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Szemeredi’s theorem states that given any positive number B and natural 
number k, there is a number n(k, B) such that if n > n(/c, B) and 0 < a, < ... < a, 
is a sequence of integers with a, < Bn, then some k of the ai form an arithmetic 
progression. We prove that given any B and k, there is a number m(k, B) such 
that if m > m(k, B) and ug, u1 ,..., u, is a sequence of plane lattice points with 
EL, II ui - uiwl /I < Bm, then some k of the II* are collinear. Our result, while 
similar to Szemeredi’s theorem, does not appear to imply it, nor does Szemeredi’s 
theorem appear to imply our result. 

1. INTRODUCTION 

Recently, Szemertdi [17] gave a proof of an old and pretty conjecture of 
Erdds and Turan [6]. Szemeredi proved that given any number B and any 
positive integer k, there is a number n,(k, B) such that if IZ > n,(k, B) and 
0 < a, < **- < a, are integers with a,, < Bn, then k of the ai form an 
arithmetic progression. Szemeredi’s proof, although elementary, is very 
complicated. Furstenberg [8] has given a new proof involving ergodic 
methods. 

A well-known and old result of van der Waerden [18] is that if the natural 
numbers are partitioned into two subsets, then one of the subsets has arbitra- 
rily long arithmetic progressions. It is not very difficult to show (see [2]) that 
van der Waerden’s theorem has the following equivalent formulation. For 
every number B and positive integer k, there is a number n,(k, B) such that if 
n Z n,(k, B) and 0 < a, < *** < a, are integers with each ai+l - ai < B, 
then k of the ai form an arithmetic progression. Thus we can say that 
Szemeredi’s theorem improves on van der Waerden’s theorem by replacing a 
uniform upper bound on each difference in the sequence with an upper bound 
for the average difference. 

A possible arena for generalizations of the results of van der Waerden and 
Szemertdi is P, the set of plane lattice points. We first notice that there are 
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two directions we can take. First, we can consider subsets of z2 that are 
“fairly dense” in H2. Second, we can consider sequences in z2 with “fairly 
small” gaps. Both concepts are the same if we are considering Z and not z2. 

On the first approach, we have the following result of Gallai (= Griinwald) 
(See Rado [14]): if z2 is partitioned into two subsets, then one of the subsets 
has for each k, a subset I x I where I is an integer arithmetic progression of 
length k. Gallai’s theorem is thus a van der Waerden analog for z2 (actually 
Gallai proved a more general result which holds in each zm). A Szemertdi 
analogue of Gallai’s theorem would read: given any B and k, there is a 
number n,(k, B) such that if n 3 n2(k, B) and S is a subset of PP with n points 
and diameter at most B(n)l12, then S has a subset Z x I where I is an integer 
arithmetic progression of length k. This statement, generalized to each Z”, is a 
conjecture of Erdiis. In [17], Szemeredi announced that he and Ajtai have 
established Erdiis’s conjecture for the case k = 2. Choi [3] has shown 
Erdos’s conjecture but with the weaker conclusion that S has a subset I x J 
where I and J are integer arithmetic progressions of length k. 

For the second approach of generalizing the van der Waerden and 
Szemeredi results to ?Z2, namely the consideration of sequences with “fairly 
small” gaps, it is not immediately clear how the conclusion of a result should 
read. However, it is obvious that a conclusion as in Gallai’s theorem is not 
to be had. It is not so obvious that we cannot even expect to find long arith- 
metic progressions as subsets of a slowly growing sequence. That this is the 
case follows as an easy corollary of a theorem of Justin (See Brown [l]). Thus 
it is possible to construct an infinite sequence uO, u1 ,..., in z2 such that each 
ui - II-~ is (1,0) or (0, 1) and such that no six of the ui form an arithmetic 
progression. From a very recent result of Dekking [4], this last result can be 
improved so that no five of the ui form an arithmetic progression. 

One may think geometrically of an aithmetic progression in E2 as a set of 
collinear points that are equally spaced on their line. Thus there are two 
natural weakenings of the concept of arithmetic progression. First, we can ask 
for points ui . . . . . uk such that 

[I u2 - Ill 11 = /I UQ - Il.2 11 = ... = [I Ilk - q-1 /I . 

Second, we can ask for points u1 ,..., ulc that are collinear. 
In Ramsey [15], the following result is proved. For each number B and 

each k, there is a number m,(k, B) such that if m > m,(k, B) and u0 , u1 ,..., II, 
are points in ??Y2 with each 

!I ui - II-JI G B, 1 < i <m, 

then k of the ui are collinear. (Ramsey’s theorem for the case B = 1 is 
accomplished in [12], but with a stronger hypothesis: each ui - uiVl = (1,O) 
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or (0, 1)) Thus Ramsey’s theorem, like Gallai’s theorem, is a van der Waerden 
analog for Z2. 

It is the purpose of this paper to prove a SzemerCdi analog for h2 in the 
direction opened up by Ramsey. Thus we prove that for every B, k there is a 
number m,(k, B) such that if m > m,(k, B) and II,, , u, ,..., u,, are points in h2 
with 

5 11 ui - II-~ 1; ,( Bm, 
i=l 

then k of the ui are collinear. Our proof is elementary. 
Erdos’s conjecture and Choi’s theorem mentioned above are true generali- 

zations of Szemeredi’s theorem in that both statements clearly imply 
Szemertdi’s theorem. However the result in this paper does not appear to 
imply Szemertdi’s theorem (nor does Szemeredi’s theorem appear to imply 
our result). Thus properly speaking our result is an analog of Szemertdi’s 
theorem, not a generalization. 

An important defect in the proof of our theorem is that it is very indirect. 
It would be nice to have an effective upper bound for our function m,(k, B), 
but we are not very close to finding such a bound. In Gerver [9] and Ramsey 
and Gerver [16] it is shown that there exist positive constants c1 , cy with 

B2exp(c,(log k)2) < m,(k, B) < exp(c2B4K4), 

where m,(k, B) is the function in Ramsey’s theorem. Since m,(k, B) < 
m,(k, B), the above lower bound also gives a result for m,(k, B). 

In Ramsey and Gerver [16], an infinite sequence u,, , ui ,..., in Z3 is con- 
structed such that each ui - uipl is (1, 0, 0), (0, 1, 0), or (0, 0, 1) and such 
that no 511 + 1 of the ui are collinear. Thus our result (and even Ramsey’s 
result) has no direct generalization to higher dimensions. However probably 
our result does generalize directly to each Hm if we replace the conclusion of 
points being collinear with being co-hyperplanar. Ramsey’s theorem [15] is 
so generalizable. If collinearity is insisted on in H3, perhaps the following is 
true. If in addition to assumptions about the sequence in Z3 having small (or 
average small) gaps, the additional hypothesis is made that the number of 
points in the sequence is >CR where C is some large constant that depends 
on k and B and where R is the diameter of the sequence, then for every k 
there are k collinear points in the sequence. 

In a letter, P. Erdiis suggested the following problem. Find a weak condi- 
tion on the rate of growth of the infinite integer sequence a, < a2 < ... that 
assures for every k that there are k points (n, a,) collinear. Tt was work on 
this problem that led me to the theorem in this paper. Our theorem has the 
corollary that if {a,] has positive upper density, then for every k there are k 
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points (n, a,) that are collinear. A more general corollary is that if for in- 
creasing integer sequences {a,} and {b,} we have positive upper density for 
(a,} and positive lower density for lb,}, then for every k there are k points 
(a,, 6,) which are collinear. It is not hard to construct an example of se- 
quences {a,}, {b,) both with positive upper density such that no three points 
(a, , b,) are collinear. In [13] we proved that for every k there are k points 
(n, pa) collinear where pn denotes the n-th prime. 

We leave as an open question the problem mentioned above of finding 
hypotheses on plane lattice point sequences that would permit a conclusion 
that there are k equally spaced points in a subset. 

We take this opportunity to thank P. Erdiis for suggesting his problem we 
mentioned above, R. L. Graham for informing me of Brown [l], and E. R. 
Canfield for critically listening to the details of the proof. 

2. THE PROOF 

If U denotes the sequence of plane lattice points (u, , u1 ,..., u,), let 

d(U) = t .i 11 ui - uiel il. 
a=1 

We shall prove the following 

THEOREM. Given any positive integer k and any positive real B, there is a 
number m(k, B) such that if U is a plane lattice point sequence with more than 
m(k, B) terms and ifd(U) < B, then U has at least k collinear terms. 

Let k be an arbitrary but fixed positive integer. For each positive integer m, 
let 

C(m) = (U E (Z2)nr+1: no k points of U are collinear}, 

d(m) = min{d(U): U E C(m)), 

d = trnr inf d(m). 

It is easy to see that the theorem for k is equivalent to the assertion that 
d = + co. Indeed, if the theorem is true, then for each B and m > m(k, B), 
we have d(m) > B. Hence d = i- co. Conversely, if the theorem is false, there 
is a number B and arbitrarily long plane lattice point sequences U with no k 
points collinear and d(U) < B. Thus there are infinitely many m with 
d(m) < B, so d < B. 
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In what follows, we shall assume the theorem is false for k. Thus d < co. 
Our method of attack will be to look at members of C(m) for which d(U) is 
close to d. Then we shall consider a subset consisting of sequences which are 
as “stretched out” as possible, length being measured as the distance from 
the first to the last term. Then among these “stretched out” sequences we 
shall pass to a subset consisting of sequences which are as “steep” as possible, 
slope being computed from just the first and last terms of a sequence. We 
then show that at least half the points of one of our “stretched out”, “steep” 
sequences are near the line joining the first and last terms. We then use a 
pigeon hole argument to show that these sequences have many collinear 
points, thus providing a contradiction and establishing the theorem for k. 

For each t > 0, let 

D(m, t) = (L’s C(m): j d(U) - d j < t). 

If u = (uO )...) u,)andO<j<m,let 

uj = (ug ,...) Uj), 

jU = (Uj )...) II,>* 

LEMMA 1. For each E > 0, there is an m,(c) such that for all m 3 m@(E), ij 
U E D(m, ~17) and m/4 < j < 3m/4, then Uj E D( j, E) and jU E D(m - j, c). 

Proof. There is an ml(e) such that for all m > m,(e), d(m) > d - e/7. 
Let m,(E) = 4m,(c) and let m 3 m,(E). Suppose UE D(m, c/7) and m/4 < 
j < 3m/4. Since Vi E C(j) and iU E C(m - j), we have 

d(Uj) > d - ~17, dbU) > d - ~17. 

Say d(UJ 3 d + E. Then 

d + l /7 > d(U) = 4 d(UJ + (1 - h) d(iU) 

> $ (d + E) + (1 - &, (d - e/7) 

> (d + ~)/4 + 3(d - e/7)/4 = d + ~17, 

a contradiction. We similarly have iU E D(m - j, E). 1 

If U is a finite sequence of plane lattice points, let X(U) denote the line 
segment joining the first and last points of U if these points are not the same, 
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and let h(U) denote this point if they are the same. If U has m + 1 points, let 
Z(U) denote 1 /m times the length of X(U). Let 

max{l(U): U E D(m, f)}, 
4m, t) = lo, 

if D(m, t) # 0 

if D(m,t) = 0, 

I(t) = lii sup f(m, t), 

I = lim f(t). 
t-0’ 

We note that for any fixed t > 0, there are infinitely many m  for which 
D(m, t) # .D. Moreover, if 0 < t’ < t, then D(m, t’) C D(m, t), I(m, t’) < 
< I(m, t), and Z(t’) < Z(t). 

LEMMA 2. 1/3k <I <d. 

Proof. If U E D(m, t), by the triangle inequality we have 

Z(U) < d(U) < d + r. 

Hence each l(m, t) < d + t, so that l(t) < d + t, and 1 < d. 
Let E > 0 be arbitrary and let m,(e) be as in Lemma 1. Let m 3 m,(e) be 

such that D(m, e/7) # LI. Let U E D(m, c/7), U = (u, ,..., u,,). Then the 
points uj , m/4 < j < 3m/4, cover a horizontal breadth of at least m/2k. For 
if not, at least k of these points uj lie on the same vertical line, contradicting 
U E C(m). Thus u. is at least distance m/4k from one of these uj . That is, for 
some j, m/4 <j < 3ml4, 

I( Uj) 2 m/4kj > 1/3k. 

But U, E D(j, l ) by Lemma 1. Hence Z(j, E) 3 1/3k. There are infinitely many 
m for which the above argument holds. Hence there are infinitely many values 
of j for which l(j, C) > 1/3k. Hence Z(E) > 1/3k. Since E > 0 is arbitrary, we 
have I 3 1/3k. fl 

Now let 

L(m, t) = (UE D(m, t) : 1 Z(U) - 11 < t}. 

It is easy to see that for each t > 0, there are infinitely many m such that 
L(m, t) # ,@. Indeed there is an E with t 3 E > 0 such that 0 < I(E) - I < 
t/2. There are infinitely many m such that 1 l(m, c) - Z(c)1 < t/2. For these m 
we have / I(m, l ) - I I < t. If we choose t < 1/3k, by Lemma 2 we have 
I(m, C) > 0 for these m. Thus for each such m, there is a U E D(m, C) with 

582a/28/2-3 
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I(U) = l(m, E). Since D(m, E) C D(m, t) we have U E L(m, t). If t > 1/3k, we 
note that L(m, 1/3k) C L(m, t). 

If u = (uO )...) II,) is a sequence of plane lattice points, let x(U) denote l/m 
times the maximal distance of a uj , m/4 <cj < 3m/4, from h(U). 

LEMMA 3. For each E > 0, there is a 13(c) > 0 and an mz(c) such that for aI/ 
m 3 mZ(E), if U E L(m, 6(r)), then x(U) < E. 

Proof. Assume the lemma is false. Then there is an E > 0 and an infinite 
sequence t(l) > t(2) > ... of positive numbers converging to 0 such that for 
each t(i) there are infinitely many m for which there is a UE L(m, t(i)) with 
x(U) 3 E. Let m(1) > m,(t(l)) (cf. Lemma 1) such that there is a U1 E L(m(l), 
t(1)) with x(W) > E. If m(l),..., m(i - l), Ul,..., Ui-l have already been 
defined, let m(i) > max{m,(t(i)), m(i - l)} such that there is a Ui E L(m(i), 
t(i)) with x(V) > E. Say Ui = (ugi,..., u&~,). Letj(i) E [m(i)/4, 3m(i)/4] be such 
that the distance of uici, from X( Ui) is at least E . m(i). 

From Lemma 1, we have each U.$, E Do’(i), 7t(i)) and each j(i) Ui E D(m(i) 
-,j(i), 7t(i)). Since t(i) is monotone decreasing to 0 and m(i) -+ co, we have 

Since each U” E L(m(i), t(i)), we have 

hi I(Ui) = 1. (2) 

Consider for each i the triangle with vertices 

Ai = u,+/m(i), Bf = &j/m(i), Ci = ub&m(i). 

By (1) and (2), for each p > 0, there is an i,,(p) such that for i > i,(p) we have 

AiBi = -J# l(U,i(i,) < 

$-) I(&) V) < (1 - $1 (I + P), 
4l) 

(4) 

I - p < l(V) = A& < I + p. (5) 

Now the altitude of triangle AiBiCi from Bi is, by assumption, at least E. 
Then if we take p = e2/1 and use (3), (4), (5), we have for i > i&) 

I + p > AiBi + BiC’i > ((AiCi)’ + 4~~)~‘~ 

> ((I - /A)2 + 4Ey = I + p, 

a contradiction. f 
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Let 

xtm, t) = {U E qm, t): x(U) < ?I. 

Tt follows from Lemma 3 that for each t > 0, there are infinitely many m such 
that X(m, t) # a. Indeed, there are infinitely many m such that m > mz(t) 
and L(m, 8’(t)) # m, where S’(t) = min{t, S(t)}. But if U E L(m, S’(t)), by 
Lemma 3, x(U) < t. Since L(m, 8’(t)) C L(m, t), it follows that U E X(m, t). 

Lets(U)denotetheslopeofX(U)(ifX(U) is vertical, let s(U) = + co; if X( U) 
is one point, let s(U) = - co). For each t > 0 and each m, let 

dm, t) = 
I 

max{s(U): U E X(m, t)), if X(m, t) # 0, 
o 

9 if X(m, t) = 0, 

s(t) = ;+% sup s(n7, t). 

s = lim s(t). 
t-n+ 

Note that if 0 < t’ < t, then X(m, t’) C X(m, t), s(m, t’) < s(m, t), and 
s(t’) < s(t). 

LEMMA 4. 1 < s < 2kl. 

Proof. Note that if U E X(m, t) and 0 < t < I, then h(U) is not a single 
point. Also, by reflecting U in the line y = 0 and/or in the line y = x we get 
a congruent copy U’ of U that is also in X(m, t). Thus s(m, t) > 1. Since 
there are infinitely many m with X(m, t) # ec, we thus have s(t) > 1. Since 
0 < t < 1 is arbitrary, we have s 3 1. 

Let t < 1/4k and let U = (u,, ,..., u,), U E X(m, t), s(U) > 1. Now as in the 
proof of Lemma 2, the horizontal breadth of the points uj for m/4 <,j < 
3m/4 is at least m/2k. But each of these points has distance from X(U) less 
than mt < m/4k. Hence the segment h(U) has horizontal breadth at least 

Thus 

m/2k - 2mt > 0. 

SW> < 171 

. 

Z(U) 2k. f(U) 2k(l + t) ml2k = - 2mt I - 4kt < 1 - 4kt ’ 

Thus s(t) < 2k(l+ t)/(l - 4kt), so that s < 2kZ. 1 

Let now 1 < b, < b, < ... be integers for which there exist integers 
al , a2 ,..., such that 

1 s - ai/& I < l/bi2. 
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(Note that if s is irrational, the existence of the ai/bi is a well-known result, 
while if s is rational, we can let each ai/bi = s, since we do not insist that 
(ai , bJ = 1.) Then there are integers m, < m2 -C -** and sequences U1, V,..., 
such that each 

Ui E X(mi , 1/bi2), I s(V) - s / -=c l/bi2. 

(The proof that such Ui exist is similar to the proof above that for each t > 0 
there are infinitely many m for which L(m, t) # m.) 

For each i, consider the set of lines with slope ai/bi which pass through 
lattice points and whose distance from A( Ui) is less than mi/bi2. Since x(U”) < 
l/bi2, it follows that these lines touch at least mi/2 points of V. We now 
count the number of lines we are considering. 

Note that 

and that 

I s(U) - a,/b, I < 2/bi2 

S( Ui) > s - 1 /bi2 > 1 - l/bi2 > 314. 

Since 1(V) < 1 + l/bi2, an elementary calculation shows that each of our 
lines is within horizontal distance less than 

(4 + 41) milbi2 

of ugi, the first point of Ui. Indeed, the exact distance is 

(1 + S( Ui)2)-1/2 [(s( Ui) + bJaJ M + 1 1 - S( Ui) bila, I 4ui)l, 

where M is the maximal distance of one of our lines from &Ui). Hence there 
are at most 

8ai(l + I) m,/bi2 

such lines. 
From the above considerations it follows that at least one of these lines has 

at least 
w/2 

8ai(l + Z) mi/bi2 
bi2 

16ai(l + 1) 

bi 
> 16(s + 1X1 + 0 

points of Ui on it. Since bi + co as i + co, this last expression is eventually 
bigger than k, contradicting Ui E C(mJ. This contradiction establishes our 
theorem for k. 
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