In 30 patients (age: 59 ± 10; male: 24; CAD: 22; DCM: 4; EF 42 ± 15%;
amiodarone: 8), the defibrillation threshold (DFT) was determined using a
step-down protocol (20, 15, 10, 8, 5, 3, 2, 1 J) during ICD implantation. Pa­
tients were randomized to receive an endocardial defibrillation lead-alone
(Tv; Endotak® 0072, n = 15) or in combination with a subcutaneous defibril­
lation array (SC, Endotak® 0048, n = 15). The significantly higher voltages of the
SD waveform did not significantly reduce the the sensing electrogram amplitude 6 s after a 15 J shock com­
pared to the STD waveform (0.92 ± 0.22 vs. 0.91 ± 0.17).

Conclusions: A shorter duration waveform delivered by smaller capacitors
with less maximum energy output yielded a 10 J safety margin for endocar­
dial lead-lead defibrillation in approx. 67% (resp. 80% combined with SC)
of the patients tested. Despite higher voltages for the same energy output
reductions in post-shock electrogram amplitude were not larger than those
seen with standard capacitors.

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Defibrillator</th>
<th>C [µF]</th>
<th>E [J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>VENTAK® ECD 2815</td>
<td>125</td>
<td>38 (780) V</td>
</tr>
<tr>
<td>SD</td>
<td>VENTAK® ECD 1028155</td>
<td>90</td>
<td>20–23 (460) V</td>
</tr>
</tbody>
</table>

In 30 patients (age: 59 ± 10; male: 24; CAD: 22; DCM: 4; EF 42 ± 15%;
amiodarone: 8), the defibrillation threshold (DFT) was determined using a
step-down protocol (20, 15, 10, 8, 5, 3, 2, 1 J) during ICD implantation. Pa­
tients were randomized to receive an endocardial defibrillation lead-alone
(Tv; Endotak® 0072, n = 15) or in combination with a subcutaneous defibril­
lation array (SC, Endotak® 0048, n = 15). The significantly higher voltages of the
SD waveform did not significantly reduce the the sensing electrogram amplitude 6 s after a 15 J shock com­
pared to the STD waveform (0.92 ± 0.22 vs. 0.91 ± 0.17).

Conclusions: A shorter duration waveform delivered by smaller capacitors
with less maximum energy output yielded a 10 J safety margin for endocar­
dial lead-lead defibrillation in approx. 67% (resp. 80% combined with SC)
of the patients tested. Despite higher voltages for the same energy output
reductions in post-shock electrogram amplitude were not larger than those
seen with standard capacitors.