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Abstract

New examples of 4-chromatic edge-critical r-regular and r-connected graphs are presented for
r = 6; 8; 10.
c© 2002 Elsevier Science B.V. All rights reserved.
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All graphs considered are simple (without loops and multiple edges), 9nite, and
undirected. A k-chromatic graph G is called edge-critical (or simply k-critical) if it
becomes (k − 1)-chromatic after removing any edge. For k63 all such graphs have
a simple structure, but for k¿4 they can be quite complicated. In 1989, Erdős [5]
conjectured that 4-critical r-regular graphs exist for every r¿3. He also noted there
that he did not know such graphs for r¿6. In 1960, Dirac [3,4] posed the conjecture
that r-connected 4-critical graphs exist for every r¿3. Note that for r=3 there exists
the only such example—complete graph K4, as follows from Brooks’s theorem [1].
Graphs satisfying the conjectures of Erdős and Dirac will be called Erdős’s and Dirac’s
graphs, respectively.
Now, we list some known constructions of 4-critical 4-regular graphs. The 9rst ex-

amples (an in9nite family) of such graphs were constructed by Gallai [7]. Other graphs,
including planar examples, were reported by Koester [12,13]. There are also construc-
tions of Evstigneev and Melnikov [6], and Youngs [17]. None of these constructions
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yields vertex-transitive graphs. Note that there exists a vertex-transitive 4-regular 4-
critical graph. It is so-called circulant C(13; 1; 5) (see the de9nition below). This graph
was mentioned in the papers of Jensen and Royle [10], Chao [2], GMobel and Neutel
[8]. Nonvertex-transitive 4-critical 5-regular graphs were constructed by Jensen [9].
Additional information on this and related problems can be found in [11].
A graph G(V; E)=C(n; a0; a1; : : : ; ak) is called a circulant if V (G)= {0; 1; : : : ; n−1}

and E(G)= {(i; j): |i−j| ∈ {a0; a1; : : : ; ak} (mod n)}, where 16a0¡a1¡ · · ·¡ak6n=2.
If ak¡n=2 then G is a (2k + 2)-regular graph; otherwise, G is (2k + 1)-regular. It is
clear that circulants are vertex-transitive graphs. If (n; ai)= 1 then the edges of distance
ai induce a Hamiltonian cycle. We call such cycle ai-cycle. Throughout this note we
have a0 = 1 and 1-cycle is called the main cycle.
The 9rst example of 6-regular Erdős’s graph has been found by Pyatkin in 2001

[15]. It is the circulant C(157; 1; 8; 14). There was also posed the conjecture that the
circulant C(1669; 1; 8; 14; 326) is a 4-critical (8-regular) graph. This conjecture has been
recently disproved by Dobrynin and Melnikov, who have showed that this circulant is
3-chromatic.
In this note, we report new 4-critical r-regular and r-connected graphs for r ∈

{6; 8; 10}. The main result is the following

Theorem 1. The following graphs are vertex-transitive 4-critical r-connected r-regular
graphs, i.e. they are Erdős’s and Dirac’s graphs

(a) for r=6:

C(97; 1; 23; 44).

(b) for r=8:

C(289; 1; 38; 110; 134); C(337; 1; 35; 89; 167), C(391; 1; 50; 173; 176),
C(403; 1; 137; 140; 164), C(433; 1; 65; 116; 179), C(469; 1; 101; 170; 173),
C(469; 1; 104; 170; 206), C(541; 1; 14; 26; 167), C(541; 1; 83; 164; 191),
C(589; 1; 47; 92; 215), C(589; 1; 47; 92; 101), C(691; 1; 110; 245; 338).

(c) for r=10:

C(1063; 1; 89; 236; 368; 470), C(1369; 1; 98; 194; 230; 425);
C(1843; 1; 233; 377; 464; 623), C(1891; 1; 65; 68; 863; 902):

Now, we present a sketch of the proof of Theorem 1. DiOerent sets of parameters
may de9ne the same circulants. If (n; ai)= 1 then the ai-cycle can be considered as
the main cycle for any i. Then we obtain another representation of the same circulant
with respective parameters. For example, Pyatkin’s circulant has three diOerent forms:

C(157; 1; 8; 14)∼=C(157; 59; 1; 41)∼=C(157; 56; 23; 1):

Two last forms will be called the inversions of the 9rst form. Sometimes inver-
sions could have the same parameters as the initial form, as happens, for instance, for
C(13; 1; 5). Let a0 = 1 and A= {a1; : : : ; ak}=Ae ∪Ao where Ae and Ao consist of even
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and odd ai, respectively. Suppose that (n; ai)= 1 for every i. Then for 9xed a∈A and
any b∈ (A∪{a0})\{a} de9ne the function

rn; a(b)= min{r¿0 | ra≡± b (mod n)}:

This function determines the parameters of the inversion when the a-cycle is con-
sidered as the main cycle.
A circulant C(n; 1; a1; : : : ; ak) is a normal circulant if n≡ 1 (mod 6), (n; ai)= 1; ai ≡

2 (mod 3) for every i∈{1; : : : ; k} and rn; a(b)≡ 2 (mod 3) for every a∈A and any
b∈ (A∪{a0})\{a}.
The idea of studying normal circulants 9rst appeared in [15], where the following

lemma was proved.

Lemma 2. If G is normal circulant then for every e∈E(G) we have �(G\e)= 3.

Therefore, if a normal circulant is 4-chromatic, then it is edge-critical. In order
to prove that a circulant is 4-chromatic, we need 9rst to deduce some properties of
3-chromatic circulants. Each 3-coloring of a circulant can be presented as a cyclic word
of period n over the alphabet {1; 2; 3}, for instance

: : : 2; 3; 1; 3; 1; 2; 1; 2; 1; 2; 3; 2; 3; 2; 3; 2; 3; 1; 3; 1; 2; 1; 2; 3; 1; 2; : : : : (∗)

We call a 3-coloring f periodic, if fi 
=fi+1 for every i and every maximum sub-
word induced by any two colors has an even length. The marginal symbols of such a
subword will be called outer symbols and all other subword’s symbols are inner. Note
that the symbol fi is outer if and only if fi−1 
=fi+1. For example, all outer symbols of
(∗) are marked by italic font. Denote the coordinates of the outer symbols lying in the
interval [1; n] by (c1; : : : ; cs). It is easy to observe that in any periodic 3-coloring the
outer symbols induce a word : : : 123123123 : : : : Moreover, the subword induced by
the inner symbols lying between ci and ci+1 has an even length 2li (maybe, li=0). If
all li ∈{0; 1} then the 3-coloring is strongly periodic. We call a 3-chromatic circulant
G periodic (strongly periodic) if every its proper 3-coloring is periodic (strongly peri-
odic). Since n is odd, s≡ 3 (mod 6) and the number of vertices in any normal periodic
circulant can be presented as follows:

n=6t + 3 + 2
6t+3∑

i= 1

li:

The next lemma presents some suPcient conditions for periodic circulants.

Lemma 3. Let G=C(n; 1; a1; : : : ; ak) be a 3-chromatic circulant. Then

(1) If there are some p and q such that ap= aq + 3, then G is strongly periodic.
(2) If there are some p and q (maybe, p= q) such that ap + aq= n± 3, then G is

strongly periodic.
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(3) If there are some p; q and r (maybe, p= q) such that ap + aq − 2= ar , then G
is periodic.

(4) If there are some p; q and r (maybe, some of them are the same) such that
ap + aq + ar = n+ 2, then G is periodic.

Note, that all circulants in Theorem 1 except C(289; 1; 38; 110; 134) satisfy at least
one of the conditions (1)–(4) of Lemma 3. The corresponding parameters are marked
by bold font.
Let li; j = li + li+1 + · · · + lj for i6j. For every integer m¿0 and a∈A de9ne the

predicate Ia(m) by the following rule: Ia(m) is true if and only if

(a∈Ao and ∀i; li; 6m+i¿(a− 6m− 3)=2 + 1) or

(a∈Ae and ∀i; li; 6m+i+3¿(a− 6m− 6)=2 + 1):
Analogously, for every integer m¿0 and a∈A introduce the predicate Ja(m): it is

true if and only if

(a ∈ Ao and ∀j; lj; 6m+j+46(a− 6m− 3)=2− 1) or

(a ∈ Ae and ∀j; lj; 6m+j+76(a− 6m− 6)=2− 1):
Then any periodic circulant must satisfy the following

Lemma 4. Let G=C(n; 1; a1; : : : ; ak) be a 3-chromatic periodic normal circulant. Then
every its proper 3-coloring must satisfy the following conditions

(1) For every a∈Ae; li; i+16a=2− 1.
(2) For every integer m and a∈A; Ia(m) or Ja(m) holds.

Note, that the 9rst condition of Lemma 4 can be interpreted as Ja(−1). We can also
observe that Ia((a − 5)=6) for odd a and Ia((a − 8)=6) for even a are true. Our main
tool is the following

Lemma 5. Let G=C(n; 1; a1; : : : ; ak) be a 3-chromatic periodic normal circulant. Then
there exists a nonnegative integer t such that

(1) For every a∈Ao there exists a nonnegative integer ma6(a − 5)=6 such that
n¿6at + 3a− 6man¿− n.

(2) For every a∈Ae there exists a nonnegative integer ma6(a − 8)=6 such that
4n¿6at + 3a− 6man¿2n.

For strongly periodic normal circulants the lower bounds ma¿�(a− 3)=18� for odd
a and ma¿�(a− 12)=18� for even a hold.
Suppose that a circulant G=C(n; 1; a1; : : : ; ak) satis9es the conditions of Lemmas 2

and 3. Then for every a∈A there is a 9nite number of suitable ma from Lemma 5.
We can check them all and, using the inequalities of Lemma 5, 9nd the set Ta of all
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available t. If the intersection
⋃

a∈A Ta is empty, then G is an Erdős’s graph. This proof
is applicable for all graphs from Theorem 1 except the circulant C(289; 1; 38; 110; 134).
The last graph does not satisfy Lemma 3; nevertheless, it is also an Erdős’s graph.
This was showed by computer calculations.
Note, that all circulants from Theorem 1 and Pyatkin’s graph are also Dirac’s graphs.

Since all considered circulants are vertex-transitive and do not contain triangles, this
is a simple consequence of the following result of Mader [14] and Watkins [16] that
if G is a connected vertex-transitive graph without K4, then the vertex connectivity of
G is equal to its maximum degree.
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