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Abstract

The Single Objective Single Vehicle Pickup and Delivery Problem (SOSV-PDP) is a Vehicle Routing Problem (VRP) in which
the vehicle, based at the depot, has to visit exactly once a set of customers with known demand. Each request specifies two
locations: an origin for the picking and one for the delivery. The vehicle must start and finish at the depot and the total
handled demand must not exceed its capacity. Moreover, for each request, the origin must precede the destination (precedence
constraints). In the SOSV-PDP with Time Windows (SOSV-PDPTW), each request specifies also a time window. Therefore,
the vehicle has to serve the customer within the time window (time window constraint). The Single Objective Multiple
Vehicle-PDPTW (SOMV-PDPTW) is an extension of SOSV-PDPTW where customers are served by a fleet (usually
homogeneous) of vehicles. Therefore, together with the precedencies, for each request, the origin and the destination have to
belong to the same route (pairing constraints). In the traditional SOMV-PDPTW, only one objective is optimized (usually, the
total travel cost); while, in the literature, few multi-objective MOSV-PDPTW exist that optimize at most three criteria
simultaneously. The contribution of this paper consists in addressing the MOMV-PDPTW from both a modeling and
methodological point of view. In fact, the MOMV-PDPTW is firstly modeled with the aim of optimizing the number of
vehicles, the total travel cost and the longest travel cost, simultaneously; then, a two-step solution approach is proposed. In
particular, in the first step, a set of feasible routes is generated by properly adapting some meta-heuristics proposed in
literature for the SOMV-PDPTW; then, set partitioning optimization problems are solved within an e-constraint framework.
More specifically, each set partitioning problem selects the routes from the feasible set, optimizing one criterion at time,
constraining the remaining ones by appropriate upper bounds and satisfying customer requirements. Finally, the second step
finds the set of efficient solutions for approximating the Pareto Fronts. Computational experiments, carried out on some
instances generated in literature, show that our approach determines good quality Efficient Pareto Fronts (in terms of number
of efficient solutions) and also provides well-diversified efficient sets. This last aspect is properly evaluated by computing the
Spread metric on each of the instances.
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1. Introduction

The MOMV-PDPTW aims at serving a set of n customers by using a fleet of m vehicles. In this paper, the fleet
is homogeneous and therefore, all the vehicles have the same capacity Q (i.e., maximum number of customers to
transport) and the same average speed. A route is here associated to only one vehicle and has to start/end from/to
the depot. Each customer specifies the pickup and the delivery point together with a time window for the service.
In addition, each service could be required for more than one customer and therefore, the number of passengers to
transport (demand) is also specified. In this work, the fotal travel cost (c), the travel cost of the longest route (i.e.,
makespan denoted by W), and the number of used vehicles (1) are simultaneously optimized. The transport
network is modeled by a directed graph G=<V,4>, where V={0, 1, ..., n, n+1, ...., 2n, 2n+1} is the vertex set and
A is the arc set. Both 0 and 2n+1 represent the depot. The subset PcV of vertices consists of the pickup points
whereas DcV (such that PND=£) contains the delivery points. For each p P, g, >0 represents its demand and
[a,.b,] the corresponding time window; for each deD, ;<0 denotes its demand and /[a;b,/ the related time
window. It is also assumed that [P|=|D| and thus, to each peP, a deD is associated such that g,=|q,| (i.e., the
customers have to be picked-up at p and delivered at d). Among all the arcs (i, j) € A only those satisfying the
following condition are included in the network: #,+s,+1;<b;, where #; denotes the time distance between 7 and j
(ieV,jeV ) whereas s; represents the service time Vi eV . Finally, Vp € P, dev(p) denotes its delivery point
whereas Vd € D, pick(d) represents its pickup point. In this paper, an approximation of the Efficient Pareto
Fronts is determined applying the e-constraint method (Chankong and Haimes,1983) whose main idea is to solve
a sequence of constrained single-objective problems. This choice is motivated by the fact that this method has
been successfully applied to a variety of VRPs (we cite, for example, the recent paper of Grandinetti, Guerriero,
Lagana & Pisacane, 2012). The main contributions of this work consist in: proposing a single-objective
formulation (M1) of PDPTW with the aim of minimizing a weighted sum that properly combines u and c;
extending M/ to a multi-objective formulation (M2) with the aim of minimizing x, ¢ and ¥ simultaneously;
formulating a Mixed Integer Linear Programming (MILP) model (M3) for MOMV-PDPTW, based on binary
route-variables and on the continuous variable ¥, starting from M2 and finally, determining an approximation of
the efficient solution set by applying an e-constraint method to M3 that is formulated considering u as an input
parameter. Indeed, the proposed approach starts with the maximum available number of vehicles ( zz=m=m ) and
it iteratively decreases u until the problem becomes infeasible. The remainder of this paper is organized as
follows. Section 2 briefly overviews the literature; Section 3 introduces M3, whereas the proposed e¢-constraint
approach is described in Section 4. Section 5 shows some computational results on a set of instances taken from
the literature and finally, Section 6 concludes the work.

Nomenclature
SETS

set of 2n customers

set of n pickup points

set of n delivery points
set of m identical vehicles
set of the 2n+2 vertices
set of feasible arcs

set of feasible routes

DO =
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INPUT DATA

Q capacity of each vehicle

) fixed cost of using a vehicle

M Distance matrix M € R (2n+2)x(2n+2) g11ch that m; is the distance between the vertices i and j
C cost matrix C e RMT2X(21+2) quch that c;;1s the travel cost between the vertices i and j

S service time matrix S € R(Z’Hz)><1 such that §; is the service time required by the vertex i

- A 2 1
demand matrix Q € R( nx such that ¢ is the demand of the vertex i

Q

time distance matrix 7 e R2M2XC12) o ha ¢ jj is the time distance between the vertices i and j
Z binary matrix Ze R such that Zjg is equal to 1 if the pickup point i is served in the route @
OUTPUT DATA
X assignments matrix X € R DX@me2pm o that xil](' is equal to 1 if vehicle k uses the arc (i)
v makespan
I1 routes matrix IT e R**!such that TC 4 is equal to 1 if the feasible route @ € ) is selected
n number of non-dominated solutions

2. Related works

In the traditional VRP (see Toth & Vigo, 2002), a fleet of vehicles, based at the depot, handles customer
demands known in advance. The vehicles have to be routed in such a way that all the customers are visited
excatly once; each route starts/ends at/to the depot and the total served demand does not exceed vehicle capacity
(capacity constraints). A large number of scientific contributions have addressed this problem from both a
modeling and methodological point of view: Araque, Kudva, Morin and Pekny (1994) have proposed a
Branch&Cut algorithm for the identical customer VRP transforming it into an equivalent Path-Partitioning
Problem; Bramel and Simchi-Levi (2000) have designed set-partitioning based solution approaches for the
capacitated VRP (CVRP); Baldacci, Hadjiconstantinou and Mingozzi (2004) have introduced an IP formulation
of CVRP and Ropke (2005) has described both heuristic and exact solution approaches for the VRP and for its
variants (e.g., VRP with Time Window (VRPTW), Pickup and Delivery Problem (PDP) and PDP with Time
Window (PDPTW)). In the VRPTW, together with the demand, each customer also specifies a time window for
the service. It means that the vehicle cannot serve it before the beginning and after the end of the time window
(i.e., hard time window constraints). In other variants, it could be allowed violating these bounds by imposing
soft time window constraints. Lysgaard (2006) has recently introduced a set of reachability cuts for the VRPTW
that are closely related to the ones derived from the precedence constraints in the Asymmetric Traveling
Salesman Problem with Time Windows. In the PDP, each request is associated to a pickup and to a delivery
point: the former is the location at which a certain demand has to be picked up whereas the latter is the point at
which the same demand has to be delivered. Each pickup point has to be visited always before of its delivery
point (precedence constraint) and both of them have to belong to the same route (payring constraint). The
problem is also known in literature as Dial and Ride Problem (DARP) and it has been extensively analyzed:
Cordeau (2006) has proposed a mixed-IP formulation together with a Branch&Cut algorithm. In the single-
vehicle PDP, only one vehicle has to satisfy the whole demand. However, a more general version consists in
using more than one vehicle and it is denoted as the Multiple Vehicles PDP (MV-PDP): Lu and Dessouky (2004)
have addressed the MV-PDP for minimizing ¢ by fixing the vehicle cost. They have also developed a solution
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approach without tight constraints, modeling it as a 0-1 IP problem and a Branch&Cut algorithm. A further
generalization of the PDP is the PDP with Time Windows (PDPTW) in which, together with the demand, the
pickup and the delivery, a time window is also associated to each request. The PDPTW has been analyzed in
Ropke, Cordeau and Laporte (2007) where two formulations have been proposed imposing a limit on the elapsed
time between the pickup and the delivery. Moreover, they have also introduced valid inequalities to strengthen
these formulationsthat have been used within Branch&Cut algorithms. Ropke and Cordeau (2009) have proposed
a Branch&Cut&Price algorithm for the PDPTW and they have computed the lower bounds applying a column
generation to the LP relaxation of a set partitioning formulation. Instead, Li and Lim (2003) have designed a
Tabu-embedded Simulated Annealing Algorithm (TSAA) for the MV-PDPTW that restarts a search from the
current best solution after several non-improving iterations. The computational results have underlined that 7544
is the best performing approach to solve large scale MV-PDPTW and therefore, it will be considered hereafter as
reference heuristic. However, these scientific contributions have considered the Single-objective PDPTW. In this
paper, a Multi-objective MV-PDPTW (MOMV-PDPTW) is addressed for minimizing ¢, ¥ and u. At the best of
our kwnoledge, the only existing contribution for MOMV-PDPTW is the paper of Harbaoui, Kammarti, Ksouri
and Borne (2011) in which a genetic algorithm for minimizing ¢ and the total tardiness time has been proposed.
However, the minimization of u has been not taken into consideration and the quality of the proposed approach
has not been investigated by using mathematical metrics. The main goal of this paper is to define an approximate
e-constraint based solution approach for MOMV-PDPTW whose effectiveness will be discussed with reference to
the number of non-dominated solutions (1) and to the diversity of this set by considering the Spread metric. The
experimental analysis will be conducted on a sub-set of the istances proposed in Li and Lim (2003).

3. A mathematical model for the MOMV-PDPTW

In this Section, MOMV-PDPTW is mathematically modeled in order to minimize ¢, ¥ and u. In particular,
Section 3.1 presents a mathematical formulation for SOMV-PDPTW (M1) whereas Section 3.2 extends M1 to
MOMYV-PDPTW (M2).

3.1. A mathematical model for the SOMV-PDPTW

SOMV-PDPTW is mathematically formulated as a MILP introducing the following decision variables: xl{; a
binary variable equal to 1 if the arc (i,j) belongs to the route k£ (i.e., the vehicle & uses it), 0 otherwise; Bik a
continuous variable that represents the time at which the vehicle & starts serving the vertex i; O; an integer
variable that denotes the remaining capacity of the vehicle k& before leaving the vertex i; " a binary variable
equal to 1 if the vehicle & is used. The mathematical formulation of SOMV-PDPTW assumes the following form:

minz Z 205x5+5 Zyk 1)

ieVjeVkekK keK
> zxgzlwep @
keK jeV|j#i

k k o
le.j— z.rdev(i)j—OVzeP,keK ®)
jeVij#i  jeV|j#i

ngj K vkek @
Jjev|]j#0
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fo'(ZnH) :yk VkeK ()
JeV|j#2n+l1

> inl;éWyk VkeK (6)
i€V jeV|j#i

Z 2x§-2ykvkeK 7
ieVjeV|j+#i

x_’;i - le’j‘ —0VkeK,icPUD (8)
jeVlizj  jeVliz)

Bf -BE =y +t,-j)x§-—W(l—xg)Vi,jeV\i;tj,keK ©)

Qj?—Qik quxg-—W(l—xg-)Vi,jeV\i;ﬁj,keK (10)
k

k k .
By = Boy(iy *+lidev(i) le.j <0ViePkeK (1)
jev

Bf za; Y xh v vievkeK (2)

jev

Bf <ty Yy xkvievkek (3
jev

max {0,q;} le’; <0f <min(0.0+¢;} le’; VieV,keK (14)
jev jev

kel vijeriizjkek (5) K eonviek (16)

The objective function (1) to minimize combines ¢ and u by introducing a parameter o that represents the cost of
using a vehicle (assumed equal for all vehicles); the constraints (2) impose that each request has to be satisfied
whereas the constraints (3) ensure the pairing conditions. The constraints (4) and (5) assure that for each route,
only one arc leaves the depot and only one arc enters it, respectively. The constraints (6) and (7) link the x-
variables to the y-variables: if at least one arc (7,j) traversed by the vehicle & exists, then & has to be considered
used ( yk =1); on the other hand, if k does not traverse the arc (i,j), then the corresponding x-variable is 0.
Moreover, W is a large non-negative scalar. The constraints (8) are the flow conservation constraints
VieV|[iz0Ai#2n+ ]and they impose that VieV,i#0Ai#2n+1,k € K, the number of ingoing arcs
has to be equal to the number of outgoing arcs. The constraints (9) ensure that each vertex in a route has to be
served after its predecessor. The constraints (10) properly update the remaining capacity of a vehicle before
leaving a vertex, whereas the constraints (11) impose the precedence constraints. The constraints (12) assure that
the lower bounds on each time window are satisfied. In order to consider the same framework of Li and Lim
(2003), a threshold [J; is introduced for representing the flexibility degree of the vertex i. The constraints (13)
impose that the upper bounds on the time windows are satisfied. The constraints (14) assure that Q is never
exceeded in each route. Finally, the constraints (15) and (16) impose the binary conditions on the x-variables and
y-variables, respectively. This formulation significantly extends the one proposed in Ropke and Cordeau (2009)
explicitly minimizing yx and modifying the time window constraints.

207
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3.2. A mathematical model for the MOMV-PDPTW

In this section, MOMV-PDPTW is modeled considering the following three objective functions to optimize:

minz Z ch]jcxl]jc 17) min zyk (18) min ¥ (19)

ieV jeV|j#ikeK keK
where (17), (18) and (19) represent the minimization of ¢, u and ¥, respectively. The set of constraints (2)—(16)
are also included in the model together with the constraints (20) for imposing that W>0 is greater or equal to the

total travel cost of each designed route:
¥ o>y Y cf VkeKk (20)
ieV jeV|j=#i

Therefore, the model taken into consideration hereafter is (17)—(19),(2)—(16),(20).
4. An approximate e-constraint based solution approach for the MOMV-PDPTW

Since the model (17)—(19), (2)—(16),(20) cannot be efficiently solved, the Efficient Pareto Fronts have been
approximated by defining the following optimization model based on binary routes variables in which: Q
represents a set of feasible routes, c, denotes the cost associated to the route meQ, =z, is a binary decision
variable equal to 1 if the route w is selected and Z is a binary input matrix in which z;, equal to 1 if the pickup i is
served by the feasible route w:

min Y cprey  (21) min ¥ (22) min Y 7, (23)
wel) weld
Y ZipT, =1Vie P (24)
wel2

Tpel0lVoeQ (25
where (21), (22) and (23) minimize the total travel cost, the makespan and the number of used vehicles,
respectively; the constraints (24) impose that each pickup is served by one and only one vehicle. Therefore, for a
given instance 7, the approximate e-constraint based approach (see Grandinetti et al. 2012, for example) firstly
determines valid lower and upper bounds on x, ¢ and ¥. Then, it properly populates 2 with feasible routes
generated by TSAA. Finally, it selects from Q a set of routes by solving single objective problems (Section 4.1)

properly derived from (21)—(25) The lower bound on x (712) is set equal to the one of the best solution obtained

by TSAA, whereas the lower and upper bounds on ¢ and ¥ (¢, ¥ and ¢, ¥, respectively) are equal to the best and
the worst values detected by 7S4A4. Indeed, since 7SAA4 optimizes a weighted sum that combines x, c, the total

waiting time and the total schedule time, it has been executed different times varying these weights. The best and
the worst values have been determined over all the performed runs.

4.1. Generating non-dominated solutions

In the proposed approximate e-constraint approach, x comes into play as a parameter (i.e., fixed at each
macro-iteration). Since it varies from M to m , the optimization process minimizes all the three objectives
simultaneously. Then, two single-objective formulations (P/ and P2) are deduced by (21)—(25). For each value
of u, the problem P/ minimizes ¢, and imposes an upper limit on ¥. Therefore, its objective function to minimize
is (21), subject to (24) and (25) and the following constraints:

Y2cpr, VoeQ (26)

Sap,<m (27)

weQ)
Y<g (28)
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where constraints (26) ensure that ¥ is greater or equal to the cost of each route, condition (27) imposes a limit
on the number of selected routes, whereas the constraint (28) imposes an upper bound on ¥ . On the other hand,
for a given value of 11, P2 ensures the satisfaction of an upper limit on ¢ imposing (24)--(27), minimizing (22) and
introducing the following constraint on the value of ¢
2l <& (29)

weQ)
The complete algorithm is outlined in the following scheme:
Step 1: Populate ©;

Step 2: For each,ue[m,z]
Step 2.1: For each ¢] [i,@] F<Optimize P1;

Step 2.2: For each ¢ € [Q,E] F<Optimize P2
Step 3: F< Remove the dominated solutions.
where F' contains the non-dominated solutions and approximates the Efficient Pareto front. It is worth noting that
Q contains also the singletons that is routes in which only one couple (pickup, delivery) is served. This ensures
that a feasible solution can be always found. The value of u varies in its range with step equal to 1. Finally, ¢ and

&,are varied in their ranges by a step equal to 1 since this value ensures that a sequence of e-constrain problems

generates one feasible solution for each point of the Pareto front (Theorem 3 of Berube, Gendreau and Potvin
(2009)).

5. Computational results

The proposed approach has been implemented in Java and all the optimization models have been solved by
using ILOG CPLEX library (releasel0.1). The experiments have been carried on a cluster of 6 Pentium machines,
each supported by Intel(R) Xeon(R) processor technology (X5680) and clocked at 3.33 GHz, with a totally 50 GB
RAM. The computational analysis has been performed in two steps. Firstly, an accurate and intensive sensitivity
analysis has been performed on the proposed model (1)—(16) by properly varying J and [; (for each vertex 7) in
order to analyze their effects on the performances. According to the obtained results, we can conclude that the
model is more sensible to . Then, a set of  instances (available at
http://www.sintef.no/Projectweb/TOP/PDPTW/Li--Lim-benchmark/) has been taken into consideration: LRI101,
LRI102, LR103, LR104, LR105, LR106 and LRCI105. All these instances present a fleet of 25 vehicles whose
capacity is equal to 200. Moreover, the value of |N] is specified in Table 1 for each instance and the distance
between two nodes is computed by using the Euclidean metric. In the same table, the number of feasible routes
generated for each instance is also given. Since at the best of our knowledge, MOMV-PDPTW has not been
previously analyzed in the literature with reference to our objectives, the Efficient Pareto Fronts are unknown.
This consequently prevents us to apply metrics generally used to measure the extent of convergence to the
Efficient Optimal Set. Therefore, in order to conclude about the quality of our method, the Spread has been used
as a metric. It has been introduced in Deb (2001) and given a s?lution Sol, it is defined as:
dr+dp s \d,»—&\

_ i=l

Spread(Sol) = dyrd (- 1)3
where d; and d; are the Euclidean distances between the extreme solutions and the boundary solutions of So/;
d is, instead, the average of all distances d; (i=1,..n-1). The smaller its value, the better the diversity of the
efficient set. Denoting by £/ and E2 the extreme points of each efficient set (characterized by u, ¥ and c), the
obtained results are detailed in Table 1. The computational results underline that the considered approach has
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detected a significant value of # (equal to 9, on average) with a very low Spread (equal to 0.82, on average).
Some approximated Efficient Pareto Fronts are plotted in the figures of Appendix A.

Table 1. Computational results

Problem | |V| El E2 3 12| Spread
un |V c un |\v c
LRI101 106 | 25 | 187 | 2622.34 | 23 | 478 | 263542 | 13 | 11,336 | 1.05
LRI102 110 | 25 | 208 | 2915.96 | 24 | 332 | 2732.82 | 12 | 10,888 | 0.82
LRI103 104 | 25 | 218 | 2650.12 | 23 | 252 | 2530.01 | 7 10,291 | 0.73
LR104 104 | 25 | 223 | 2494.16 | 21 | 276 | 2577.87 | 10 | 5,335 | 0.83
LR105 106 | 25 | 173 | 2521.65 | 24 | 365 | 2387.37 | 11 | 14,166 | 0.85
LR106 104 | 25 | 162 | 2430.46 | 24 | 177 | 2265.26 | 5 11,778 | 0.76
LRCI05 | 108 | 25 | 370 | 3071.54 | 24 | 370 | 344342 |14 8,330 |0.70

6. Conclusions and future works

This paper presented an approximate e-constraint approach for MOMV-PDPTW. The computational
experiments conducted on some instances taken from the literature clearly highlighted that it detects good quality
approximated Efficient Pareto Fronts (in terms of # and the Spread). However, since the quality of the feasible
solutions of Q strongly affects the algorithm performances, it will be significant to diversify Q designing
heuristic approaches (alternatively to 75S4). In addition, the experimental campaign will be extended to other
instances described in literature. These topics are the subject of ongoing research.
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Appendix A.
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Fig. 1. Efficient Pareto Front of LR101
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Fig. 4. Efficient Pareto Front of LR106




