Ion-implanted PERC solar cells with Al$_2$O$_3$/SiN$_x$ rear passivation

Thorsten Dullwebera*, Rene Hessea, Vikram Bhosleb, Chris Dubéb

aInstitute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany
bApplied Materials, Varian Semiconductor Equipment, Gloucester, MA 01930-2297, USA

Abstract

Ion implantation is an attractive candidate for PERC solar cells due to the single-sided emitter phosphorus doping. The oxide, which is formed during the implant anneal, can be used as rear passivation of PERC cells. However, the SiO$_2$/SiN$_x$ rear passivation is very sensitive to the rear surface roughness and surface preparation. Hence, in this paper we evaluate Al$_2$O$_3$/SiN$_x$ rear passivation layers in combination with an oxide passivated ion-implanted emitter. We obtain emitter saturation current densities of 93 fA/cm2, which is significantly lower compared to a typical POCl$_3$ diffused emitter with 140 fA/cm2. Ion-implanted PERC cells with Al$_2$O$_3$/SiN$_x$ rear passivation show conversion efficiencies up to 20.0% which is comparable to POCl$_3$-diffused PERC cells. The emitter dopant profile can be adjusted by the thermal budget of the anneal in order to optimize the process window between J_{sc} and FF losses. The IQE and reflectance of implanted and POCl$_3$-diffused PERC cells in the long wavelength regime are almost identical which demonstrates the successful implementation of the Al$_2$O$_3$/SiN$_x$ rear passivation to PERC cells with ion-implanted emitters. Future work will focus on simplifying the process flow in order to obtain a lean industrially manufacturable PERC process, leveraging the single side doping via ion implantation.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and/or peer-review under responsibility of the scientific committee of the SiliconPV 2013 conference

Keywords: Ion implantation; silicon solar cells; phosphorus emitter; Al$_2$O$_3$ rear passivation

1. Introduction

The single-sided doping of ion implantation as compared to the double-sided POCl$_3$ diffusion make ion implantation an interesting choice for passivated emitter and rear cell (PERC) processing where the rear side has to be non-phosphorus-doped. Efficiencies up to 19.7% were reported [1,2] for PERC solar cells

* Corresponding author. Tel.: +49-5151-999-638; fax: +49-5151-999-400
E-mail address: dullweber@isfh.de
with ion-implanted phosphorus emitter, a SiO\textsubscript{2}/SiN\textsubscript{x} rear passivation, and screen-printed metal contacts. With an advanced direct Ag printing method, 20.2% efficiency were achieved [1] thus demonstrating the potential of this approach. However, the SiO\textsubscript{2}/SiN\textsubscript{x} rear passivation requires rear surfaces with a small surface roughness in order to achieve good surface passivation properties [3,4,5]. In contrast, AlO\textsubscript{x}/SiN\textsubscript{y} rear passivation demonstrates excellent surface recombination velocities below 10 cm/s even for rough surfaces [5]. This increases the process window for industrial production and potentially enables higher conversion efficiencies. Accordingly, in this paper we evaluate industrial-type PERC solar cells applying an ion-implanted phosphorus emitter in combination with an ALD Al\textsubscript{2}O\textsubscript{3}/SiN\textsubscript{x} rear passivation. We analyse the emitter saturation current density J_{0e} of the ion-implanted emitters and demonstrate PERC solar cells with screen-printed metal contacts showing conversion efficiencies of up to 20.0%.

2. Saturation current densities and dopant profiles of ion-implanted phosphorus emitters

Table 1: Sheet resistance R_{sh} and emitter saturation current density J_{0e} of ion-implanted phosphorus emitters using two different annealing recipes, where recipe 1 has a higher thermal budget compared to recipe 2. As a reference, we include typical values of a POCl\textsubscript{3} diffused emitter.

<table>
<thead>
<tr>
<th>Doping method</th>
<th>Anneal</th>
<th>R_{sh} [\Omega/sq.]</th>
<th>J_{0e} [fA/cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion implantation</td>
<td>Recipe 1</td>
<td>65</td>
<td>93</td>
</tr>
<tr>
<td>Ion implantation</td>
<td>Recipe 2</td>
<td>52</td>
<td>125</td>
</tr>
<tr>
<td>POCl\textsubscript{3} diffusion</td>
<td>n.a.</td>
<td>62</td>
<td>140</td>
</tr>
</tbody>
</table>

Fig. 1. Dopant profiles of the ion-implanted phosphorus emitters of table I measured by ECV profiling. As a reference, we include the dopant profile of the POCl\textsubscript{3}-diffused emitter.

In order to analyze and optimize the J_{0e} of the ion-implanted phosphorus emitters, we use 200 \Omega/sq. float zone (Fz) wafers. After cleaning and texturing, we implant phosphorus ions on both wafer surfaces using an implanter similar to the Applied Materials Solion tool [6]. We then anneal the implant crystal damage by a high temperature oxidation process, forming an approx. 25 nm thick SiO\textsubscript{2} layer on top of the phosphorus emitter. Afterwards, a SiN\textsubscript{x} anti reflection coating is deposited on both wafer surfaces by
PECVD followed by a conventional furnace firing step as used for screen-printed metal contacts. Table I shows the resulting J_{0e} and emitter sheet resistance R_{sheet} values as measured by QSSPC. By using annealing recipe 1 we obtain a J_{0e} of 93 fA/cm2 which is significantly lower compared to a conventional 62 Ω/sq. POCIG-diffused emitter with a J_{0e} of 140 fA/cm2. The 47 fA/cm2 lower J_{0e} of the ion-implanted emitter should allow an approx. 4 mV higher open circuit voltage when applied to high efficiency PERC solar cells. The corresponding emitter dopant profiles measured by electrochemical voltage profiling (ECV) are shown in figure 1. In general, the dopant profiles of the ion-implanted emitters are quite similar to the POCl$_3$-diffused emitter. However, the phosphorus surface concentration of the implanted emitter is slightly lower which may explain the reduced J_{0e} values due to a reduced amount of inactive phosphorus atoms. When comparing the dopant profiles of the two implanted emitters in figure 1, the ion-implanted emitter 1 which applies the annealing recipe 1 in table 1 shows a slightly higher phosphorus surface concentration and a slightly shallower emitter due to the lower thermal budget of the annealing recipe 1 compared to annealing recipe 2.

3. PERC solar cells with ion-implanted phosphorus emitter and Al$_2$O$_3$/Si$_N_x$ rear passivation

3.1. PERC solar cell processing

As a next step, we process PERC solar cells according to the process flow on the left side of figure 2. We use 156x156 mm2 boron doped Cz wafers with a resistivity of 2 – 3 Ω*cm and a starting thickness of 190 μm. We obtain a single sided texturing of the front side using a rear protection layer which is removed later in the process flow. The phosphorus ions are implanted with the same implant parameters as used in table I and then annealed applying recipes similar to recipe 1 and 2 in table I. We deposit a SiNi$_x$ anti-reflective coating on the front side and then remove the dielectric on the wafer rear side with a diluted HF etch. Afterwards, we deposit the ALD Al$_2$O$_3$/SiNi$_x$ passivation stack on the wafer rear side followed by laser contact openings (LCO) to form line-shaped rear contacts. The metal contacts are deposited by print-on-print of Ag paste on the front side and full-area screen printing of Al paste on the rear side followed by drying and firing in conveyor belt furnaces. The resulting PERC solar cell is shown schematically in figure 3. As a reference, we also process PERC solar cells with POCl$_3$-diffused emitter
and ALD Al$_2$O$_3$/SiN$_x$ rear passivation with a process flow very similar as described in Ref. 7. To assess the efficiency improvement due to the rear passivation, we process reference solar cells with full-area Al-BSF and implanted phosphorus emitter. Figure 2 shows on the right side one future option of a very lean process flow which is suitable for industrial manufacturing. Compared to the present process flow on the left side, we intend to remove the rear protection layer and apply a single sided alkaline texturing instead which then would allow to remove the dielectric etch later in the process flow as well. This work is, however, not yet part of this paper.

3.2. PERC solar cell results

![Fig. 3. Schematic drawing of the PERC solar cells with ion-implanted phosphorus emitter and Al$_2$O$_3$/SiN$_x$ rear passivation. The emitter is passivated with a SiO$_2$/SiN$_x$ layer stack, the front and rear metal contacts are screen-printed with a local Al-BSF on top of the rear contacts.](image)

![Fig. 4. IV parameters of ion-implanted (I2) PERC cells applying two different anneals and an ALD Al$_2$O$_3$/SiN$_x$ rear passivation. The anneal 2 has a higher thermal budget compared to anneal 1. For comparison, the IV parameters of POCl$_3$-diffused PERC cells with ALD Al$_2$O$_3$/SiN$_x$ rear passivation as well as full-area Al-BSF cells with implanted emitter are shown. The IV parameters of the implanted PERC cells are quite similar to the POCl$_3$-diffused PERC cells and show a good improvement in Voc and Jsc compared to the full-area Al-BSF cells.](image)
The resulting solar cell parameters of the ion-implanted (I²) PERC cells with ALD Al₂O₃/SiNx rear passivation are summarized figure 4. Anneal 2 has a higher thermal budget than anneal 1 which results in slightly lower short circuit current density \(J_{sc} \) values but higher fill factors FF and hence comparable efficiencies up to 19.6%. For comparison, the IV parameters of POCl₃-diffused PERC cells with ALD Al₂O₃/SiNx rear passivation as well as full-area Al-BSF cells with implanted emitter are shown in figure 4 as well. The IV parameters of the implanted PERC cells are quite similar to the POCl₃-diffused PERC cells and show a good improvement in \(V_{oc} \) and \(J_{sc} \) compared to the full-area Al BSF cells. The best ion-implanted PERC solar cell demonstrates a conversion efficiency \(\eta \) of 20.0% as shown in table 2. For comparison, we include the values of our best POCl₃-diffused reference PERC cell. Within the limited statistics, we consider the implanted PERC and the POCl₃ PERC solar cell parameters as very similar. However, compared to the best full-area Al-BSF cell with implanted emitter in table II, the implanted PERC cell offers a 0.9% higher conversion efficiency.

Table 2. Solar cell parameters measured under standard testing conditions of the best PERC solar cell with ion-implanted emitter and ALD Al₂O₃/SiNx rear passivation. For comparison, the best POCl₃-diffused PERC cell as well as the best solar cell with full-area Al-BSF are shown as well.

<table>
<thead>
<tr>
<th>Solar cell type</th>
<th>Rear Passivation</th>
<th>(\eta) [%]</th>
<th>(V_{oc}) [mV]</th>
<th>(J_{sc}) [mA/cm²]</th>
<th>FF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implanted PERC</td>
<td>Al₂O₃/SiNx</td>
<td>20.0</td>
<td>659</td>
<td>38.7</td>
<td>78.3</td>
</tr>
<tr>
<td>POCl₃ Reference PERC</td>
<td>Al₂O₃/SiNx</td>
<td>19.7</td>
<td>659</td>
<td>38.7</td>
<td>77.3</td>
</tr>
<tr>
<td>Implanted Al-BSF</td>
<td>n.a.</td>
<td>19.1</td>
<td>643</td>
<td>37.4</td>
<td>79.6</td>
</tr>
</tbody>
</table>

![Fig. 5. IQE and reflectance measurements of the best cells of figure 4.](image)

The implanted PERC cell with anneal 1 shows the highest IQE in the blue wavelength regime probably due to the lowest emitter recombination as suggested by the \(J_{0e} \) values of table I. As expected, the IQE and reflectance in the infrared wavelength regime are very similar which proofs the successful implementation of the Al₂O₃/SiNx rear passivation to PERC cells with ion-implanted emitters.

Figure 5 shows the IQE and reflectance measurements of the best PERC cells of figure 4. The implanted PERC cell with anneal 1 shows the highest IQE in the blue wavelength regime probably due to the lowest emitter recombination as suggested by the \(J_{0e} \) values of table I. However, all implanted PERC cells show a higher reflectance in the blue wavelength regime compared to the POCl₃ PERC cell due to
SiO$_2$/SiN$_x$ layer stack which has a higher reflectance compared to a conventional SiN$_x$ anti-reflective coating. As expected, the IQE and reflectance in the infrared wavelength regime are very similar for all PERC cells which proofs the successful implementation of the Al$_2$O$_3$/SiN$_x$ rear passivation to PERC cells with ion-implanted emitters.

4. Conclusions

We have evaluated Al$_2$O$_3$/SiN$_x$ rear passivation layers in combination with an oxide passivated ion-implanted emitter for industrial-type PERC solar cells. We obtain emitter saturation current densities of 93 fA/cm2, which is significantly lower compared to a typical POCl$_3$ diffused emitter with 140 fA/cm2. Ion-implanted PERC cells with Al$_2$O$_3$/SiN$_x$ rear passivation show conversion efficiencies up to 20.0% which is comparable to POCl$_3$-diffused PERC cells. The emitter dopant profile can be adjusted by the thermal budget of the anneal in order to optimize the process window between J_{sc} and FF losses. The IQE and reflectance of implanted and POCl$_3$-diffused PERC cells in the long wavelength regime is almost identical which demonstrates the successful implementation of the Al$_2$O$_3$/SiN$_x$ rear passivation to PERC cells with ion-implanted emitters. Further gain in conversion efficiency for ion implanted PERC cells are expected by incorporation of patterned ion implant (e.g. selective emitter) and advanced metallization. Future work will focus on adapting the process flow to industrial manufacturability, leveraging the single side patterned doping via ion implantation.

Acknowledgements

We thank our colleagues at Varian and ISFH for solar cell processing. Also, the continuous support of DEK, Heraeus, Ferro, and DuPont to advance our screen printing processes is gratefully acknowledged.

References

