabilized PCM are given in Table 4, including the PCM, supporting 
material, and their mixed ratio and so on. 
 

Table 4. Various studies on shape- stabilized PCM 
 

PCM Supporting material Combination References 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (75:25) [42] 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (75:25) [43] 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (80:20) [44] 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (70:30) [45] 
Paraffin High density polyethylene(HDPE)  [46] 

Fatty acids graphite Fatty acids: graphite (92:8) [20] 
Paraffin Stryrene–butadiene–styrene (SBS) Paraffin : SBS (70:30) [47] 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (77:23) [48] 
Paraffin High density polyethylene(HDPE) Paraffin : HDPE (74:26) [49] 

 

2.3.4 Encapsulation 

In this technique, PCM has to be encapsulated before being used into construction elements. Generally, two PCM 
encapsulation methods are reported-- macro-encapsulation and microencapsulation. Here, the microencapsulation is 
summarized. 

The process that PCM particles are contained in a thin and stable shell (ranging from 1 m to 1000 m) is known 
as microencapsulation. Due to these advantages of preventing the leakage of PCM and high heat-conduction ability. 
Therefore, its chances of being incorporated into various construction materials are increased largely. The preparation 
of microcapsules is mainly divided into physical methods and chemical methods. The physical methods include pan 
coating, air- suspension coating, centrifugal extrusion, vibrational nozzle and spray drying, while the chemical 
methods include coacervation, complex coacervation and interfacial methods. 

The summary of various studies on microencapsulated PCM incorporated in construction materials and elements 
is given in Table 5. 
 

Table 5. Various studies on microencapsulated PCM 
 

PCM Shell material Method Capsule size( ) References 
Paraffin polymer shell Spray drying 17-20  [50] 
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Caprylic acid Melamine-resin coacervation   [21] 
n-octadecane Gelatin+acacia coacervation   [51] 
n-docasane Polymethylmethacrylate Emulsion polymerization 0.16  [52] 

Coco fatty acid Gelatin+gum Arabic coacervation 1000  [53] 
Hexadecane/Octadecane Melamine-resin Insitu polymerization 5-20  [54] 

 

3. Application methods of PCM walls   

3.1. Combination of PCM walls and air/ventilation 

The PCM trombe wall is a typical application method that PCM walls are combined with air. In the system, the air 
gap is formed between a single or double layer of glass or plastic glazing and the wall is filled with PCM [55, 56]. 
The wall is heated during the day by incoming solar radiation, melting the PCM. The heat stored is used to warm the 
room by natural convection at night. 

Damien David et al. [57] developed a numerical model to evaluate the influence of convective heat transfer 
correlations for natural, fixed, and forced convection flows. The results show that the convective heat transfer highly 
influences the storage/release process. For the natural convection, the numerical results are highly dependent on the 
correlation used and the results may vary up to 200%. In the case of mixed and forced convection flows, the higher is 
the velocity, the more important is the storage capacity. 

3.2. Combination of PCM walls and solar concentrators                                                                                                    

A new system combining PCM walls and multi-surface trough solar concentrators has been reported by Haoshu 
Ling et al. . The schematic diagram of system can be explained by Fig. 3 and Fig. 4. Inside the PCM walls, there 
were several parallel vertical air tunnels, connected with the glass pipe of solar concentrators situated on the top of 
the system. During the daytime, the solar energy could be absorbed by solar collectors and then be used to heat the air 
in the glass pipe. The heated air was then supplied into these air tunnels. Thus, heat is stored in the PCM walls. 

In this study, the actual structure of PCM walls is presented in Fig. 5.PCM wallboards are made by a mixture of 
concrete and GH-20 PCM (phase change temperature is between 7.1  and 25.9 ,and its heat of fusion can reach 
213.4 kJ/kg). Experiment is designed to investigate the system performance and draw a conclusion that optimum 
operation conditions of the system were 0.4 m gap between air tunnels, downward flow direction for the heated air 
inside the tunnel, 0.26 m/s supply air velocity and 60  temperature for the supply air.   

3.3 The optimization of PCM position 

The PCM location have a significant effect on the performance of PCM walls. So the optimization of PCM position 
can improve the thermal performance of building walls [34]. 

The optimal location could be affected by the PCM properties (e.g., melting temperature, heat of fusion, and 
thermal conductivity), wall structure, and weather conditions. However, when information related to those aspects is 
determined, the optimal location of PCM could be found. 

X. Jin et al. [18] developed a prototype PCM thermal shield (PCMTS) that its thermal performance was evaluated 
using a dynamic wall simulator in three different locations. The structures of the wall with and without the PCMTS 
are shown in Fig.6.Based on the analyses of the experimental results, the conclusions can be summarized as:  

(1)The effect of (b) on the peak heat flux reduction was higher especially when the maximum interior surface 
temperatures increased. The impact of (c) on the peak flux reduction would be higher when the maximum interior 
temperatures decreased. There were almost no effects on the peak flux reduction for (d). 

(2)For greater reductions of peak heat fluxes, the optimal location for the PCMTS should be within the first 
insulation layer of the wall from the internal side of the interior-most layer of the wall (e.g., the layer that is closer to 
the conditioned space)  

Except for these findings, X. Jin et al. searched for the most optimal location that PCM layer was 1/5Lin a further 
study. The schematic of wall construction is represented in Fig. 7. 
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X. Shi et al. [58] carried out experimental assessment of positions (externally bonded, laminated within and 
internally bonded) of macro encapsulated phase change material in concrete walls on indoor temperatures and 
humidity levels. The results indicated that the model with PCM laminated within the concrete walls showed the best 
temperature control and was effective in reducing the maximum temperature by up to 4 C. However, the model with 
PCM placed on the inner side of concrete walls showed the best humidity control and reduced the relative humidity 
by16% more than the control model. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.sectional drawing of the system.          Fig. 4.schematic diagram of the heated air system                 Fig. 5.actual structure of PCM wall    

 

                        
          

 Fig. 6.construction of walls                                                                     Fig. 7.schematic of wall construction 

4. Conclusion   

According to the research on PCMIBW, some new findings can be obtained. Firstly, parameters of thermal property 
can be summarized. The range of melting temperature varies between 19 to 28°C for organic PCMs and 25 to 35°C 
for inorganic PCMs, the heat of fusion is almost within the scope of 120 to 280 kJ/kg no matter which kinds PCMs, 
the thermal conductivity is close to 0.2 for organic PCMs and 0.6 for inorganic PCMs, the range of density is from 
700 to 900 kg/m3 for organic PCMs and 1300 to 1800 kg/m3 for inorganic PCMs. Additionally, the application 
geographic locations are mainly concentrated on four areas of north latitude from 25 to 60 degrees and south latitude 
from 35 to 40 degrees, the use of paraffin is the broadest and the maximum use frequency is up to 87.5%. Finally, it 
must be noted that the practical engineering application on PCM walls is few, and researches show that the application 
of PCM walls is not proceed independently, but combined with other media or devices so as to strengthen the 
application effect.  
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