for HbA1C, BMI, TC, HDL and LDL was predicted as follows. MI: 0.89, 0.90, 1.0, 0.93, 0.94, 0.95, 1.0, 1.0, 1.0, 0.93 (UKRE-2); and 0.92, 0.92, 1.0, 0.99, 1.29, 0.98 (S-NDR-RE). Stroke: 0.88, 0.76, 0.70, 0.99, 1.18, 1.00 (UKRE-8); 0.91, 0.84, 1.00, 1.00, 0.97 (UKRE-2) and 0.85, 0.94, 1.00, 0.99, 1.18, 1.00 (S-NDR). HD: 0.85, 0.89, 0.94, 1.00, 1.00 (UKRE-8); 1.00, 0.94, 1.00, 1.00, 1.21, 0.96 (UKRE-2) and 0.97, 0.96, 1.00, 0.98, 1.29, 1.00 (S-NDR). HF: 0.88, 0.91, 1.00, 0.98, 1.48, 1.00 (UKRE-8); 1.00, 0.99, 1.00, 0.93, 1.00, 0.98 (UKRE-2) and 0.83, 0.83, 0.94, 1.19, 1.00 (S-NDR-RE). CONCLUSIONS: The degree to which RF modification influences CV risk is strongly dependent on RE selected. The choice of equation within a model may influence the predicted health economic benefit associated with CV risk factor modification.

PRM74 THE RELATIVE CONTRIBUTION TO CHANGES IN QUALITY-ADJUSTED LIFE EXPECTANCY ASSOCIATED WITH HbA1C, WEIGHT AND HYPOGlyCAEMIA AS MULTIPLE SURROGATE ENDPOINTS WITH THE CORE DIABETES MODEL (CDM) McKeown P1, Evans M2, Lampotte M3, Foos V4
1Health Economics and Outcomes Research Ltd, Monkhouse, UK; 2University Hospital Lindau, Lindau, Germany; 3M&S Health Consulting, Brussels, Belgium; 4M&S Health, Basel, Switzerland

OBJECTIVES: The cost-effectiveness type 2 diabetes mellitus (T2DM) therapies are often driven by changes in HbA1C, weight and hyperglycaemia rates. There are a number of risk equations available for modeling diabetes complications. The objective of this study was to attribute the predicted gain in quality adjusted life years (QALYs) to HbA1C, weight and hyperglycaemia change for each of the UKPDS-68 risk equations (UK-68-RE), the UKPDS PDR risk equations (UKPDS-95, UKPDS-97), the Swedish National Diabetes Registry (S-NDR) and ADVANCE RE (A-RE)

METHODS: Published data on T2DM switching to insulin degludec from either insulin glargine or detemir were used. Mean (± SD) baseline profiles were age 62.8 years (± 14.7), diabetes duration 16.2 years (± 5.0), HbA1C 9.4% (±1.1), weight 102 kg (±23.0) and 0.5 hyperglycaemia events per week (±1.4). Mean 1-year change in clinical variables was HbA1C -0.7% (±0.3), weight -1.8kg (±1.1) and hyperglycaemia events/week -1.0 (±1.3). The CDM was a linear regression and used to isolate the incremental QALYS predicted associated with either the UK-68-RE, UK-82-RE, S-NDR-RE and A-RE. Results were discounted at 3%.

RESULTS: With UK-68-RE total QALYs for insulin degludec were 7.747 (QALY gain of 3.306 vs. basal insulin); 2.84%, 97.73% and -0.57% were attributable to HbA1C, weight and hyperglycaemia and weight change respectively. For UK-82-RE total QALYs were 7.718 (QALY gains 3.306, 2.90%, 97.43% and -0.33% attributable to HbA1C, hyperglycaemia and weight change respectively. For S-NDR-RE total QALYs were 7.597 (QALY gains 2.68, 3.47%, 97.24% and 0.17% attributable to HbA1C, hyperglycaemia and weight change respectively. Finally, for ADVANCE-RE total QALYs were 7.035 (QALY gains 2.987, 2.31%, 98.32% and -0.63% attributable to HbA1C, hyperglycaemia and weight change respectively

CONCLUSIONS: HbA1C reduction is not necessarily the most cost-effective strategy. Health economic benefits of all the assumptions, univariate analysis using chi-square test was performed on the outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program. The pre-set software was used for analysis. The outcome variable was the status of CMP program.