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Abstract

We compute the threshold-resummed cross section for pseudo-scalar MSSM Higgs boson production by gluon fusion at hadron colliders. The
calculation is performed at next-to-next-to leading logarithmic accuracy. We present results for both the LHC and Tevatron Run II. We analyze the
factorization and renormalization scale dependence of the results, finding that after performing the resummation the corresponding cross section
can be computed with an accuracy better than 10%.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The hunt for the Standard Model (SM) Higgs boson is
clearly one of the biggest physics goals at the LHC. Its search
is not only a great challenge from the experimental point of
view, it also requires a huge theoretical effort in order to pro-
vide very precise predictions both for signal and background.
Besides the SM, there are many other options for New Physics
(NP). Among the possible scenarios, the MSSM is a promis-
ing one. It provides a solution for the hierarchy problem and
also introduces a good dark matter candidate, the lightest su-
persymmetric particle. The Higgs boson sector of this model
consists in two complex Higgs doublets. After the EWSB,
three degrees of freedom are absorbed by the electroweak mas-
sive bosons and the remaining five give rise to the usual SM
scalar Higgs boson (h), a heavier neutral one (H ), two charged
scalars (H±) and a pseudoscalar neutral Higgs (A). In the
MSSM, the tree level masses depend upon two parameters,
which can be selected to be the mass of the pseudoscalar Higgs
(mA) and the ratio of the vacuum expectation values of the
two doublets tanβ = v2/v1 [1,2]. These parameters are con-
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strained by LEP and Tevatron experiments, with bounds given
by mA > 100 GeV and with the interval 0.5 < tanβ < 2.4 cur-
rently excluded [3]. The actual status of SM and SUSY Higgs
production at LHC is thoroughly reviewed in Ref. [4].

The main channel for the production of an on-shell neutral
Higgs boson at the LHC, both for SM and MSSM bosons, is the
gluon fusion process. Therefore, the corresponding cross sec-
tion needs to be under good theoretical control. The calculation,
for both CP-even and CP-odd Higgs particles, has been per-
formed up to next-to-leading order (NLO) in an exact way [5].
Surprisingly, the NLO corrections turned out to be quite large,
accounting for an increase of almost 100% of the leading-order
(LO) result. Furthermore, adding the NLO term did not result
in a sizeable reduction of the renormalization and factorization
scale dependence. Nevertheless, the NLO corrections showed
that the gluon-Higgs interactions could be very well approx-
imated by using an effective Lagrangian approach, inspired
by low energy theorems. This effective theory is obtained by
considering an infinite mass limit for the top quark [6]. This
approximation allowed to perform the next-to-next-to-leading
order (NNLO) calculations for the inclusive cross section and
even to analyze the transverse momentum distribution of the
Higgs boson [7,8].

At NNLO accuracy, the dominant soft-virtual corrections
were first computed in [9,10], while the full result [11–14] be-
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came available later. For pseudoscalar Higgs, the full NNLO
contribution was computed in Refs. [11,15,16]. These correc-
tions turned out to be considerably smaller than the NLO ones,
bringing a reasonable reduction in the scale dependence as
well.

The soft-gluon resummation, which includes in the cross
section the dominant effects of the higher order terms of the
perturbative QCD series, was performed only for the scalar
Higgs, up to next-to-next-to-leading logarithmic (NNLL) ac-
curacy [17]. These corrections showed a modest numerical im-
pact, and a further (slight) reduction of the scale dependence,
providing a hint on the convergence of the asymptotic QCD
perturbative series. The quantitative reliability of the soft-gluon
approximation was probed by comparing the truncation of the
resummed result at NLO and NNLO with the fixed-order cal-
culation [10,17]. This comparison showed that the resummed
result can also be trusted away from the threshold region, thus
convalidating the accuracy of the threshold resummation in the
entire kinematical phase space.

In the present work we compute the cross section for CP-odd
Higgs production by gluon fusion up to NNLL, in the infinite
top mass limit. As the corrections for scalar and pseudoscalar
Higgs do not greatly differ, we still expect, based on the scalar
Higgs result, that the soft-gluon resummation is a highly accu-
rate approximation to the exact result in the whole phase space,
and not only around the threshold region.

This Letter is organized as follows. In Section 2 we intro-
duce our notation and briefly review the theoretical framework,
including QCD cross sections at fixed-order and the basics of
soft-gluon resummation. In Section 3 we present and discuss
our results, both for the LHC and the Tevatron Run II while in
Section 4 we give our conclusions.

2. Theoretical frame

According to the mass factorization theorem, the inclusive
cross section for the production of the pseudoscalar Higgs bo-
son by the collision of hadrons h1 and h2 may be written as

σ
(
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A

) =
∑
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0

dx1 dx2 fa/h1
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2
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)
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,

where MA is the pseudoscalar Higgs boson mass, τA = M2
A/s,

and μF and μR are the factorization and renormalization
scales, respectively. σ̂ab denote the partonic cross section for
the process a + b → A + X, computable in perturbative QCD.
The parton densities of the colliding hadrons are denoted by
fa/h(x,μ2

F ), where the subscript a labels the parton type. We
use parton densities as defined in the MS factorization scheme.
For practical purposes, one works with the hard coefficient
functions Gab instead of the partonic cross sections, the first
one given by

(2)σ̂ab = σ (0)zGab

(
z;αS
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R

)
,M2

A/μ2
R;M2

A/μ2
F
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,

where σ (0) is the Born level contribution. The incoming mass-
less partons a, b do not couple to the pseudoscalar Higgs boson
directly. In hadron collisions the main production mechanism
is through heavy quark triangle loops and therefore, the total
cross section also depends on the top (Mt ) and bottom (Mb)
quark masses.

The NLO coefficients G
(1)
ab have been exactly computed in

Ref. [5], where it was also observed that the NLO Higgs bo-
son cross section can be well approximated in the low tanβ

regime by considering its limit Mt � MA [18]. Hence, along
this Letter we will work within the large-Mt approximation: we
consider the case of a single heavy quark (the top), and Nf = 5

light-quark flavors, neglecting all the contributions to G
(n)
ab that

vanish when MA/Mt → 0. Nevertheless, the full dependence
on Mt and Mb is included in σ (0) in order to improve the accu-
racy of the calculation. The large-Mt approximation allows the
use of the effective-Lagrangian approach [6,19,20], that shrinks
the top quark triangle loop into an effective point-like vertex,
considerably simplifying the evaluation of the Feynman dia-
grams involved in the process.

The heavy top mass limit is reliable as long as tan2 β �
Mt/Mb [21], because of the quark-Higgs couplings. Therefore,
any calculation relying in the Mt → ∞ approximation is valid
for low values of tanβ . Moreover, we assume that the lighter
squarks are much heavier than the top quark, thus their contri-
bution can be safely neglected.

The coefficient function Gab(z) is dominated by soft terms
in the limit z → 1. Therefore, our main objective is to study
the effect of soft-gluon contributions to all perturbative orders.
This task requires to work in the Mellin (or N -moment) space
[22,23]. We thus introduce our notation in the N -space.

We consider the Mellin transform σN(M2
A) of the hadronic

cross section σ(s,M2
A). The N -moments with respect to τA =

M2
A/s at fixed MA are customarily defined as follows:
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In N -moment space, Eq. (1) takes a simple factorized form
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where fi/h,N and σ̂ij,N represent the Mellin transforms of the
parton distributions fi/h and of the partonic cross sections σ̂ij ,
respectively.

In order to perform the threshold resummation, we first
note that the threshold region z → 1 corresponds to the limit
N → ∞ in Mellin space. The dominant contribution in this
limit is due to the large logarithmic terms αn

S lnm N . Being the
only channel open at the Born level, the gg → A subprocess is
the unique partonic contribution that can give rise to the large
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threshold logarithms. The formalism to systematically perform
soft-gluon resummation for hadronic processes was developed
in Refs. [22,23]. In the case of Higgs boson production, one has

Ggg,N = α2
S

{
1 +

+∞∑
n=1

αn
S

2n∑
m=0

G
(n,m)
A lnm N

}
+O(1/N)

(5)= G
(res)
gg,N +O(1/N),

where the dominant contributions in the large-N limit may be
reorganized in the following all-order resummation formula:
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The function Cgg(αS) contains all the contributions that are
constant in the large-N limit. They are originated from the hard
virtual contributions and non-logarithmic soft corrections, and
can be computed as a power series expansion in αS . The large
logarithmic terms αn

S lnm N (with 1 � m � 2n), which are due
to soft-gluon radiation, are included in the exponential factor
expGh. It can be expanded as
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where λ = b0αS(μ2
R) lnN and b0 is the first coefficient of the

QCD β-function.
Due to the universality of the soft-gluon emission, the G fac-

tor is independent on the type of Higgs boson produced in the
final state. Hence, the coefficients of the expansion are the same
for both h and A. The expressions for these coefficients can be
found in Ref. [17]. The difference in the resummed expansion
between the scalar and pseudoscalar Higgs only shows up in the
Cgg factor which, being partially originated on the hard-virtual
contribution, obviously depends on the Higgs type under con-
sideration. For the sake of brevity, we only write the differences
between the A and the h terms, which read
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where Nf is the number of different light quark flavors.

Going back to Eq. (7), the term lnNg
(1)
h resums all the lead-

ing logarithmic (LL) contributions αn lnn+1 N , g
(2) contains
S h
the next-to-leading logarithmic (NLL) terms αn
S lnn N , αSg

(3)
h

collects the next-to-next-to-leading logarithmic (NNLL) terms
αn+1

S lnn N , and so forth. In this context, the product αS lnN

is formally considered as being of order unity. Therefore, the
ratio of two successive terms in the expansion (7) is formally
of O(αS), which makes the resummed logarithmic expansion
in Eq. (7) as systematic as the usual fixed-order expansion in
powers of αS .

The leading collinear contributions can also be included in
the soft-gluon resummation formula by performing [17,19] the
following shift

(9)C(1)
gg → C(1)

gg + 6
lnN

N
,

that correctly resums all the terms of the type (αn
S ln2n−1 N)/N

that appear in G
(n)
gg .

When attempting for the resummation, one is interested in
taking some advantage of the full fixed-order cross section cal-
culation as well. It is therefore customary [17] to perform a
matching between both approaches, which can be schematically
written as

(10)σ matched = σ res + σ f.o − σ res
∣∣
f.o,

where σ res corresponds to the result obtained using Eq. (6), σ f.o

is the fixed-order cross section and σ res|f.o represents the expan-
sion of the resummed result at the same order in αS as the fixed-
order result. This improved matched cross section is our final
result for the process. In consequence, throughout the Letter we
shall refer to the different orders of the matched cross sections
directly as LL, NLL and NNLL. The accuracy of the matching
is assured by the order at which the Cgg coefficient is computed,
being obtained by a direct comparison between the resummed
and the fixed-order calculation. Therefore, in σ f.o −σ res|f.o only
the hard terms, which are strongly suppressed in the N → ∞
limit, survive.

Recently, the function g
(4)
h was presented [24,25]. In prin-

ciple, it allows to perform the resummation up to NNNLL ac-
curacy. However, the full matched calculation at NNNLL, can
only be done if the fixed-order NNNLO result1 were available.
Nowadays, only the soft contribution was derived [25]. We have
decided to look at the effect of including the g

(4)
h term and

setting C
(3)
gg = 0. This inclusion leads to a really slight modi-

fication of the full NNLL result thus validating the convergence
of the resummed series expansion, and allowing us to safely ne-
glect the g

(4)
h function along this work.

Finally, once the expression of the cross section has been
computed in N -space, the physical result can be obtained by
Mellin inversion. In order to avoid the Landau singularities ex-
plicitly present in the exponential factor in Eq. (7) we use the
Minimal Prescription, as described in Ref. [26].

1 At least, the full soft-virtual contributions are necessary to compute the co-

efficient C
(3)
gg .
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3. Results

We have developed the program THIGRES, a FORTRAN
code to compute the resummed (fixed-order) cross section up
to NNLL (NNLO) accuracy, both for scalar and pseudoscalar
Higgs boson in the heavy Mt limit. The improvement over pre-
vious calculations lies in the fact that the partonic cross sections
up to NNLO are directly written in Mellin space. The Mellin co-
efficients of the hard functions G

(n)
ab were presented in [27]. We

have recomputed these coefficients in an analytical way, by per-
forming the Mellin transform of the results presented in Refs
[11–13,15,16], finding some non-negligible differences in the
gg and qq̄ channels at NNLO with respect to [27]. The essential
ingredients for Mellin transformation can be found in [28]. We
have taken advantage of the ANCONT Fortran code [29] which
provides most of the required special functions in N -space.

One essential missing element to tackle the calculation in
Mellin space are the PDFs. The available parton distributions
are always given in the x space. In order to transform them to
N -space, we first perform a fit of the densities at the needed
scale using a functional form that allows for a simple analytical
Mellin transform. We find that a linear combination of Eulerian
functions x(α)(1 − x)β , which in Mellin space give rise to beta
functions B(α + N,β − 1) are enough to reproduce all the fea-
tures of the usual parton distributions [30]. After performing
some clever sampling, the result of the fit allows to compute
N -moments analytically with an accuracy better than 0.5%.
Having both the necessary fixed-order and resummed coeffi-
cients and the PDFs in Mellin space, one is able to perform the
calculation in the most efficient way with a considerable reduc-
tion in the required computer time and a gain in precision.

We have worked with the MRST set of PDFs; using the 2001
LO [32] and the 2002 NLO and NNLO [33], although the code
THIGRES allows the use of other PDFs. For the presentation
of our results we use Mt = 176 GeV and Mb = 4.75 GeV.
Therefore, the cross section for the pseudoscalar Higgs boson
is reliable only if tanβ < 6.2

In order to check the validity range the approximation in
tanβ , we will start studying the dependence of the results upon
this parameter. As we are neglecting the finite top mass effects
in the partonic cross sections, tanβ only appears in the Born
term σ0. In Fig. 1 we plot σ0 as a function of tanβ , show-
ing the corresponding variation of the Born cross section, for
a MA = 115 GeV boson at the LHC, according to whether one
includes top and/or bottom mass effects. It is clear that the use
of the infinite top mass limit in the Born cross section is not
reliable. At least the Mt dependence must be included in σ0.
The solid (top + bottom) and dashed (only top) curves are sim-
ilar around tanβ = 1; for this particular value, the pseudoscalar
Higgs coupling to up and down type quarks is the same as for
the scalar one. The inclusion of the bottom mass can be ne-

2 We have explicitly checked the accuracy of the infinite top mass approxi-
mation by comparing our NLO results with the exact NLO ones provided by
the FORTRAN code HIGLU [31]. Within this bounds the accuracy is always
better than 10 percent.
Fig. 1. tanβ dependence of the Higgs production Born cross section at the LHC
for MA = 115 GeV, in the infinite top mass limit (dots), including top mass
effects (dashes) and both top and bottom mass effects (solid).

glected until one enters the region where tanβ becomes close
to

√
Mt/Mb .3 Near this point, both curves start to separate from

each other. It is rather noticeable that for values of tanβ � 10
the bottom effects are completely dominant, and therefore any
calculation relying on the infinite top mass approximation can-
not be trusted for those values. This behaviour is certainly ex-
pected, since the couplings of the pseudoscalar Higgs boson to
the up (down) type quarks are suppressed (enhanced) by a fac-
tor tanβ .

It is very important to know the dependence of the cross
section upon the renormalization and factorization scales, as
a way to estimate the size of the higher order terms not yet
included in the perturbative expansions and therefore evalu-
ate the uncertainties on the theoretical calculations. This de-
pendence is shown in Fig. 2, considering a MA = 150 GeV
Higgs boson at the LHC, using tanβ = 3, for the fixed-order
LO, NLO and NNLO results. In this figure, both scales were
varied from MA/4 to 4MA in three different ways. In the
plot on the left, the varying scales were chosen to be equal
(μF = μR = χMA). In the plot on the center the factorization
scale was changed and the renormalization scale was kept fixed
(μR = MA, μF = χMA), while in the one on the right, the op-
posite variation was performed (μF = MA, μR = χMA). As
expected from the running of αS , the cross section typically de-
creases when μR increases. This effect is clearly noticeable in
the right-side plot, and, more moderate in the left-side plot. The
graph on the center shows how the variation of μF leads to
and opposite behavior, i.e., the cross section increases with the
growing of μF . This can be explained by the following fact:
at the LHC the cross section is mainly sensitive to partons with
momentum fraction x ∼ 10−2. In this x range, the scaling viola-
tion of the parton densities is moderately positive and therefore
one observes an artificially reduced factorization scale depen-
dence. In the left-side plot one sees a partial compensation of
the two effects, although the μR variation clearly dominates.
Another interesting feature of this plot is that it shows how

3 At this particular value, the A-top coupling is equal to the A-bottom cou-
pling.



D. de Florian, J. Zurita / Physics Letters B 659 (2008) 813–820 817
Fig. 2. Scale dependence of the Higgs production cross section at the LHC for MA = 150 GeV, tanβ = 3, at LO (dots), NLO (dashes) and NNLO (solid).

Fig. 3. Scale dependence of the Higgs production cross section at the LHC for MA = 150 GeV, tanβ = 3, at LL (dots), NLL (dashes) and NNLL (solid).
sizeable are the higher order corrections. The change when go-
ing from LO to NLO is quite large, while the inclusion of the
NNLO corrections has a moderate impact. We can consider
this fact as a hint for the convergence of the perturbative se-
ries. Fig. 3 shows the same as Fig. 2, for the resummed cross
section. One sees that the plot on the right keeps the typical
dependence on μR , due to the running of the coupling con-
stant. Nevertheless, the behavior for fixed μR has changed,
especially if we compare the higher orders (NLO vs NLL and
NNLO vs NNLL). The rather flat result of Fig. 2 is now re-
placed by a considerably higher variation, due to the inclusion
of both soft and collinear higher order terms. Therefore, in the
left-side plot, the scale variations are fairly compensated, and
particularly the NNLL result exhibits a tenuous dependence
on the combined scales. Fig. 2 shows that the scale depen-
dence is very slightly reduced when going from LO to NLO
(as was already mentioned), and considerably reduced when
going from NLO to NNLO. The implementation of resumma-
tion effects leads to a further reduction of the scale depen-
dence.

In Fig. 4 we present the fixed-order scale dependence for
MA = 150 GeV with tanβ = 5 now at the Tevatron. In this
figure, many of the overall features that appeared in the LHC
plots are present. The right plot still shows the same depen-
dence, again because of the running of αS . In the middle plot,
in direct contrast with the result from Fig. 2, the cross sections
increases with μF . At the Tevatron, the partons with roughly
x ∼ 0.1 contribute the most and in this region the scaling viola-
tion is slightly negative. Then, in the first plot both scales lead
to an overall decrease in the cross section. Fig. 5 shows now the
scale dependence of the resummed cross section with the same
parameters of the previous figure. The results are very similar to
those in Fig. 3. Here, it is noticeable the rather flat scale depen-
dence of the NNLL result in the left plot. It is quite remarkable
that the LO and LL curves look very much alike. The effects
of threshold resummation become important only when going
to higher (NLL and NNLL) orders. As an overall feature of the
scale dependence graphs, it is important to stress the fact that
the resummed cross section is clearly more stable against scale
variations than the fixed-order result.

The importance of higher-orders effects in commonly pre-
sented through the introduction of K-factors, which are de-
fined as the ratio of the cross section at a given order over
the LO result. As it was mentioned before, within the large-
Mt approximation, the higher order cross sections are pro-
portional to σ0, which is the only term that depends upon
tanβ . Therefore, in the infinite top mass limit, the K-factors
are fully independent on that parameter. In Fig. 6 we present
the K factor at LHC including its scale dependence. The
bands were obtained by independently varying the scales in
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Fig. 4. Scale dependence of the Higgs production cross section at the Tevatron for MA = 150 GeV, tanβ = 5, at LO (dots), NLO (dashes) and NNLO (solid).

Fig. 5. Scale dependence of the Higgs production cross section at the Tevatron for MA = 150 GeV, tanβ = 5, at LL (dots), NLL (dashes) and NNLL (solid).

Fig. 6. Fixed-order and resummed K factors for Higgs production at LHC.
the region 0.5MA � μF , μR � 2MA, with the constraint
0.5 < μF /μR < 2. The LO result that renormalizes the K fac-
tor was computed with μF = μR = MA. The NLO K factor
is around 2, accounting for an increase in the cross sections
of approximately the same amount as the LO result itself. The
NNLO K factor shows a rather more moderate impact. The
inclusion of soft-gluon effects at NLL and NNLL accuracy
slightly increases the cross section on top of the fixed-order
contributions and show a larger overlap between the corre-
sponding bands, indicating a better convergence for the re-
summed series. It becomes clear the reduction of the scale
dependence for the higher orders, as the bands become thinner
as the order grows. We also notice an increase of the K factors
with MA, consistent with the fact that the soft-gluon contribu-
tions become more dominant as the process gets closer to the
hadronic threshold. Once the resummation is performed, the
uncertainty due to scale variation can be estimated to the order
of 10 percent.
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Fig. 7. Fixed-order and resummed K factors for Higgs production at Tevatron.
Finally, Fig. 7 shows the K-factor Higgs mass dependence
at the Tevatron. Here we can see the same overall features as
presented in Fig. 6. As a major difference, we note that the K
factors are considerably bigger for the Tevatron. This is due
to the fact that the Tevatron center of mass energy is closer to
the hadronic threshold, which is the kinematical region where
soft-gluon effects become relevant.

4. Conclusions

We have presented the resummed cross section for pseudo-
scalar Higgs production by gluon fusion at NNLL accuracy in
hadronic colliders, presenting the most relevant results for the
LHC and Tevatron.

Comparing with the fixed-order calculation, the numerical
impact of the resummation effects was found to be rather mod-
erate. This slight variation when going from NNLO to NNLL
is providing a hint for the (hopefully) faster convergence of
the perturbative series. Probably the most striking feature of
the resummed result is the considerably reduction of the scale
dependence. It allows to make theoretical predictions with a
precision of about 10%, which are accurate enough for discov-
ery of a Higgs boson at the LHC and Tevatron. Moreover, our
results presents a probe to supersymmetry, as can also be use-
ful to directly test the MSSM and/or another supersymmetric
extension of the Standard Model in the low tanβ regime.

The Fortran code THIGRES, which computes total cross
sections for both scalar and pseudoscalar Higgs boson up to
NNLO (or NNLL), is provided upon request from the authors.
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