
Journal of Pure and Applied Algebra 216 (2012) 2386–2410

Contents lists available at SciVerse ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Simple free star-autonomous categories and full coherence

Dominic J.D. Hughes
Stanford University, United States

a r t i c l e i n f o

Article history:
Received 7 July 2005
Received in revised form 6 February 2012
Available online 21 April 2012
Communicated by G. Rosolini

MSC: 18D10; 18D15; 03F52; 03B47

a b s t r a c t

This paper gives a simple presentation of the free star-autonomous category over a
category, based on Eilenberg–Kelly–MacLane graphs and Trimble rewiring, yielding a full
coherence theorem: the commutativity of diagrams of canonical maps is decidable.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Eilenberg–Kelly–MacLane graphs [10,24] elegantly describe certain morphisms of closed categories. This paper shows
that little more is needed to present the free star-autonomous category [2] generated by a category, for a full coherence
theorem: the commutativity of diagrams of canonical maps is decidable.

Given a set A = {a, b, . . .} of generators, we define the category of A-linkings: objects are star-autonomous shapes
(expressions) over A, such as S =

a ⊗ (b∗

⊗ a∗∗)

∗∗∗

⊗ I∗ (with I the unit), and a morphism S → T is a linking, a
function from negative leaves to positive leaves, e.g.

I

is a morphism from the upper shape to the lower shape. Composition is simply path composition:

A leaf function qualifies as a linking only if it satisfies the standard criterion for multiplicative proof nets1 [9,14], so simple
as to be checkable in linear time [16,18]. Employing Trimble rewiring [33,3], we define two linkings as similar if they differ

E-mail address: dominic@theory.stanford.edu.
1 This paper will not assume any familiarity with proof nets or linear logic.

0022-4049/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2012.03.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82466550?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpaa.2012.03.020
http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:dominic@theory.stanford.edu
http://dx.doi.org/10.1016/j.jpaa.2012.03.020

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2387

by an edge from an I , e.g.

and define an A-net as an A-linking modulo similarity. The category of A-nets is the free star-autonomous category
generated by A. To emphasise the simplicity:

(1) a morphism is a leaf function satisfying a standard criterion (checkable in linear time);
(2) composition is standard path composition;
(3) modulo a standard equivalence (Trimble rewiring).

The key novelty is (2), the fact that composition is simply path composition. This preserves an elegant feature of
Eilenberg–Kelly–MacLane graphs. In contrast, the composition in previous presentations of free star-autonomous categories
[3,25,27] is more complex. (We return to this related work later in the Introduction.)

Abstractly, the underlying path composition can be understood as a forgetful functor from the category of A-linkings
(sketched above) to Int(Setp), the compact closed category obtained by applying the Int or geometry-of-interaction
construction [12,21,1] to the traced monoidal category Setp of sets and partial functions (with coproduct as tensor). This
ties in nicely with Eilenberg–Kelly–MacLane graphs and Kelly–Laplaza graphs [23] for compact closed categories, since each
has a forgetful functor to Int(Setp).

Arbitrary base category. When A is not discrete, we simply label each edge between generators with a morphism of A. For
example, if x : a → b and y : c → c in A, then

is an A-linking. Composition collects labels along a path, and composes2 them in A, e.g.

The category of A-nets (A-linkings modulo Trimble rewiring, as before) is the free star-autonomous category generated by
the category A.

Full coherence. Equivalence modulo rewiring is decidable, by finiteness. Thus we have a full coherence theorem: we can
decide the commutativity of diagrams of canonical maps in star-autonomous categories. Here are two short illustrative
examples.

Example 1 (Identity ≠ Twist on ⊥ = I∗). Let twA⊗B : A ⊗ B → B ⊗ A be the canonical twist (symmetry) isomorphism. The
identity and twist id⊥⊗⊥, tw⊥⊗⊥ : ⊥ ⊗ ⊥ → ⊥ ⊗ ⊥ determine respective linkings i and t:

They differ on two inputs, and there are no other 3 linkings ⊥ ⊗ ⊥ → ⊥ ⊗ ⊥, so i and t cannot be rewired into each other.
Thus, in general, id⊥⊗⊥ ≠ tw⊥⊗⊥ : ⊥ ⊗ ⊥ → ⊥ ⊗ ⊥.

2 Throughout this paper we employ sequential notation f ; g for the composite of f : S → T and g : T → U rather than functional notation gf , since it
is more natural in a diagrammatic, path-following setting.
3 The other two functions from negative leaves to positive leaves fail the proof net criterion.

2388 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

Example 2 (Triple-dual Problem). We show that the following diagram commutes (a triple-dual problem [24, Section 1,
diagram (1.4)])

(1)

where A (B = (A⊗B∗)∗ and kA : A → (A(⊥) (⊥ is the canonical map of its type. Each path in the triangle determines
a corresponding linking

equivalent via three rewirings:

Thus we conclude that triangle (1) commutes in every star-autonomous category.4

Related work. This paper follows an approach which can be traced back to Todd Trimble’s Ph.D. thesis [33].5 We call this the
rewiring approach:

(a) represent a morphism by a structure involving attachments (‘wiring’) of negative units6;
(b) quotient by rewiring: identify correct structures which differ by just one such attachment.

This is the fourth paper to use the rewiring approach to construct free star-autonomous categories. The chronological
sequence is detailed below, and is summarised in Table 1.

In [3] structures are circuit diagrams (in tensor calculus style [19]), attachments are (dotted) edges from negative units,
called thinning links, correctness is the standardmultiplicative proof net criterion,7 and rewiring between correct structures
is expressed in rules of surgery on circuits, which (by the empire rewiring Proposition 3.3 of [3]) permit an arbitrary
re-targeting of a thinning link between correct circuits.8 Equivalence classes yield the free linearly distributive category and
free star-autonomous category (linearly distributive category with negation) generated by a polygraph (e.g., by a category),
for full coherence.

In [25] structures areλµ-style terms [31]with explicit substitution {−/−}, for example (λβA(⊥.⟨β⟩zA){µαA(⊥.⟨γ ⟩α/z},
attachments are unit let constructs ⟨x/∗⟩(−), correctness is inductive (typability, i.e., sequentialisability) and rewiring is by
an instance of the π-congruence rule, Γ ⊢ C[⟨x/∗⟩t] ∼ ⟨x/∗⟩C[t] : A. Equivalence (congruence) classes yield an internal
language for autonomous and star-autonomous categories, for full coherence.

In [27] the structure is a syntactic9 proof net, a formula of multiplicative linear logic equipped with a leaf permutation,
e.g. ⊥1⊗((α2⊗a∗

4)M(⊥3⊗ I5)) ◃ ⊥M a, (⊥⊗a∗)M I is a structure representing a morphism I ⊗ a∗
→ (⊥ ⊗ a∗)M I , the

formula constructor (−) ⊗ ⊥ attaches negative units, correctness is again the standard multiplicative proof net criterion,
and rewiring is by the invertible linear distributivity rewrite Q M(R⊗⊥) ↔ (Q M R)⊗⊥. Equivalence classes yield the free
star-autonomous category with strict double involution10 generated by a set, for full coherence.

4 Compare with similar arguments in [3, Section 4.2], [25, Section 2] and [30, Section 10]. A key advantage here is that, because of the simple path
composition, the composite ka (id ; k(a(⊥) is immediate on inspection.
5 Copies of Trimble’s thesis [33] are not particularly easy to come by. See [3, Section 1, Section 3.2] and [7, Section 3] for overviews of some of the content.
6 For history and development of the attachment of negative units in linear logic, see [8,32,15,13,14].
7 Sequentialisability/contractibility [8] is used to deal with the planar case; see Section 2.7 of [3].
8 Decomposing rewiring into shorter steps aided the freeness proofs in [3].
9 Axiom links a⊗ a⊥ and attachments of negative units (−)⊗⊥ are syntactic, enveloped in a formula sharing the leaves of the sequent. In conventional

proof nets [14], axiom links and unit attachments (⊥-jumps) are edges.
10 The canonical map A∗∗

→ A is the identity. Up to equivalence this is a free star-autonomous category, in a strict sense [6].

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2389

Table 1
This paper is the fourth to construct free star-autonomous categories using the ‘rewiring approach’, which can be traced back to Trimble’s thesis [33]: (a)
represent a morphism by a structure involving attachments (‘wiring’) of negative units, (b) quotient by rewiring, that is, identify correct structures which
differ by just one such attachment. In each case a morphism of the free category is a finite equivalence class, hence equality of morphisms is decidable.

Structure Attachment of
negative unit

Correctness/allowability Rewiring of attachments,
between correct structures

Problem with compo-
sition/normalisation

[3] Circuit diagram (proof
net in tensor calculus
style)

Thinning link
(dotted edge)

Standard proof net
criterion (sequentialis-
ability/contractibility for
planar case)

Surgery rules/re-target
thinning link (by [3,
Prop. 3.3])

Attachments can block
cut redexes

[25] λµ-style term, e.g.
(λβA(⊥ .⟨β⟩zA)
{µαA(⊥ .⟨γ ⟩α/z}

Unit let term con-
structor ⟨x/∗⟩(−)

Typability (i.e., sequen-
tialisability)

π-congruence rule, Γ ⊢

C[⟨x/∗⟩t]∼ ⟨x/∗⟩C[t] : A
Normalisation con-
fluent only modulo
rewiring/congruence

[27] MLL formula sharing
sequent leaves, with
permutation, e.g. ⊥1⊗

((α2 ⊗ a∗

4)M(⊥3 ⊗ I5))
◃ ⊥M a, (⊥⊗a∗)M I

Formula construc-
tor (−) ⊗ ⊥

Standard proof net crite-
rion

Formula rewrite
Q M(R⊗⊥) ↔ (Q M R)⊗⊥

Attachments can block
cut redexes

This paper Leaf function Edge from I Standard proof net crite-
rion

Re-target edge from I

At first sight, it may seem repetitive and uninteresting to employ the rewiring approach for star-autonomous categories
a fourth time. However, the simplicity of the end product relative to the previous approaches seems to justify the repetition.
As we remarked earlier, we preserve an elegant feature of Eilenberg–Kelly–MacLane graphs:

• Composition is simply path composition.

Composition is more complex in the three previous approaches to free star-autonomous categories [3,25,27]. In each case,
given normal forms s and t representing equivalence classes, one first forms a ‘concatenation’ s; t (in [3], pasting the circuits
at a cut wire, in [25] forming an explicit substitution, and in [27] forming a proof net with cuts), then normalises s; t in a
rewrite system. In [3,27] normalisation is defined only modulo equivalence, since unit attachments (thinning links in [3]
and (−) ⊗ ⊥ in [27]) can block cut redexes,11 and in [25] confluence is only modulo equivalence (congruence). In contrast,
path composition, as in this paper and Eilenberg–Kelly–MacLane graphs, is simple and direct.

This paper is the sequel to [18]12 onmultiplicative proof nets with units, which relate closely toA-linkings, forA discrete.
For comprehensive background and history on free star-autonomous categories and coherence, see the introductions of
[3,25,27].

Potential future work. Perhaps the most direct redeployment of Trimble rewiring is [30], since it is for SMCCs (symmetric
monoidal closed categories), the original case treated in [33].13 Hybridising the present paper on star-autonomous categories
with the extension of Lamarche’s essential nets [26] in [30] might yield a simple presentation of free SMCCs: objects are
shapes generated by ⊗, (and I (e.g. (a ⊗ I) (⊥), a morphism is a leaf function satisfying Lamarche’s criterion, modulo
Trimble rewiring, and composition is simply path composition.

Path compositionwould constitute a direct composition of generating functions, bypassing the complexities of strategies
(O-orientation, shortsightedness, non-determinism, conditional exhaustion, etc.) for a more economical description of the
free SMCC. Furthermore, the approachwould extend immediately to the free SMCC generated by an arbitrary categoryA, not
just a set A (as in [30]), by labelling edges with morphisms of A (as in the present paper for star-autonomous categories). In
summary, this path composition approachwould abstract away from the intricacies of the strategies, extracting the essence:
a geometry of interaction of generating functions in Int(Setp).

2. Split star-autonomous categories

The category of A-linkings (sketched above, and defined in the next section) is almost, but not quite, star-autonomous.
It becomes star-autonomous upon quotienting by Trimble rewiring. Below we axiomatise its raw structure, prior to

11 A problem also discussed by Girard, in the context of proof nets [14, Section A.2].
12 It was tempting to merge the two papers. However, some proof theorists and linear logicians may not be interested in star-autonomous categories
and the emphasis on coherence over correctness criteria (combinatorial characterisations of allowability, in the parlance of [24]), and conversely, some
categorists may not be interested in linear logic and its sequent calculus, and the emphasis on correctness criteria over coherence. The present paper
targets categorists, and assumes no familiarity with linear logic.
13 The definition of ∼ in Section 9 of [30] is precisely Trimble rewiring: two (correct) structures (strategies/linkages/ generating functions) are identified
if they differ by the attachment of just one negative unit (there called a jokermove). Syntactically (see the discussion before Proposition 45 of [30]), Trimble
rewiring here corresponds to that in [25]: π-congruence with the unit let construct, Γ ⊢ C[⟨x/∗⟩t] ∼ ⟨x/∗⟩C[t] : A.

2390 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

quotienting, as a split star-autonomous category, defined by relaxing the unit isomorphisms A → I ⊗ A and A → A ⊗ I
of a star-autonomous category to be split monomorphisms (sections).

A star-autonomous category [2] is a category C equipped with the following structure:

(1) Tensor. A functor − ⊗ − : C × C → C.
(2) Associativity. A natural isomorphism αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), natural in objects A, B, C ∈ C, such that the

following pentagon commutes:

(3) Unit. An object I ∈ C.
(4) Unit isomorphisms. Natural isomorphisms14

λA : A → I ⊗ A
ρA : A → A ⊗ I

natural in the object A ∈ C, such that the following triangle commutes:

(5) Symmetry. A natural isomorphism σA,B : A ⊗ B → B ⊗ A, natural in objects A, B ∈ C, such that the following diagrams
commute:

(6) Involution. A full and faithful functor (−)∗ : Cop
→ C.

(7) Closure. A natural isomorphism C(A ⊗ B, C∗) → C(A, (B ⊗ C)∗), natural in objects A, B, C ∈ C.

Axioms (1)–(4) define a monoidal category and (1)–(5) define a symmetric monoidal category [28].15 The above is not the
original definition of star-autonomous category, but (modulo our slightly different presentation of symmetric monoidal
category) is equivalent [2].

Define a split star-autonomous category by relaxing (4): demand only that the natural transformations λA : A → I ⊗ A
andρA : A → A⊗I be splitmonomorphisms (sections), rather than isomorphisms. Thuswe require for eachA the existence16
of retractions λA : I ⊗ A → A and ρA : A ⊗ I → A such that λA; λA = idA and ρA; ρA = idA.

(required)

We drop the requirement that λA; λA = idI⊗A and ρA; ρA = idA⊗I .

14 Conventionally the unit isomorphisms are typed A ⊗ I → A and I ⊗ A → A [28]. We reverse them to ease the definition of split star-autonomous
category below.
15 In [28] Mac Lane demands ρI = λI for a monoidal category and λA; σI,A = ρA for a symmetric monoidal category, which are superfluous [22,20].
16 An anonymous referee noted that if we include a specific choice of retractions for each A in the definition of split star-autonomous category, the
definition becomes monadic over the category of categories.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2391

(dropped)

Although A-linkings have yet to be defined formally, the following example should nonetheless help to motivate the
definition.

The category of A-linkings is split star-autonomous, but not star-autonomous.17 It becomes star-autonomous upon
quotienting by Trimble rewiring.

3. Linkings

This section presents the split star-autonomous category LA of A-linkings over a category A. Each linking is two-sided,
being amorphism S → T between two star-autonomous shapes S and T , analogous to the original Eilenberg–Kelly–MacLane
graphs [10,24]. Section 5 introduces one-sided linkings, more analogous to the graphs in [23] for compact closed categories.
Auxiliary one-sided linkings will facilitate later proofs.

3.1. The category L of partial leaf functions between signed sets

Define the category L as follows. An object is a signed set X , whose elements we shall call leaves, each signed either
positive or negative. (Thus a signed set is a set X equipped with a function X → {+, −}.) A morphism X → Y is a partial
leaf function: a partial function from X+

+Y− to X−
+Y+, where+ is disjoint union and (−)+ (resp. (−)−) is the operation

which restricts a signed set to its positive (resp. negative) leaves. For example,

is a (total) morphism from the upper signed set, 4 positive • and 2 negative ◦ leaves, to the lower one, 2 positive and 3
negative leaves. Composition is simply finite (directed) path composition:

Formally, given partial leaf functions f : X → Y and g : Y → Z define f ; g : X → Z by (f ; g)(l) = l′ iff there is a
finite directed path from l to l′ in the union of f and g , viewed as a directed graph on X + Y + Z . The following proposition
guarantees that f ; g is well-defined (single-valued).

Proposition 1 (Unique Path Property). If f ; g is a composite partial leaf function containing the edge ⟨l, l′⟩ (i.e., (f ; g)(l) = l′),
then a unique path ll0 . . . lnl′ gave rise to ⟨l, l′⟩ during composition.

Proof. Suppose ll′0 . . . l′ml
′ were an alternative path. Let i be minimal with li ≠ l′i . Then f (li−1) = li and f (li−1) = l′i , or

g(li−1) = li and g(li−1) = l′i , contradicting (partial) functionality. �

17 The category of A-linkings is also semi star-autonomous in the sense of [17].

2392 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

The categoryL is Int(Setp), the result of applying the feedback construction Int [21] (or geometry of interaction construction
[1,12]) to the tracedmonoidal categorySetp of sets and partial functions,with tensor as coproduct. ThusL is compact closed,
with tensor as disjoint union and the dual of a signed set obtained by reversing signs. The subcategory of L whose objects
are finite and morphisms are bijections is the category of involutions defined in [23, Section 3], a modified presentation of
the fixed-point free involutions of [10,24].

3.2. The category LA of A-linkings over a set A

Fix a set A = {a, b, c, . . .} of generators. An atom is any generator in A or the constant I . An A-shape is an expression
generated from atoms by binary tensor⊗ and unary dual (−)∗, e.g.

a⊗(b∗

⊗a∗∗)

∗∗∗

⊗ I∗. The sign of an atom or tensor in a
shape is positive+ iff it is under an even number of duals (−)∗, otherwisenegative−. Here is a shapewith signs subscripted:
I
−

∗∗
⊗
−

(a
+

∗∗∗
⊗
−

(I
+

⊗
+

b
+
)∗)

∗

. Write |S| for the underlying signed set of a shape S, obtained from its leaves, i.e., its occurrences of
atoms. A leaf function X → Y between signed sets is a partial leaf function X → Y which is total (i.e., defined on the whole
of X+

+ Y−). A leaf function f : S → T between shapes is a leaf function f : |S| → |T | between the underlying signed sets.
The graph of f is the disjoint union of the underlying parse trees of S and T (trees labelled with atoms at the leaves and ⊗

or ∗ at internal vertices) together with the edges of f , undirected. For example, if f : S → T is

then the graph of f is shown below-left:

A switching of a leaf function f : S → T between shapes is any subgraph of the graph of f obtained by deleting one of the
two argument edges of each positive tensor in S and negative tensor in T . See above-right for an example. A leaf function
f : S → T is an A-linking if it satisfies:

(1) Matching. Restricting f to a-labelled leaves (both in S and in T) yields a bijection for each generator a ∈ A
(2) Switching. Every switching of f is a tree.

The leaf function above-left is anA-linking: its switching shown above-right is a tree, as are its seven other switchings. Other
examples of A-linkings are depicted in the Introduction.

The linking criterion (conditions (1) and (2)) is the analogue of allowability in [10,24], presented combinatorially rather
than inductively/syntactically. It is traditional in linear logic [11] to present allowability combinatorially. The criterion above
derives from a standard one for multiplicative proof nets [9,18].

Proposition 2. Verifying that a leaf function is a linking is linear time in the number of leaves.

Thus the linking criterion (allowability) is very simple. This proposition is proved in Section 5.3, using one-sided linkings.
Given linkings f : S → T and g : T → U define f ; g : S → U as their path composite (in the category L of partial leaf

functions between signed sets, defined in Section 3.1).

Proposition 3. The composite of two linkings is a linking.

The proof is in Section 5.3, using one-sided linkings.
Write LA for the category of A-linkings between A-shapes. Identities are inherited from L: the identity S → S has an

edge between the ith leaf in the input shape and the ith leaf in the output shape. The identity is a well-defined linking (i.e.,
every switching is a tree) by a simple induction on the number of tensors in S.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2393

Compatibility. Given leaf functions f : X → Y and g : Y → Z between signed sets, write f + g for the disjoint union of f
and g , viewed as a simple directed graph on X + Y + Z .18 The following theorem will not be used in the sequel; we present
it since it is the analogue of Theorem 2.1 in [24].

Theorem 1 (Compatibility). If f : S → T and g : T → U are linkings between shapes, then f + g contains no cycle.

By a cycle we mean an undirected graph [5] on a vertex set {v1, . . . , vn}, all vi distinct, n ≥ 3, and with an edge vivj iff
j = i + 1 mod n. The proof of the Compatibility Theorem is in Section 5.3, using one-sided linkings.

3.3. LA is split star-autonomous

The category LA of A-linkings is split star-autonomous, as defined in Section 2.
Tensor and dual act symbolically on objects, i.e., the tensor of shapes S and T is the shape S ⊗ T , and the dual of S is S∗.

Tensor acts as disjoint union on morphisms, hence is functorial. Given linkings f : S → T and f ′
: S ′

→ T ′, the leaf function
f ⊗ f ′

: S ⊗ S ′
→ T ⊗ T ′ is a well-defined linking since every switching of f ⊗ f ′ is a disjoint union of switchings of f and f ′,

connected at the tensor of T ⊗T ′, together with one of the two argument edges of the tensor of S⊗S ′. The dual f ∗
: T ∗

→ S∗

of a linking f : S → T has the same underlying directed graph as f , hence (−)∗ is functorial, full and faithful.
Associativity and symmetry are the obvious bijective leaf functions (exactly the associativity and symmetry involutions

of [24, Section 3]): associativity (S ⊗ T) ⊗ U → S ⊗ (T ⊗ U) has edges between the ith leaf of the input and the ith leaf of
the output, and symmetry S ⊗ T → T ⊗ S has edges between the ith leaf of S in S ⊗ T and the ith leaf of S in T ⊗ S, and
similarly for T . Both are well-defined linkings by a simple induction (analogous to the well-definedness of the identity).

The natural isomorphism LA(S ⊗ T ,U∗) ∼= LA(S, (T ⊗ U)∗) is the restriction of the corresponding natural isomorphism
L(|S|+ |T |, |U|

∗) ∼= L(|S|, (|Y |+ |Z |)∗) in the underlying compact closed category L of leaf functions between signed sets.
This restriction is well-defined since switchings S ⊗ T → U∗ and S → (T ⊗ U)∗ are in bijection.

Define λS : S → I ⊗ S as the identity S → S together with I ⊗ (−) added to the syntax of the output shape, and
define ρS : S → S ⊗ I similarly. Since the added I and ⊗ are positive, the switchings of λS and ρS are in bijection with
those of the identity, hence λS and ρS are well-defined linkings. The requisite triangle commutes since the edge between
the distinguished I ’s in associativity α : (S⊗ I)⊗T → S⊗ (I ⊗T) does not connect to an edge of ρ ⊗ id during composition.
Naturality of λS and ρS holds because there is no edge to the added I .

Define the retraction λS : I ⊗ S → S from the identity S → S by adding I ⊗ (−) to the input shape together with an
edge from the added I to an arbitrary positive leaf of the S on the right of the arrow I ⊗ S → S or a negative leaf of the S
on the left of the arrow. This is a well-defined linking since every switching is a switching of the identity S → S together
with two new edges and two new vertices, arranged so that the graph remains a tree, irrespective of whether the added
tensor is switched left or right. We have λS; λS = idS since the edge of λS from the added I meets no edge of λS during the
composition λS; λS . The retraction ρS : S ⊗ I → S analogous.19

3.4. The category LA of A-linkings over an arbitrary base category A

This section generalises A-linkings from discrete A to an arbitrary category A. Shapes are generated from the objects
of A as before. A leaf function S → T between shapes is a partial leaf function |S| → |T | between the underlying signed
sets which is total, equipped with a labelling: every edge from a leaf labelled by a generator (object of A) is labelled with a
morphism of A. A leaf function f : S → T is an A-linking if it satisfies:

(1a) Bijection. Restricting f to A-labelled leaves (both in S and in T) yields a bijection.
(1b) Labelling. If x is the label of an edge from a leaf labelled a to a leaf labelled b, then x : a → b is a morphism in A.
(2) Switching. Every switching of f is a tree.

(In forming the switchings of f , ignore edge labels.) Conditions (1a) and (1b) reduced to (1) Matching (in Section 5) in the
discrete case (since all labels are identities).

For example, if x : a → b and y : c → c in A, then

is a linking from the upper to the lower shape.

18 A simple directed graph on a set V (cf. [5]) is a set of edges on V , where an edge on V is an ordered pair vw of distinct elements of V .
19 Note that one cannot choose natural retractions: there are two candidates for λa⊗a , and in either case, naturality λ; σ = (id ⊗ σ); λ fails for the
symmetry map σ : a ⊗ a → a ⊗ a.

2394 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

Composition is path composition, as in the discrete case, but simultaneously collecting labels along each path and
composing them in A. More precisely, if l1 . . . ln is a path traversed during (underlying discrete) composition, resulting in
the edge ⟨l0, ln⟩ in the (underlying discrete) composite, then:

• if every edge ⟨li−1, li⟩ is labelled with a morphism xi in A, the composite edge ⟨l0, ln⟩ is labelled by the composite xn . . . x1
in A,

• otherwise ⟨l0, ln⟩ is unlabelled.

Thus an edge in the composite is labelled iff every edge along the path giving rise to it is labelled. Here is an example of
composition:

By the Unique Path Property (Proposition 1), composition is well-defined: there is no ambiguity in constructing the labels
on the edges of a composite. Composition is associative since concatenation of paths is associative, and composition in A is
associative. The identity linking has all labels identities in A.

Split star-autonomy. The split star-autonomous structure carries over from the discrete case. Labels on linking edges do not
interfere: every label of a canonical map (associativity, symmetry or unit map) is an identity.

4. Nets

This section quotients the category LA of A-linkings by Trimble rewiring [33,3], yielding the free star-autonomous
category generated by A. Define two A-linkings as similar if one can be obtained from the other by re-targeting an edge
from an I , e.g.

in the discrete case, or, if x : a → b and y : c → c are morphisms in A,

An A-net is an equivalence class of A-linkings modulo similarity (i.e., modulo the equivalence relation generated by
similarity).

Theorem 2 (Net Compositionality). Composition of A-linkings respects equivalence.

In other words, if f , f ′
: S → T and g, g ′

: T → U are linkings with f equivalent to f ′ and g equivalent to g ′, then the
composite linkings f ; g and f ′

; g ′
: S → U are equivalent. This theorem is proved in Section 6 via one-sided nets. By the

theorem, composition of A-nets is well-defined: given proof nets [f] : S → T , and [g] : T → U , where [h] denotes
the equivalence class of a linking h, define [f]; [g] = [f ; g] : S → U . Write NA for the category of A-nets. Typically we
abbreviate a net [f] to f , when it is clear from context that we are dealing with a net rather than a linking.

Star autonomy. The split star-autonomous structure of the category LA of A-linkings respects equivalence, yielding a star-
autonomous structure on NA.

On morphisms, tensor in LA is disjoint union, hence respects similarity in each argument, i.e., if linkings f and f ′ are
similar, then f ⊗ g and f ′

⊗ g are similar, as are g ⊗ f and g ⊗ f ′. Duality on LA respects similarity (if f and f ′ are similar
then f ∗ and f ′∗ are similar) since it acts trivially on the graph of a morphism (so re-targeting an edge from an I amounts to
the same thing before and after dualising). Similarly, the natural isomorphism LA(S ⊗ T ,U∗) ∼= LA(S, (T ⊗ U)∗) respects
similarity, since a linking S ⊗ T → U∗ has the same underlying directed graph as its transpose S → (T ⊗ U)∗.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2395

The split monomorphisms λS : S → I ⊗ S and ρS : S → S ⊗ I in LA become isomorphisms upon quotienting. The
composite

I ⊗ S
λ̄S

−→ S
λS

−→ I ⊗ S

in LA differs from the identity I ⊗ S → I ⊗ S by just one edge, the edge from the distinguished I on the left of the arrow,
hence is similar to the identity. Thus λS; λS = idS in NA. Similarly, ρS; ρS = idS in NA.

The associativity, symmetry and unit coherence diagrams commute in LA, hence also in NA.

4.1. Free star-autonomous category and full coherence

Theorem 3 (Freeness). For any category A, the category NA of A-nets is the free star-autonomous category generated by A.
The proof is the subject of Section 7. By finiteness of equivalence classes, we have:
Theorem 4 (Full Coherence). Equality of morphisms in the free star-autonomous category generated by a category is decidable.
This theorem was first proved using the rewiring approach in [3] (in a more general form, over a polygraph with equations,
and with star-autonomous category axiomatised as a symmetric linearly distributive category with negation).

Two examples were given in the Introduction (p. 2). Three more are provided below.
Example 3 (Identity = twist on I.). Example 1 (p. 2) proved id⊥⊗⊥ ≠ tw⊥⊗⊥ : ⊥ ⊗ ⊥ → ⊥ ⊗ ⊥. The following pair of
rewirings shows idI⊗I = twI⊗I : I ⊗ I → I ⊗ I .

Compare this with [3, end of Section 3.1], which proves the dual result: id⊥

&

⊥ = tw⊥

&

⊥.
Example 4 (Triple-dual Problem). We show that the following diagram commutes (like Example 2, an instance of the triple-
dual problem: see [24, Section 1, diagram (1.4)])

(2)
where A (B = (A⊗ B∗)∗ and kA : A → (A(A) (A is the canonical map of its type. Each path in the triangle determines
a corresponding linking

equivalent via five rewirings:

2396 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

Weconclude that triangle (2) commutes in every star-autonomous category. Compare thiswith [3, Fig. 3]. Aswith Example 2,
a key advantage here is that the composite kI (id; k(I(I) is immediate on inspection, sincewehave simple path composition.

Example 5 (More Path Composition). The following example illustrates a larger path composition. Let A

&

B = (A∗
⊗ B∗)∗

and ⊥ = I∗. The path composition of linkings

shows that the following diagram commutes in every star-autonomous category, where each map is canonical at its type:

This example is, of course, rather contrived. (What other canonical map a⊗ b → a⊗ b could there be?) The point is to give
an example of path composition in a large diagram.

5. One-sided linkings

Eilenberg–Kelly–MacLane graphs [10,24] are two-sided in the sense that they are between a source and a target. Taking
advantage of duality, Kelly–Laplaza graphs [23] for compact closed categories are one-sided: the authors define a (fixed-point
free) involution on a single signed set, hence on a single shape.20 They then define a two-sided involution, i.e., a morphism
S → T , as a (one-sided) involution on S∗

⊗ T .
Since star-autonomous categories are more general than compact closed categories, to obtain a directly analogous one-

sided representation one would define a two-sided linking S → T as a one-sided linking on the shape (S ⊗ T ∗)∗. However,
to avoid the extra baggage of two auxiliary duals (−)∗ and a tensor⊗, we shall instead define one-sided linkings on sequents
S1, . . . , Sn of shapes Si, and define a two-sided linking S → T as a one-sided linking on the two-shape sequent S∗, T . Using

20 We refer to words built freely from generators and the constant I by binary ⊗ and unary (−)∗ as shapes, following the Eilenberg–Kelly–MacLane
terminology for similar freely generated expressions. These shapes are exactly the words defined in [23, Section 3], objects of the free compact closed
category.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2397

the sequent calculus style, we can also define explicit cuts between shapes, facilitating an inductive proof that two-sided
linkings compose, i.e., that the path composite of two (two-sided) linkings is a well-defined (two-sided) linking.

Thematerial here on one-sided linkings amounts to themultiplicative proof netswith units in [18], with explicit negation
(−)∗, and with axiom links between dual occurrences of generators in A generalised to morphisms of A. However, we shall
not require any familiarity on the part of the reader with proof nets or linear logic [11].

Sequents. The following definitions are a mild generalisation of those in Section 2 of [18].
Fix a set A = {a, b, . . .} of generators. Henceforth identify a shape (generated from A) with its parse tree, a tree labelled

with atoms (generators or the constant I) at the leaves, and ⊗ and ∗ at internal vertices. (Examples of parse trees were
shown in Section 3.2, in the example of a switching.) A sequent is a non-empty disjoint union of shapes. Thus a sequent
is a particular kind of labelled forest. We take S, T , . . . to range over shapes, and Γ, ∆, . . . to range over (possibly empty)
disjoint unions of shapes. A cut pair S S∗ is a disjoint union of a shape S with its dual S∗ together with an undirected edge,
a cut , between the root of S and the root of S∗, e.g.

for S = a ⊗ (b ⊗ I). A cut sequent is a disjoint union of a sequent and zero or more cut pairs. A switching of a cut sequent
is any subgraph obtained by deleting one of the two argument edges of each negative ⊗ (cf. Section 3.2). We use comma to
denote disjoint union, i.e. S1, . . . , Sn is the disjoint union of the shapes Si.

Linkings. We begin with the discrete case, A a set of generators. For the more general case of A an arbitrary category, see
Section 5.2 below.

A leaf function on a cut sequent is a function from its negative leaves to its positive leaves. An A-linking on a cut sequent
Γ is a leaf function f on Γ satisfying:

(1) Matching. For any generator a ∈ A, the restriction of f to a-labelled leaves is a bijection between the negative a-labelled
leaves of Γ and the positive a-labelled leaves of Γ .

(2) Switching. For any switching Γ ′ of Γ , the undirected graph obtained by adding the edges of f to Γ ′ is a tree.

Thus two-sided linkings S → T between shapes, as defined in Section 3, are in bijection with one-sided linkings on the
two-shape sequent S∗, T .

5.1. Cut elimination

Let f be a linking on the cut sequent Γ , S S∗. The result f ′ of eliminating the cut in S S∗ is:

• Atom. Suppose S is an atom α (a generator a ∈ A or the constant I). Thus (in parse tree terms) the cut pair S S∗ comprises
leaves l+, l− labelled α, a vertex v labelled ∗, an argument edge from v to l−, and a cut edge between v and l+. Delete the
cut pair (i.e., the vertices l+, l−, v and associated edges), and reset every f -edge to l+ to target f (l−) instead, i.e., for all
negative leaves n of the sequent such that f (n) = l+, set f (n) = f (l−). Schematically,

where the vertices ◦ represent all instances of n and • is f (l−). (The left-most α in the picture is the leaf l+, the right-most
α is the leaf l−, and the ∗ is the vertex v.)

2398 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

• Tensor. Suppose S = T ⊗ U . Replace S S∗ by T T ∗,U U∗. The leaves, and f , remain unchanged (identifying the leaves of T
in T ⊗ U with T in T T ∗, etc.). Schematically:

• Dual. Suppose S = T ∗. Replace the cut pair T ∗ T ∗∗ by T ∗ T . The leaves, and f , remain unchanged. Schematically,

Theorem 5. Cut elimination is well-defined: eliminating a cut from a linking on a cut sequent yields a linking on a cut sequent.

Proof. The atomic and dual cases are trivial, since switchings correspond before and after the elimination. The tensor case is
a simple combinatorial argument: any cycle in a switching after elimination induces a cycle in a switching before elimination.
(This is a standard combinatorial argument for tensor elimination in multiplicative proof nets in linear logic. See [11,9,14]
for details (cf. [18], Theorem 2)). �

Proposition 4. Cut elimination is locally confluent.

Proof. The only non-trivial case is a pair of atomic eliminations. This case is clear from the following schematic involving
two interacting atomic cut redexes α α∗ and β β∗.

(This is adapted from the proof of Proposition 1 of [18].) �

Theorem 6. Cut elimination is strongly normalising.

Proof. It is locally confluent, and eliminating a cut reduces the number of vertices of the cut sequent. �

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2399

Turbo cut elimination. Analogous to [18], normalisation can be completed in a single step. For l the ith leaf of a shape S in
a cut pair S S∗, let l∗ denote the ith leaf of S∗. The normal form of a cut sequent Γ is the sequent Γ obtained by deleting
all cut pairs. Given a linking f on Γ , its normal form f is the linking on Γ obtained by replacing every set of directed edges
⟨l0, l1⟩, ⟨l∗1, l2⟩, ⟨l

∗

2, l3⟩, . . . , ⟨l
∗

n−1, ln⟩ in f in which only l0 and ln occur in Γ by the single directed edge ⟨l0, ln⟩. By a simple
induction on the number of vertices in cut sequents, f is precisely the normal form of f under one-step cut elimination.
(In particular, this implies the turbo normal form f is indeed a linking, i.e., turbo cut elimination is well defined on linkings.)

5.2. Arbitrary base category

So far we have only presented one-sided linkings over a set A of generators. When A is a category, as in the two-sided
casewe add labels to every edge from a generator (object of A), and define an A-linking on a cut sequentΓ as a leaf function
f on Γ satisfying:

(1a) Bijection. Restricting f to generator-labelled leaves of Γ yields a bijection.
(1b) Labelling. If x is the label of an edge from a leaf labelled a to a leaf labelled b, then x : a → b is a morphism in A.
(2) Switching. For any switching Γ ′ of Γ , the undirected graph obtained by adding the edges of f to Γ ′ is a tree.

For example, if x : a → b and y : c → c are morphisms in A, then

is a (one-sided) A-linking on the three-shape sequent (a ⊗ c∗)∗, c∗
⊗ b, I∗. As in the two-sided case, conditions (1a) and

(1b) reduce to (1)Matching (in Section 5) in the discrete case, since every label is an identity.
Atomic cut elimination (in Section 5.1) incorporates labels as follows: when re-setting an f -edge n → l+ to target f (l−)

instead, let the A-morphism x be the label of the edge n → l+ (if any) and let the A-morphism y be the label of the edge
l− → f (l−) (if any); if both x and y are present, label the output edge n → f (l−) by the composite y; x in A, otherwise
leave n → f (l−) unlabelled. Correspondingly, we adjust the definition of turbo cut elimination: the output edge ⟨l0, ln⟩ is
labelled by the composite A-morphism x1; . . . ; xn iff every ⟨li−1, li⟩ is labelled by an A-morphism xi (cf. path composition of
two-sided linkings defined in Section 3.4).

The properties of cut elimination (Theorem 5, Proposition 4 and Theorem 6) are unaffected by the presence of labels.

5.3. From one-sided linkings to two-sided linkings

By design, two-sided linkings S → T between shapes, as defined in Section 3, are in bijection with one-sided linkings on
the two-shape sequent S∗, T . Via this correspondence, we can take care of the proof obligations remaining from Section 3.

Proof of Proposition 2 (Linear Time Verification of the Linking Criterion). Every star-autonomous shape S induces a formulaS of multiplicative linear logic: replace negative tensors in S by parsM, replace negative generators a by a⊥, replace negative
I ’s by ⊥, and delete all duals (−)∗. For example,

(1 ⊗ a∗)∗ ⊗ 1

∗ becomes (1 ⊗ a⊥)M⊥. Thus every shape sequent
Γ = S1, . . . , Sn induces a formula sequent Γ , namely S1, . . . , Sn. The formulaS has the same leaf vertices as the original
shape S, and switchings ofS are in bijection with switchings of S. Thus a leaf function on a shape sequent Γ is a linking
iff it constitutes a multiplicative proof net on the formula sequent Γ , in the sense of [18]. Via the translation Γ → Γ ,
Proposition 2 becomes a corollary of Theorem 4 of [18] (which, in turn, is not much more than a corollary of linear time
verification of the proof net criterion for unit-free multiplicative nets [16,29]). �

Given linkings f : S → T and g : T → U , since the definition of turbo cut elimination is precisely path composition, the
composite f ; g : S → U corresponds to the normal form of the one-sided linking f ∪ g , the disjoint union of f and g , on the
cut sequent S∗, T T ∗,U .

Proof of Proposition 3 (Two-sided Linkings Compose). Via the correspondence just described, this is a corollary of
Theorem 5 (and the correspondence between turbo cut elimination of one-sided linkings and normalisation by one-step
cut elimination). �

Proof of Theorem 1 (Compatibility: Cycles do not Arise During Composition). Suppose f : S → T and g : T → U are linkings
such that the disjoint union f + g , a directed graph on |S| + |T | + |U|, contains a cycle. Let f ∪ g be the corresponding one-
sided linking on the cut sequent S∗, T T ∗,U , and let f ∪ g be the result of eliminating all tensor ⊗ and dual (−)∗ cuts from
f ∪ g , a one-sided linking on the cut sequent S, α1α1

∗, . . . , αnαn
∗,U , where αi is the atom labelling the ith leaf of T . Had the

directed graph f + g a cycle C , then f ∪ g would contain a cycle in every switching (the edges of the cycle C alternating with
cut edges between the αi), and therefore fail to be a linking, contradicting Theorem 5. �

See [4] for more on the relationship between compatibility and the multiplicative proof net criterion, in the unit-free case.

2400 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

6. One-sided nets

We define a one-sided net as a one-sided linking modulo Trimble rewiring [33,3].
One-sided A-linkings f and g on a cut sequent Γ are similar if they differ on a negative I , i.e., one can be obtained from

the other by re-targeting one edge from an I . A one-sided A-net on a cut sequent Γ is an equivalence class of A-linkings on
Γ modulo similarity (i.e., modulo the transitive closure of similarity). Similarity here coincides with the earlier two-sided
case: two-sided A-linkings f , g : S → T are similar iff the corresponding one-sided linkings on the two-shape sequent
S∗, T are similar in the sense just defined.

Theorem 7. Cut elimination respects equivalence, i.e., cut elimination is well-defined on A-nets. More precisely: if f and g are
equivalent A-linkings on the cut sequent Γ containing a cut pair S S∗, and the A-linkings f ′ and g ′ result from eliminating S S∗

from f and g, respectively, then f ′ and g ′ are equivalent.

Before proving theorem (below), we illustrate it with an example. (The notation in the example corresponds to the notation
in the proof.) Similar (hence equivalent) linkings f and g are shown top and bottom, with adjacent normal forms f ′ and g ′;
the sequence h0, h1, h2, h3 of pairwise similar linkings witnesses the equivalence of f ′ and g ′.

Proof. If S S∗ is a tensor or dual cut, the result is trivial, since leaves and linkings are untouched by eliminating the cut.
Suppose the cut is atomic. Let l− be the negative leaf of S S∗. If l− is not the leaf l on which f and g differ, then f ′ and g ′ are
similar or equal (hence equivalent, as desired) since they differ on at most l after eliminating the cut. So assume l− = l. Thus
we have the situation

where the leaf vertices l− and l+ are labelled by I , the unlabelled directed edges are present in both f and g , and the edge
labelled f (resp. g) is present in f (resp. g) only. The vertices ◦ schematically represent the negative leaves l1 . . . ln ofΓ whose
edge targets l+ (in both f and g), i.e., such that f (li) = g(li) = l+. Note that, since l+, l− and the li are labelled I , none of
the edges from them (i.e., the directed edges depicted above) is labelled by an A-morphism, so the case of non-discrete A
coincides with the case of A a set.

Let h be the (partial) leaf function obtained from f (or equivalently g) by deleting the edge from l−. Since f and g are
linkings, every switching σ of h is a disjoint union of two trees, with all li in one tree and f (l−) and g(l−) in the other
(otherwise the corresponding switching of one of f or g would contain a cycle, via the edge between l− and f (l−) or g(l−),

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2401

respectively). Let h− be the result of deleting from h all the edges from the li, and for 0 ≤ j ≤ n construct hj from h− by
adding an edge from li to g(l−) for 1 ≤ i ≤ j, and from li to f (l−) for j < i ≤ n, and also an edge from l− to f (l−) (or g(l−); the
choice is arbitrary). Since for any switching of h, the li are in one tree and f (l−) and g(l−) are in the other, hi is a well-defined
linking. Let h′

i be result of eliminating the atomic cut from hi. By design, f ′
= h′

0 and g ′
= h′

n. By Theorem 5, each h′

i is a
linking. Since h′

i and h′

i−1 differ on just one I (namely li), they are similar, so f ′ and g ′ are equivalent, via the h′

i . �

By the correspondence between (turbo) cut elimination of one-sided linkings and path composition of two-sided linkings,
we obtain Theorem 2 (compositionality of two-sided nets).

7. Proof that the category NA of A-nets is free star-autonomous

This section proves the Freeness Theorem (Theorem 3): For any category A, the category NA of A-nets is the free star-
autonomous category generated by A.

7.1. Lax linkings

SupposeA is a set. GivenA-shapes S and T , define a lax leaf function S → T as the relaxation of a leaf function (as defined
in Section 5) obtained by permitting edges from I ’s to target any vertex of S or T (viewed as a parse trees). For example, here
is a lax leaf function from (a∗

⊗ I)⊗ I to (a∗
⊗ I)⊗ (b⊗ b∗)∗, drawn in parse-tree form on the left, and compact in-line form

on the right:

Define the graph of a lax leaf function f : S → T by analogy with the original non-lax case: the undirected graph which is
the disjoint union of the two parse trees S and T , together with the edges of f , undirected. Define a switching as before. A
lax linking is a lax leaf function satisfying the linking criterion, i.e., conditions (1) Matching and (2) Switching in Section
3.2. For example, the lax leaf function depicted below-left is a lax linking, since both its switchings are trees, but the lax leaf
function below-right is not, since the switching in which the upper tensor chooses its right argument has a cycle.

We make the corresponding lax definitions in the one-sided case. Given a cut sequent Γ over A, define a lax leaf function
on Γ as the variant of a leaf function obtained by permitted edges from I ’s to target any vertex of Γ . Switchings again
generalise to lax leaf functions in the obvious way. Define a lax linking on Γ as a lax leaf function on Γ which satisfies
the linking criterion, i.e., conditions (1) Matching and (2) Switching in Section 5 For example, here is a lax linking on the
three-shape sequent (I ⊗ a)∗, a ⊗ I, I∗ :

When A is an arbitrary category, generalise the definitions of lax linking exactly as in the original non-lax case: add
A-morphisms as labels on edges between generators (objects of A), then replace condition (1) Matching by conditions
(1a) Bijection and (1b) Labelling (given in Section 3.4 in the two-sided case, and those given in Section 5.2 in the one-sided
case). Extending the non-lax case, lax linkings S → T correspond to lax linkings on the two-shape sequent S∗, T such that
no edge targets the distinguished (i.e. outermost) ∗-vertex of S∗.

2402 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

7.2. Lax equivalence

Define two lax linkings as similar if they differ by a single edge from an I , and lax equivalent if they are equivalent
modulo similarity on lax linkings (i.e., modulo the reflexive–transitive closure of similarity). To help avoid ambiguity, while
dealing with lax linkings in this section we shall refer to the original non-lax notion of a linking as a standard linking ,
and the original non-lax notion of equivalence between standard linkings as standard equivalence. The following Lemma,
proved in Section 7.2.1, is the key technical step in the proof that the category NA is free.

Lemma 1 (Lax Rewiring). Standard linkings are standard equivalent iff they are lax equivalent.

Thus if the standard linking f can be rewired to the standard linking g along a sequence f = h1 . . . hn = g of lax linkings
with hi similar to hi−1 for 1 < i ≤ n, then f can be rewired to g along a sequence of standard linkings: there exists a sequence
f = k1 . . . km = g of standard linkings with ki similar to ki−1 for 1 < i ≤ n. In other words, adding lax linkings has no impact
on equivalence of standard linkings: no additional standard linkings are identified when we permit ‘lax rewiring’, via lax
linkings.

7.2.1. Proof of the Lax Rewiring Lemma
Since two-sided lax linkings S → T are in bijectionwith certain one-sided lax linkings on the two-formula sequent S∗, T ,

henceforth we shall assume all lax linkings are one-sided.
An atomic linking is a lax linking whose every edge targets an atom. (Note that an atomic linking need not be a standard

linking since an edge from an I may target a negative leaf.) Define atomic linkings f and g as atomic equivalent if they are
lax equivalent via atomic linkings: there exists a sequence f = h1 . . . hn = g of atomic linkings with hi similar to hi−1 for
1 < i ≤ n. The following lemma reduces atomic equivalence to standard equivalence.

Lemma 2. Standard linkings are standard equivalent iff they are atomic equivalent.

Proof. Define the depth of an atomic linking as the number of its edges which target negative leaves. Thus an atomic linking
is a standard linking iff it has depth 0. Define the depth of a sequence of lax linkings f1 . . . fm as the maximum of the depths
of the fi. Suppose f1 . . . fm has depth d. The size of f1 . . . fm is the number of fi of depth d.

Suppose f and g are standard linkings which are atomic equivalent via a sequence f = h1 . . . hn = g of atomic linkings
with hi similar to hi−1 for 1 < i ≤ n. We proceed by a primary induction on the depth of h1 . . . hn, and a secondary induction
on its size.

• Primary induction base: h1 . . . hn has depth 0. Then all hi are standard linkings, so f and g are already standard equivalent.
• Primary induction step: h1 . . . hn has depth d > 0. Let pqr be a three-element subsequence of h1 . . . hn with q of depth d

(i.e., q is of maximum depth in the sequence) and r of depth d − 1. (Such a subsequence exists since hn = g has depth 0,
and consecutive elements in the sequence differ by at most one in depth.)

Let l be the negative leaf such that q(l) is a negative leaf l−, and r(l) is a positive leaf l+, and otherwise q and r are
identical. (The leaf lmust exist, since qhas depth dwhile r has depth d−1.) Let l′ be the negative leaf such that p(l′) ≠ q(l′),
and let l′′ = p(l′). If l ≠ l′ then p, q and r are:

(3)

where l′′′ = q(l′) = r(l′), and if l = l′ then p, q and r are:

(4)

(a) Secondary induction base: h1 . . . hn has size 1. Thus p has depth d − 1. Therefore the rewirings p → q and q → r
each re-target the same negative leaf, i.e., l = l′, as in diagram (4) above, so p and r are similar, without need for q as
an intermediate. Delete q from h1 . . . hn, and appeal to the primary induction hypothesis with this new sequence of
depth d − 1.

(b) Secondary induction step: h1 . . . hn has size s > 1. If p has depth d−1, we can delete q exactly as in the previous case,
reducing the size of h1 . . . hn by 1, and appeal to the secondary induction hypothesis. So assume p has depth d. Let l⋆+
be the leaf at the end of the path in (the directed graph) p which begins at l−. Thus l⋆+ is positive.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2403

(i) Case l− ≠ l′. We have:

(5)

Define p′ as p but for p′(l) = l⋆+ (versus p(l) = l−) and similarly, define q′ as q but for q′(l) = l⋆+ (versus q(l) = l−).
Substitute p′q′ for q:

(6)

Note that p′ has depth d − 1 since p has depth d and l⋆+ is positive whereas l− is negative; similarly, q′ has depth
d − 1.

The lax leaf functions p′ and q′ are lax linkings (i.e., satisfy the linking correctness criterion), since p and q are
lax linkings: the edge from l targets l− in p and q, and l⋆+ in p′ and q′; since l and l⋆+ are connected along the edges
of the lax leaf function, a switching of p (resp. q) is a tree iff the corresponding switching of p′ (resp. q′) is a tree.

By construction, the pairs p ↔ p′, p′
↔ q′ and q′

↔ r are similar. Thus we can appeal to the inductive
hypothesis with the original sequence h1 . . . hn with p′q′ substituted for q, which has strictly smaller size than the
original (since p′ and q′ each have depth d − 1, whereas q has depth d).

(ii) Case: l− = l′. We have:

(7)

(Note that l′′ = l⋆+ is possible.) Define p′ as p but for p′(l) = l⋆+ (versus p(l) = l−) and define r ′ as r but for
r ′(l) = l⋆+ (versus r(l) = l+):

(8)

Note that p′ has depth d − 1 since p has depth d and l⋆+ is positive whereas l− is negative, and that r ′ has depth
d − 1 since r has depth d − 1 and both l⋆+ and l+ are positive.

The lax leaf function p′ is a lax linking (i.e., satisfies the linking correctness criterion), since the targets l− and
l⋆+ of the edge from l, in p and p′ respectively, are connected along the edges of the lax leaf function.

Claim: r ′ is a lax linking. Proof. Let e be the edge of r ′ from l to l⋆+, and let e′ be the edge of r ′ from l− to l′′′.

(9)

Suppose C is a cycle in a switching σ of r ′. The cycle C must traverse both e and e′, for if it did not traverse e′ it
would be contained in the corresponding switching of p′ (already proved to be a lax linking, and differing from r ′

only on l−) whilst if it did not traverse e it would be contained in the corresponding switching of r (differing from
r ′ only on l).
- Case: C (oriented one way or the other) has the form eπe′π ′ for sequences of edges π and π ′. Let e′′ be the edge
from l to l− in q:

(10)

2404 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

We obtain a cycle of the form e′′e′π ′ in the corresponding switching of q, contradicting the fact that q is a lax
linking.

- Case: C (oriented one way or the other) has the form eπe′π ′ for sequences of edges π and π ′, where e′ is e′

traversed in the direction opposite to its given orientation:

(11)

Again, let e′′ be the edge from l to l− in q:

(12)

We obtain a cycle e′′π ′ in the corresponding switching of q, contradicting the fact that q is a lax linking.
QED Claim.

By construction, the pairs p ↔ p′, p′
↔ r ′ and r ′

↔ r are similar, and p′ and r ′ are lax linkings. Thus we
can appeal to the inductive hypothesis with the original sequence h1 . . . hn with p′r ′ substituted for q, which has
strictly smaller size than the original (since p′ and r ′ each have depth d − 1, whereas q has depth d). �

Lemma 3. Let f be a lax linking, let l be a negative I-labelled leaf whose f -edge targets a vertex v with an argument-vertex a (thus
v is either ⊗ or ∗). Let f ′ be the result of retargeting the edge from l to point to a instead of v (i.e., the lax leaf function f ′ is f but
with f ′(l) = a versus f (l) = v). Then f ′ is a lax linking.
Proof. If v is a ∗-vertex, the result is immediate since switchings of f correspond to switchings of f ′. Thus assume v is a
⊗-vertex. Without loss of generality, a is the left argument of v. If v is positive (hence retains both argument edges in every
switching), then the result is immediate. So assume v is negative.21 Towards a contradiction, suppose σ is a switching of f ′

containing a cycle C . Let e be the edge in f from l to v, let e′ be the edge in f ′ from l to a, let e1 be the edge between v and its
left argument, and let e2 be the edge between v and its right argument.

We may assume C contains e′ (otherwise C is a cycle in the corresponding switching σf of f) and e2 (otherwise we can
assume e1 is in σ (by substituting e1 for e2 in σ if necessary), and we obtain a cycle in σf by replacing e′ in C by e and e1).
Thus, oriented one way or the other, C has the form e′πe2π ′, where e′ is traversed from l to a, so eπ ′ (resp. ee2π ′) is a cycle
if e2 is oriented towards (resp. away from) v. �

Corollary 1. Let f be a lax linking, let l be a negative I-labelled leaf whose f -edge targets a vertex v, and let l′ be one of the leaves
above v (i.e., a leaf which is a hereditary argument of v). The result of retargeting the f -edge l → v to l → l′ is a lax linking.
Proof. Iterate Lemma 3. �

Lemma 4. Standard linkings are atomic equivalent iff they are lax equivalent.
Proof. A three-level induction. Define the volume of a shape as its number of vertices. The volume of a vertex v in a shape
is the volume of the (sub)shape rooted at v. For example, the volumes of vertices have been subscripted on the following
shape:

I
1

∗

2
∗

3
⊗
13

((a
1
⊗
4
a
1

∗

2
) ⊗

9
(I
1
⊗
3
b
1
) ∗

4
)

∗

14 . Define the volume of a negative I in a lax linking f as the volume of its target under f ,
and the volume of f as the maximum of the volumes of its negative I ’s. Thus f has volume 1 iff it is an atomic lax linking
(i.e., every f -edge from a negative I targets a leaf). The volume of a sequence f1 . . . fm of lax linkings is the maximum of the
volumes of the fi. Let V be the volume of f1 . . . fm. The depth of fi (with respect to f1 . . . fm) is the number of negative I ’s in fi
which have volume V . Define the depth of a sequence of linkings f1 . . . fm as the maximum of the depths of the fi. Suppose
f1 . . . fm has depth d. The size of f1 . . . fm is the number of fi of depth d.

Let f and g be standard linkings, lax equivalent via a sequence f = h1 . . . hn = g of lax linkings with hi similar to hi−1
for 1 < i ≤ n. We proceed by a primary induction on the volume V of h1 . . . hn, a secondary induction on its depth d, and a
tertiary induction on its size s.

If V = 1, then all the hi are already atomic lax linkings.
Suppose V > 1. Let pqr be a subsequence of h1 . . . hn in which q has depth d > 0 (hence volume V) and r has depth

e < d. (Such a subsequence exists since hn = g has volume 1 < V .) Let c be the depth of p. There are two cases:

21 Note for readers familiar with linear distributivity in linear logic: the remainder of this proof is simply the usual argument (in disguise) that applying
linear distributivity A ⊗ (B M C) → (A ⊗ B) M C preserves MLL proof net correctness. The correspondence is as follows. Let S be the (sub)shape rooted
at the negative ⊗-vertex v in the proof in the main text; since v is negative, think of it as a par. Thus we think of S as S1 M S2 . Substitute I ⊗ S for S, and
retarget the f -edge from l to point to the new I; call this the lax linkingf . Now apply linear distributivity (and ignore ∗-vertices, which are irrelevant for
cycles in switchings), yielding a lax linking f ′ on (I ⊗ S1)M S2 . This lax linking f ′ corresponds to f ′ just as f corresponded to f ; hence f ′ is a
well-defined lax linking.

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2405

1. Case c < d. Since c < d > e the rewirings p ↔ q and q ↔ r both rewire an edge from the same negative I . Delete q from
h1 . . . hn. This reduces at least one of the volume, depth or size of h1 . . . hn.

2. Case c = d. If l = l′, then we can simply delete q, as in the previous case. Thus assume l ≠ l′. We have

(13)

where l and l′ are negative I-labelled leaves, the vi and wj are vertices of unspecified type, and the volume of l is V in p
and q and <V in r .

Let a be a leaf above v1. Define p′ and q′ from p and q by re-targeting the edge from l to target a instead of v1. Each
of p′ and q′ is a well-defined lax linking by Corollary 1. Substitute p′q′ for q in h1 . . . hn. This reduces at least one of the
volume, depth or size of h1 . . . hn, since the volume of l in p′ and q′ is strictly less than V . �

Proof of Lemma 1. (The Lax Rewiring Lemma: standard linkings are standard equivalent iff they are lax equivalent) By
Lemma 2 standard linkings are standard equivalent iff they are atomic equivalent, and by Lemma 4 they are atomic
equivalent iff they are lax equivalent. �

7.3. Main freeness proof

We are now ready to prove the Freeness Theorem (Theorem 3): for any category A, the category NA of A-nets is the free
star-autonomous category generated by A. Rather than prove the theorem from scratch, we show that NA is isomorphic
to a full subcategory of the circuit category Net∗CA

(EA) of [3], where (CA, EA) is the polygraph representing A, with typed
components CA and equations EA. By Theorem 5.1 of [3], Net∗CA

(EA) is the free symmetric linearly (=weakly) distributive
category with negation generated by A. Write CircNetA for the full subcategory of Net∗CA

(EA) whose circuits are cotensor-
free and cotensor-unit-free (i.e. par-free and ⊥-free, in linear logic terminology [11]). Thus the objects of CircNetA are in
bijection with A-shapes. By the equivalence between symmetric linearly distributive categories with negation and star-
autonomous categories in [7], CircNetA is the free star-autonomous category generated by A, as a corollary of Theorem 5.1
of [3]. Thus our Freeness Theorem (Theorem 3) follows from:

Proposition 5. NA is isomorphic to CircNetA.

7.4. Proof of Proposition 5

In this paper we have defined a net as an equivalence class of linkings. For CircNetA we shall use a similar two-
level convention: henceforth circuit-net refers to an equivalence class (a morphism of CircNetA) and circuit refers to a
representative.22 For example, given morphisms x : a → b and y : c → d in A, here is a normal (i.e., redex-free23) circuit
I ⊗

(b ⊗ c∗)∗ ⊗ I

→ (a ⊗ d∗)∗:

22 Thus, in particular, we shall always assume a circuit satisfies the correctness criterion.
23 [3] was forced to work with equivalence classes including un-normalised circuits since thinning links could block redexes.

2406 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

(We write I for the tensor unit, denoted ⊤ in [3].) Define a canonical circuit as a normal circuit modulo the ordering of
thinning links attached along each wire. For example, the following normal circuit denotes the same canonical circuit as the
normal circuit above:

We render a canonical circuit uniquely by superimposing the attachment points of thinning links, for example, drawing the
above canonical circuit as

Lemma 5. Lax linkings S → T are in bijection with canonical circuits S → T .

Proof. Deleting the thinning links and generators from a canonical circuit S → T leaves the parse tree structures of S and
T . For example, the circuit above leaves

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2407

The parse tree relationship is clearer if we (1) abstract away from the dependency of the distinction between input and
output wires/ports24 on the up/down direction in the page, by explicitly orienting the wires from output to input, and (2)
change the¬ label to ∗, to match the shape syntax. For example, the canonical circuit above (prior to deleting the generators
and thinning links) becomes the circuit below-left,

and deleting the generators x and y, the thinning links, and non-atomic labels more obviously leaves the parse trees of the
shapes S = I ⊗

(b⊗ c∗)∗ ⊗ I

and T = (a⊗ d∗)∗, as shown above-right. Generators and thinning links can then be viewed

as the labelled edges and unlabelled edges of a lax linking S → T . For example, the canonical circuit above-left becomes the
lax linking

�

Equivalence between canonical circuits is well-defined since re-ordering of thinning links along a wire is a sub-relation of
circuit equivalence.

Lemma 6. Lax linkings are lax equivalent iff the corresponding canonical circuits are equivalent.

Proof. By the Empire Rewiring Proposition [3, Prop. 3.3], a thinning link can be moved to any wire in its empire. Since
(by definition) we are only dealing with circuits satisfying the correctness criterion, such moves correspond to arbitrary
retargeting of edges from negative Is, between (correct) circuits. �

Lemma 7. Every lax linking S → T is lax equivalent to a standard linking S → T .

Proof. Using Corollary 1 we can re-target all the edges from negative Is to target leaves. Then, suppose an edge from a leaf
l targets a negative leaf l′, and suppose the edge from l′ targets l′′. Shift the edge from l to target l′′ instead. Iterating this
procedure leads to all edges targeting positive leaves, yielding a standard linking. �

24 Lambek’s covariables and variables: [3, Section 2.1].

2408 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

For any lax linking f , write f c for the corresponding canonical circuit (via the bijection of Lemma 5). This induces a bijection
between nets and circuit-nets:

Proposition 6. There is a bijection ()n : NA(S, T) → CircNetA(S, T), for all shapes S, T .

Proof. Define [f]n = [f c], the equivalence class of the canonical circuit f c. This is independent of the choice of f by Lemma 6,
injective by Lemma 1, and surjective by Lemma 7. �

To obtain an isomorphism of categories NA ∼= CircNetA, completing the proof of Proposition 5, we must prove that ()n is
functorial.

Lemma 8. Suppose f : S → T and g : T → U are standard A-linkings. Letf and g be normal circuits representing the
canonical circuits f c and gc. Let f ∪g be the circuit obtained by pastingf andg at the T wire. There is a strategy of reduction
and rewiring of thinning links forf ∪ g leading to a normal circuitf � g : S → U whose canonical circuit is (f ; g)c (that
of the composite of f and g in LA).

Proof. Let f ′ be the one-sided linking on the two-shape sequent S∗, T corresponding to f , and let g ′ be the one-sided linking
on T ∗,U corresponding to g . Let f ′

∪ g ′ be the disjoint union of f ′ and g ′ on the cut sequent S∗, T T ∗,U . Let h′ be the one-
sided linking on S∗,U corresponding to the composite two-sided linking h = f ; g . Thus h′ is the normal form resulting
from cut elimination on f ′

∪ g ′. We shall mimic the cut elimination steps onf ∪ g as reductions mixed with rewiring of
thinning links.

First, perform all ⊗ and (−)∗ eliminations on f ′
∪ g ′. This leaves the same leaf function f ′

∪ g ′ on the cut sequent
S∗, a1 a1∗, . . . , an an∗,U where a1, . . . , an are the labels of the leaves of T . Since these eliminations affect only the parse
trees of the shapes (and not the edges of the leaf function), they can be mimicked directly onf ∪g , as the tensor and tensor-
unit reductions [3, Section 3.1.1]. Letf0 ∪ g0 denote the end result of these reductions.

The normalisation of f ′
∪ g ′ on the cut sequent S∗, a1 a1∗, . . . , an an∗,U finishes with atomic eliminations. (See the

definition of atomic elimination in Section 5.1 for discrete A, and its generalisation to an arbitrary category A towards the
end of Section 5.2.) These atomic eliminations have one of two forms: reduction of (a) a cut pair I I∗ or (b) a cut pair a a∗ for
a an object of A.

Consider (a). Let l1, . . . , ln be the leaves having an edge to the left I of I I∗ and let l be the target of the edge from the right
I of I I∗. Thus elimination deletes I I∗ andmoves the edges from li to target l. In the circuit we have the corresponding redex:

where the two left I-nodes tied by the ellipsis represent n I-nodes corresponding to the leaves l1, . . . , ln, the highest I-node
corresponds to the left I of I I∗, the lowest I-node corresponds to the right I of I I∗, and a is the label of l (either a = I or a is
an object of A). Rewire the n thinning links on the left to target the a-wire:

then reduce the I-node redex:

D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410 2409

Case (b) is similar. The circuit has a corresponding redex

where x : b → a and y : a → c are morphisms in A. Shift the thinning links,

then reduce:

where x ; y : b → c is the composite of the morphisms x : b → a and y : a → c in A.
Since the elimination steps are mimicked precisely, the resulting normal circuit f � g , modulo the order of

attachments of thinning links along the same wire (i.e., the canonical circuit represented byf � g), corresponds to the
normal one-sided linking h′, hence the composite two-sided linking h = f ; g . �

Corollary 2. Let f : S → T and g : T → U be nets in NA. Then f n; gn
= (f ; g)n : S → U in CircNetA.

Thus the bijection ()n of Proposition 6 preserves composition. It preserves identities because the identity linking and the
identity circuit S → S each amount to a dual pair of copies of the parse tree of S. Therefore ()n : NA → CircNetA is
functorial, providing an isomorphism of categories NA ∼= CircNetA. This completes the proof of Proposition 5, whence the
Freeness Theorem: NA is the free star-autonomous category generated by A.

Acknowledgements

Many thanks to Robin Cockett and Robert Seely for helping me understand the construction of free star-autonomous
categories in [3], an important precursor to this paper. I am extremely grateful to Robin Houston for insightful feedback,
in particular for improvements to the definition of split star-autonomous category. Thanks to Peter Selinger for corrections.
I am indebted to an anonymous referee for excellent suggestions.

References

[1] S. Abramsky, Retracing some paths in process algebra, in: Proc. CONCUR ’96, 1996, pp. 1–17.
[2] M. Barr, ∗-Autonomous categories, in: Lecture Notes in Mathematics, vol. 752, Springer-Verlag, 1979.
[3] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, T.H. Trimble, Natural deduction and coherence forweakly distributive categories, J. Pure Appl. Algebra 113 (1996)

229–296.
[4] R.F. Blute, Linear logic, coherence and dinaturality, Theoret. Comput. Sci. 115 (1993) 3–41.
[5] B. Bollobás, Modern Graph Theory, Springer-Verlag, 2002.
[6] J.R.B. Cockett, M. Hasegawa, R.A.G. Seely, Coherence of the double involution on *-autonomous categories, Theory Appl. Categ. 17 (2005) 17–29.
[7] J.R.B. Cockett, R.A.G. Seely, Proof theory for full intuitionistic linear logic, bilinear logic, and mix categories, Theory Appl. Categ. 3 (5) (1997) 85–131.
[8] V. Danos, La logique linéaire appliquée à l’étude de divers processus de normalisation et principalement du lambda calcul, Ph.D. thesis, Univ. de Paris,

1990.

2410 D.J.D. Hughes / Journal of Pure and Applied Algebra 216 (2012) 2386–2410

[9] V. Danos, L. Regnier, The structure of multiplicatives, Arch. Math. Logic 28 (1989) 181–203.
[10] S. Eilenberg, G.M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966) 366–375.
[11] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) 1–102.
[12] J.-Y. Girard, Towards a geometry of interaction, in: Categories in Computer Science and Logic, in: ContemporaryMathematics, vol. 92, 1989, pp. 69–108.

Proc. of June 1987 meeting in Boulder, Colorado.
[13] J.-Y. Girard, Linear logic: a survey, in: Proceedings of the International Summer School of Marktoberdorf, NATO Advanced Science Institutes, series

F94, Also in P. De Groote editor, The Curry-Howard Isomorphism, 193–255, Département de Philosophie, Université Catholique de Louvain, Cahiers
du Centre de Logique 8, Academia Press, 1993, pp. 63–112.

[14] J.-Y. Girard, Proof-nets: the parallel syntax for proof theory, in: Logic and Algebra, in: Lecture Notes In Pure and AppliedMathematics, vol. 180, Marcel
Dekker, New York, 1996.

[15] J.-Y. Girard, A. Scedrov, P.J. Scott, Bounded linear logic: a modular approach to polynomial time computability, Theoret. Comput. Sci. 97 (1992) 1–66.
[16] S. Guerrini, Correctness of multiplicative proof nets is linear, in: Proc. Logic in Computer Science ’99, 1999.
[17] R. Houston, D.J.D. Hughes, A. Schalk, Modelling linear logic without units (draft). http://arxiv.org/abs/math.CT/0504037, April 2005.
[18] D.J.D. Hughes, Simple multiplicative proof nets with units, Ann. Pure Appl. Logic (2012) http://arxiv.org/abs/math.CT/0507003.
[19] A. Joyal, R. Street, The geometry of tensor calculus I, Adv. Math. 88 (1991) 55–112.
[20] A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102 (1) (1993) 20–78.
[21] A. Joyal, R. Street, D. Verity, Traced monoidal categories, Math. Proc. Cambridge Philos. Soc. 119 (1996) 447–468.
[22] G.M. Kelly, On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964) 397–402.
[23] G.M. Kelly, M.L. Laplaza, Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980) 193–213.
[24] G.M. Kelly, S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971) 97–140.
[25] T.W. Koh, C.-H.L. Ong, Explicit substitution internal languages for autonomous and *-autonomous categories (preliminary version), in: Proceedings

of the 8th Conference on Category Theory and Computer Science, Edinburgh, September 1999, in: Electronic Notes in Theoretical Computer Science,
vol. 29, 1999.

[26] F. Lamarche, Proof nets for intuitionistic linear logic I: essential nets. Unpublished note, 1994.
[27] F. Lamarche, L. Straßburger, On proof nets for multiplicative linear logic with units, in: Proc. CSL’04, in: Lecture Notes in Computer Science, vol. 3210,

2004, pp. 145–159.
[28] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
[29] A.S. Murawski, C.-H.L. Ong, Dominator trees and fast verification of proof nets, in: Proc. Logic in Computer Science ’00, 2000.
[30] A.S. Murawski, C.-H.L. Ong, Exhausting strategies, joker games and full completeness for IMLL with unit, Theoret. Comput. Sci. 294 (2003) 269–305.
[31] M. Parigot, λµ-calculus: an algorithmic interpretation of classical natural deduction, in: Proc. Int. Conf. Logic Prog. Automated Reasoning, in: Lecture

Notes in Computer Science, vol. 624, Springer, 1992, pp. 190–201.
[32] L. Regnier, Lambda-Calcul et Rèseaux, Ph.D. thesis, Univ. Paris VII, 1992.
[33] T.H. Trimble, Linear logic, bimodules, and full coherence for autonomous categories, Ph.D. thesis, Rutgers University, 1994.

http://arxiv.org//abs/math.CT/0504037
http://arxiv.org//abs/math.CT/0507003

	Simple free star-autonomous categories and full coherence
	Introduction
	Split star-autonomous categories
	Linkings
	The category L of partial leaf functions between signed sets
	The category LA of A-linkings over a set A
	LA is split star-autonomous
	The category LA of A-linkings over an arbitrary base category A

	Nets
	Free star-autonomous category and full coherence

	One-sided linkings
	Cut elimination
	Arbitrary base category
	From one-sided linkings to two-sided linkings

	One-sided nets
	Proof that the category NA of A-nets is free star-autonomous
	Lax linkings
	Lax equivalence
	Proof of the Lax Rewiring Lemma

	Main freeness proof
	Proof of Proposition 5

	Acknowledgements
	References

