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A Four-Class Subscheme of the Association Scheme Coming from the
Action of P GL(2,4 f )

HAJIME TANA KA

Let� denote the set oftwo-element subsets of the projective linePG(1,q), whereq = 2e, e ≥ 1.
The character table of the association schemeX(PGL(2,q),�) is calculated. Then by using this
character table, we prove that the conjectured subscheme of de Caen and van Dam is indeed an
association scheme.

c© 2002 Academic Press

1. INTRODUCTION

Let G be a finite group acting transitively on a finite setX. ThenG acts naturally onX × X
and the orbits ofG acting onX × X form the relations of an association scheme (these orbits
are called theorbitals). We denote this association scheme byX(G, X). In [3], de Caen and
van Dam studiedthe association scheme coming from the action of the projective general lin-
ear groupPGL(2,q) on the set of two-element subsets of the projective linePG(1,q). (This
action is naturally induced by the action ofPGL(2,q) on PG(1,q).) Then they conjectured
the existence of an interesting four-class subscheme in the caseq = 4 f , f ≥ 2. Theoretically,
if we can compute the character table of the association scheme, then by applying a lemma of
Bannai [1, Lemma 1], we would be able to determine all subschemes. Fortunately, a method
for computing thischaracter table is given in Kwok [5], where he computed the character ta-
ble of the associationschemeX(O(3,q),O(3,q)/O+(2,q)) for oddq (this information was
communicated to the author by Professor Bannai in his lecture at Kyushu University). In this
paper we calculate the character table explicitly and then, using this table, we prove that the
conjectured subscheme of de Caen and van Dam is indeed an association scheme.

Throughout this paper, we always assumeq = 2e, e ≥ 1. For each nonzero vector
(x

y

)
in F2

q, we denote the projective point inPG(1,q) which contains
(x

y

)
by

[x
y

]
. Let � be

the set of two-element subsets ofPG(1,q). Notice that sinceq is even we can uniquely
take an element of the special linear groupSL(2,q) as a representative of each element in
PGL(2,q) = GL(2,q)/Z(GL(2,q)), whereZ(GL(2,q)) is the center ofGL(2,q). There-
fore in this caseSL(2,q) is isomorphic toPGL(2,q) and we may consider the action of
SL(2,q) on� instead ofPGL(2,q). In what follows we letG = SL(2,q) for brevity. Let
H be the stabilizer of

{[1
0

]
,
[0
1

]}
∈ � in G, thenX(G, �) is exactly the same asX(G,G/H),

and this association scheme is found to be symmetric (see Section 2.2).
Now, let P = (pi ( j )) bethe character table ofX(G,G/H), where the( j, i )-entry of P is

pi ( j ). Then each entry ofP is given by

pi ( j ) =
1

|H |

∑
x∈Hgi H

χ j (x)

=
1

|H |

∑
k

|Hgi H ∩ Ck|χ j (ck) (1)

where1G
H = χ0 + χ1 + · · · + χd is the decomposition of the permutation character into

irreducible characters,{Hgi H | 0 ≤ i ≤ d } is the set of double cosets ofH in G, {Ck} is the
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set ofconjugacy classes ofG andck is a class representative of Ck (cf. Bannai-Ito [2, p. 174
Corollary 11.7]).

REMARK . X(G,G/H) is commutative if and only if 1G
H is multiplicity free. Henceχ0,

χ1, . . . , χd are distinct irreducible characters.

REMARK . There is a natural one-to-one correspondence between the relations ofX(G,
G/H) andthe set ofdouble cosets ofH in G. Namely the orbital which contains(g1H, g2H)
∈ G/H × G/H corresponds toHg−1

1 g2H .

Thus in the same way as Kwok [5], we determine

(i) the set of conjugacy classes and the group character table ofG,
(ii) the set of double cosets ofH in G,

(iii) the order of the intersection of each conjugacy class and each double coset,
(iv) the decomposition of the permutation character 1G

H into irreducible characters.

2. COMPUTATIONS

2.1. Conjugacy classes and group character table of G= SL(2,q). These facts are found
in Steinberg [6]. Letρ andσ be primitiveelements ofFq andFq2 respectively, whereρ =

σq+1. Then we have the conjugacy classes ofG as follows:

I =

{(
1

1

)}
: size 1

U =

{
g ∈ G

∣∣∣∣ g ∼

(
1 1

1

)}
: sizeq2

− 1

Tk =

{
g ∈ G

∣∣∣∣ g ∼

(
ρk

ρ−k

)}
(k = 1,2, . . . , q

2 − 1) : sizeq(q + 1)

Sl =

{
g ∈ G

∣∣∣∣ g ∼

(
σ (q−1)l

σ−(q−1)l

)}
(l = 1,2, . . . , q

2 ) : sizeq(q − 1).

The character table ofG is given as follows.

χ
(n)
q+1 χ

(m)
q−1

χ1 χq n = 1,2, . . . , q
2 − 1 m = 1,2, . . . , q

2

I 1 q q + 1 q − 1

U 1 0 1 −1

Tk 1 1 εnk
+ ε−nk 0

k = 1,2, . . . , q
2 − 1

Sl 1 −1 0 −(τml
+ τ−ml)

l = 1,2, . . . , q
2

whereε andτ are primitive(q−1)th and (q+1)th roots of unity in the complex number field,
respectively.
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2.2. Double cosets of H in G.Clearly the stabilizer of
{[1

0

]
,
[0
1

]}
in G is given by

H =

{(
z

z−1

)
,

(
z

z−1

)∣∣∣∣ z ∈ F∗
q

}
.

The double cosets ofH in G are in one-to-one correspondence with the orbits ofH acting on
�, that is, for eachH -orbit3 in �, the corresponding double coset consists of the elements
in G which map

{[1
0

]
,
[0
1

]}
into3.

Corresponding Double
Orbits double cosets coset size

30 =

{{[1
0
]
,
[0
1
]}}

H0 = H 2(q − 1)

3′
0 =


{[1

z
]
,
[0
1
]}
,{[1

z
]
,
[1
0
]}

∣∣∣∣∣∣ z ∈ F∗
q

 H ′
0 =


(
α
β α−1

)
,
(

α
α−1 β

)
,(

β α

α−1

)
,
(
α β

α−1

)
∣∣∣∣∣∣∣ α, β ∈ F∗

q

 4(q − 1)2

3t =

{{[ 1
ρa

]
,
[ 1
ρb

]} ∣∣∣∣∣ a − b ≡ ±t
(mod q − 1)

}
Ht =

(
α β
γ δ

) ∣∣∣∣∣∣ α, β, γ, δ ∈ F∗
q,

α−1δ−1βγ = ρ±t

 2(q − 1)2

(t = 1,2, . . . , q
2 − 1)

Obviouslyg−1
∈ HgH for all g ∈ G. This implies thatX(G,G/H) is a symmetric associ-

ation scheme.

2.3. Order of the intersection of each conjugacy class and each double coset.In order to
describe these numbers, we define

ϕk = ρk
+ ρ−k (k = 1,2, . . . , q

2 − 1),

ϕ′

l = TrFq2/Fq(σ
l (q−1)) = σ l (q−1)

+ σ−l (q−1) (l = 1,2, . . . , q
2 ),

ψt = (1 + ρt )−1 (t = 1,2, . . . ,q − 2),

where TrFq2/Fq is the trace map fromFq2 ontoFq. The elementsψ1, ψ2, . . . , ψq−2 are dis-
tinct, so that we have

Fq\{0,1} = {ψ1, ψ2, . . . , ψq−2}.

Also it follows from the definition ofψt that

ψt + ψ−t = (1 + ρt )−1(1 + ρ−t )−1
{(1 + ρt )+ (1 + ρ−t )}

= (1 + ρt )−1(1 + ρ−t )−1(1 + ρt )(1 + ρ−t )

= 1 (2)

for t = 1,2, . . . ,q − 2. Notice that the characteristic polynomial of an element inTk (respec-
tively Sl ) is given byx2

+ ϕkx + 1 (x2
+ ϕ′

l x + 1). Thus for each elementg =

(
α β
γ δ

)
in

G, g belongs toTk (Sl ) if and only if α + δ = ϕk (α + δ = ϕ′

l ). This also implies thatϕk

(k = 1,2, . . . , q
2 − 1),ϕ′

l (l = 1,2, . . . , q
2 ) are distinct elementsin F∗

q, that is,

F∗
q = {ϕ1, ϕ2, . . . , ϕ q

2 −1, ϕ
′

1, ϕ
′

2, . . . , ϕ
′
q
2
}.

For the proofof the following lemma, we refer to Hirschfeld [4, p. 3].
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LEMMA 2.1. Let a and b be elements ofF∗
q. Then theequation x2 + ax + b = 0 has two

(distinct) solutions inFq if and only ifTrFq/F2(a
−2b) = 0.

As an immediate consequence of Lemma 2.1, we obtain

{ϕ1, ϕ2, . . . , ϕ q
2 −1} = {z ∈ F∗

q | TrFq/F2(z
−1) = 0 }, (3)

and
{ϕ′

1, ϕ
′

2, . . . , ϕ
′
q
2
} = {z ∈ F∗

q | TrFq/F2(z
−1) = 1 }. (4)

Now we can find the order of the intersection of each conjugacy class ofG and each double
coset ofH in G as follows.

For example, suppose that the conjugacy class isSl and the double coset isHt , t 6= 0. If an
elementg =

(
α β
γ δ

)
∈ G belongs toSl ∩ Ht , theng must satisfy the following equations:

αδ + βγ = 1,

α + δ = ϕ′

l ,

and in addition, either one of the following two equations:

βγ = ρtαδ, (5a)

βγ = ρ−tαδ. (5b)

If g satisfies (5a), thenα is asolution of the quadratic equation

x2
+ ϕ′

l x + ψt = 0,

and foreachα there are exactlyq −1 choices for the other entriesβ, γ andδ. By Lemma2.1,
the number of solutionsof this quadratic equation is equal to

1 + (−1)TrFq/F2(ϕ
′
l
−2
ψt ),

that is, the number of elementsg ∈ Sl which satisfy (5a) is given by

(q − 1){1+ (−1)TrFq/F2(ϕ
′
l
−2
ψt )}.

Similarly, the number of elementsg ∈ Sl which satisfy (5b) is given by

(q − 1){1+ (−1)TrFq/F2(ϕ
′
l
−2
ψ−t )}.

Therefore we have

|Sl ∩ Ht | = (q − 1){2+ (−1)T(ϕ
′
l ,ψt ) + (−1)T(ϕ

′
l ,ψ−t )},

where
T(a,b) = TrFq/F2(a

−2b) (6)

for a,b ∈ F∗
q. Furthermore it follows from (2) and (4) that

T(ϕ′

l , ψt )+ T(ϕ′

l , ψ−t ) = TrFq/F2(ϕ
′

l
−2
(ψt + ψ−t ))

= TrFq/F2(ϕ
′

l
−2
)

= 1, (7)

so that
|Sl ∩ Ht | = 2(q − 1).

After doing similar calculations, we obtain the following table.
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Ht
H0 = H H ′

0 t = 1,2, . . . , q
2 − 1

I 1 0 0

U q − 1 2(q − 1) 2(q − 1)

Tk 2 6(q − 1) 2(q − 1)
{
1 + (−1)T(ϕk,ψt )

}
k = 1,2, . . . , q

2 − 1

Sl 0 2(q − 1) 2(q − 1)

l = 1,2, . . . , q
2

It follows from the above table that

|Ht | = 2(q − 1)2 = 2(q − 1)+

q
2 −1∑
k=1

2(q − 1){1+ (−1)T(ϕk,ψt )} +
q

2
· 2(q − 1)

for t = 1,2, . . . , q
2 − 1, from which weobtain

q
2 −1∑
k=1

(−1)T(ϕk,ψt ) = −1. (8)

Similarly
q
2 −1∑
t=1

(−1)T(ϕk,ψt ) = −1 (9)

for k = 1,2, . . . , q
2 − 1.

2.4. Decomposition of1G
H into irreducible characters.In order to find the irreducible char-

acters which appear in the decomposition of 1G
H , we need to compute the multiplicity〈1G

H , χ〉G

of each irreducible characterχ of G in 1G
H . By Frobenius reciprocity we have

〈1G
H , χ〉G = 〈1H , χ ↓H 〉H

=
1

|H |

∑
k

|H ∩ Ck|χ(ck) (10)

where{Ck} is theset of conjugacy classes ofG, ck is a class representative ofCk, andχ ↓H

is the restriction ofχ to H . The numbers|H ∩ Ck| are given in the previous subsection, and
we can easily verify that

1G
H = χ1 + χq + χ

(1)
q+1 + · · · + χ

(
q
2 −1)

q+1 . (11)

3. CHARACTER TABLE OF X(G, �)

Applying the results obtained in the previous section to (1), we have the character tableP
of X(G, �).
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Ht

H0 = H H ′
0 t = 1,2, . . . , q

2 − 1

χ1 1 2(q − 1) q − 1

χq 1 q − 3 −2

χ
(n)
q+1 1 −2

q
2 −1∑
k=1

(−1)T(ϕk,ψt )(εnk
+ ε−nk)

n = 1,2, . . . , q
2 − 1

4. CONSTRUCTION OF AFOUR-CLASS SUBSCHEME OFX(G, �)

As mentioned before, in this section we verify that the putative subscheme conjectured in
[3] is indeed a subscheme ofX(G, �).

From now on, we assumeq = 4 f , f ≥ 2. Then, in our terminology the conjecture in [3] is
translated into the following form.

THEOREM 4.1. Partition the set of double cosets of H in G into five subsets as follows:{
H0

}
,

{
H ′

0

}
,

{
Ht

∣∣ (2 f
+ 1)|t

}
,

{
Ht

∣∣ (2 f
− 1)|t

}
,

{
Ht

∣∣ (2 f
± 1) - t

}
.

Then this partition formsa subscheme ofX(G, �).

PROOF OFTHEOREM 4.1. We also partition the set of the irreducible characters which
appear in the decompositionof 1G

H into five subsets:{
χ1

}
,

{
χq

}
,

{
χ
(n)
q+1

∣∣ (2 f
+ 1)|n

}
,

{
χ
(n)
q+1

∣∣ (2 f
− 1)|n

}
,

{
χ
(n)
q+1

∣∣ (2 f
± 1) - n

}
.

Then, from these two partitions, we have 5× 5 = 25 submatrices of the character tableP of
X(G, �). The key condition which we need to check is:

— each submatrix of P defined above has constant row sum.

The theorem is then an immediate consequence of a lemma in Bannai [1, Lemma 1].
From now on,in order to verify this condition we observe the values ofT(ϕk, ψt ) in detail.

For convenience in the discussion, we let

tk =
(
T(ϕk, ψ1), . . . , T(ϕk, ψ 4 f

2 −1
)
)
, k = 1,2, . . . , 4 f

2 − 1.

First of all, noticethat

{ϕ−2
k ψt | t = 1,2, . . . ,4 f

− 2} = F4 f \{0, ϕ−2
k }.

There are4 f

2 elementsα in F4 f such that TrF4 f /F2(α) = 0, and in particular TrF4 f /F2(ϕ
−2
k ) =

0 by (3). Since in the same way as (7) we have

T(ϕk, ψt ) = T(ϕk, ψ−t ), (12)

hencewe conclude that for eachk = 1,2, . . . , 4 f

2 − 1, tk has (4f −1
− 1) zeros.
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Next it follows from (3) and (4) that

{ϕu(2 f +1)| u = 1,2, . . . ,2 f −1
− 1} = {z ∈ F∗

2 f | TrF2 f /F2(z
−1) = 0}, (13)

and
{ϕv(2 f −1)| v = 1,2, . . . ,2 f −1

} = {z ∈ F∗

2 f | TrF2 f /F2(z
−1) = 1}. (14)

We check the values ofT(ϕk, ψt ) in each of the following six cases.

(i) Case(2 f
+ 1)|k, (2 f

+ 1)|t : in this case, bothϕk andψt belong toF2 f . Thus
T(ϕk, ψt ) = TrF4 f /F2(ϕ

−2
k ψt ) = 0.

(ii) Case(2 f
+ 1)|k, (2 f

− 1)|t : let k = u(2 f
+ 1) and lett = w(2 f

− 1). Then by (2)
we have

(ψw(2 f −1))
2 f

= (1 + ρw(4
f
−2 f ))−1

= ψ−w(2 f −1) = ψw(2 f −1) + 1. (15)

Hence it follows from (13) that

T(ϕk, ψt ) = TrF2 f /F2

(
ϕ−2

k (ψt + ψ2 f

t )
)

= TrF2 f /F2(ϕ
−2
u(2 f +1)

)

= 0.

(iii) Case(2 f
− 1)|k, (2 f

+ 1)|t : T(ϕk, ψt ) = 0.
(iv) Case(2 f

− 1)|k, (2 f
− 1)|t : T(ϕk, ψt ) = 1.

(v) Case(2 f
± 1) - k, (2 f

+ 1)|t : let t = w(2 f
+ 1). In this caseψt ∈ F2 f , ϕk 6∈ F2 f and

T(ϕk, ψt ) = TrF2 f /F2

(
(ϕ−2

k + (ϕ−2
k )2

f
)ψt

)
.

Also we have{
(ϕ−2

k + (ϕ−2
k )2

f
)ψw(2 f +1)

∣∣ w = 1,2, . . . ,2 f
− 2

}
= F2 f \

{
0, ϕ−2

k + (ϕ−2
k )2

f }
.

There are 2f −1 elementsα in F2 f such that TrF2 f /F2(α) = 0 and by (3) we have

TrF2 f /F2

(
ϕ−2

k + (ϕ−2
k )2

f )
= TrF4 f /F2(ϕ

−2
k )

= 0.

Therefore (12) implies thattk has(2 f −2
− 1) zeros in the positions(2 f

+ 1)|t.
(vi) Case(2 f

± 1) - k, (2 f
− 1)|t : let t = w(2 f

− 1). Then it follows from (15) that
{ψw(2 f −1)| w = 1,2, . . . ,2 f

} is the set of roots of the equation

x2 f
+ x + 1 = 0,

which implies that for eachw = 1,2, . . . ,2 f there is a unique elementz in F2 f such
that

ψw(2 f −1) = ψ2 f −1 + z. (16)

Then since

T(ϕk, ψw(2 f −1)) = T(ϕk, ψ2 f −1)+ TrF2 f /F2

(
(ϕ−2

k + (ϕ−2
k )2

f
) z

)
,
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there are2 f −1 elements in{ψw(2 f −1)| w = 1,2, . . . ,2 f
} with T(ϕk, ψw(2 f −1)) = T(ϕk,

ψ2 f −1), andT(ϕk, ψw(2 f −1)) = T(ϕk, ψ2 f −1) + 1 for the other 2f −1 elements. Thus there
are exactly 2f −1 elements in{ψw(2 f −1)|w = 1,2, . . . ,2 f

} with T(ϕk, ψw(2 f −1)) = 0, and it
follows from (12) thattk has 2f −2 zeros inthe positions(2 f

− 1)|t.
The above observations give us the following:

∑
1≤t≤ 4 f

2 −1
(2 f

+1)|t

(−1)T(ϕk,ψt ) =


2 f −1

− 1 if (2 f
+ 1)|k

2 f −1
− 1 if (2 f

− 1)|k

−1 otherwise,

(17)

∑
1≤t≤ 4 f

2 −1
(2 f

−1)|t

(−1)T(ϕk,ψt ) =


2 f −1 if (2 f

+ 1)|k

−2 f −1 if (2 f
− 1)|k

0 otherwise.

(18)

Finally it follows from (9) that

∑
1≤t≤ 4 f

2 −1
(2 f

±1)-t

(−1)T(ϕk,ψt ) =


−2 f if (2 f

+ 1)|k

0 if (2 f
− 1)|k

0 otherwise.

(19)

With these preparations, the previous condition on constant row sums is verified by direct
calculations as follows. Thus we have finished the proof of Theorem 4.1.

Ht Ht Ht

H0 H ′
0 (2 f

+1)|t (2 f
−1)|t (2 f

±1)-t

χ1 1 2(4f
− 1) (2 f −1

− 1)(4 f
− 1) 2 f −1(4 f

− 1) 2 f (2 f −1
− 1)(4 f

− 1)

χq 1 4 f
− 3 2− 2 f

−2 f
−2 f (2 f

− 2)

χ
(n)
q+1 1 −2 2 f −1(2 f

− 1)+ 1 −2 f −1(2 f
+ 1) 2 f

(2 f
+1)|n

χ
(n)
q+1 1 −2 (2 f −1

− 1)(2 f
− 1) 2 f −1(2 f

− 1) −2 f (2 f
− 2)

(2 f
−1)|n

χ
(n)
q+1 1 −2 1 − 2 f 0 2 f

(2 f
±1)-n

2

REMARK . The above table gives the character table of this four-class subscheme of
X(G, �), which is exactly the same as that conjectured in [3].
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