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Abstract

We describe a novel structural image descriptor for image registration called the Fractionally Anisotropic Structural Tensor Repre-

sentation (FASTR), calculated from the local structural tensor (LST). The metric has several characteristics that are advantageous

for multi-modality registration, such as not depending on absolute voxel intensities, and being insensitive to slowly varying in-

tensity inhomogeneities across the image. This latter property is very useful, since many imaging modalities suffer from such

artefacts. Registration accuracy is tested on both computed tomography (CT) to cone-beam CT (CBCT) rigid registration, and

CT to magnetic resonance (MR) rigid registration. The performance is compared with Mutual Information (MI) metric and the

Self Similarity Context (SSC) descriptor. The results show that, for images with significant intensity inhomogeneity, FASTR pro-

duced more accurate results than MI, and faster results than SSC. The results suggest FASTR gives similar benefits in images with

intensity inhomogeneity, but at a fraction of the computation and memory demand.
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1. Introduction

Medical image registration is concerned with the automatic alignment of multiple datasets to a common space. It is

an essential component in a diverse array of applications, including diagnosis, treatment planning, atlas construction

and augmented reality.

One categorisation of medical image registration concerns whether the datasets were acquired using the same

imaging modality (i.e. mono-modality), or using different imaging modalities (i.e. multi-modality). In general, multi-

modality registration is a harder problem, since different tissue types can have vastly different appearances (intensity,

contrast, noise properties etc.) in each modality. Indeed, when aligning a functional and a non-functional imaging

modality — such as Positron Emission Tomography (PET) and Computed Tomography (CT) — there may be no

visible correlation between many parts of the images.
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A key component of any registration algorithm is some means for determining a figure of merit for how well

aligned the images are. In general this is achieved using a similarity metric, which assesses the similarity between

a reference image, R, and a test image, T . Typical similarity metrics include the sum of squared differences (SSD)

between corresponding voxels, or the Mutual Information (MI)1,2 between R and T . More recently, various multi-

dimensional descriptors have been proposed to quantify the relationship between R and T . Examples of such descrip-

tors include Normalised Gradient Fields (NGF)3, Modality Independent Numerical Descriptors (MIND)4, and Self

Similarity Context (SSC)5. In this paper we propose a new descriptor named Fractionally Anisotropic Structural Ten-
sor Representations (FASTR), and a similarity metric based upon it, which has a number of properties advantageous

to multi-modality registration. Specifically:

• Similar to the NGF, since it is based on local gradient orientations the metric does not rely on absolute intensi-

ties.

• Furthermore, since it aligns parallel and anti-parallel gradients, it handles cases where the gradient is in the

opposite direction in the two images (i.e. where a boundary goes from light to dark in one modality, but dark to

light in the other).

• Since the vector field is estimated locally, the metric is robust to global illumination inhomogeneity, e.g. bias-

field artefacts in magnetic resonance (MR) or cone-beam CT (CBCT) images.

2. Method

FASTR is based on Local Structure Tensors6 (LST). These are positive semi-definite matrices which describe the

distribution of gradients within a given image neighbourhood, N . The LST is calculated at voxel x, in an image I,

within a neighbourhood N using

LS T (I, x, σLST) =
∑
i∈N

w(i, σLST)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂I
∂x · ∂I∂x ∂I∂x · ∂I∂y ∂I∂x · ∂I∂z
∂I
∂y · ∂I∂x ∂I∂y · ∂I∂y ∂I∂y · ∂I∂z
∂I
∂z · ∂I∂x ∂I∂z · ∂I∂y ∂I∂z · ∂I∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

where w(i, σLST) is a weighting function that decreases monotonically with distance from the centre of N . In the

following experiments w(i, σLST) is a Gaussian function with standard deviation σLST. The size of the neighbourhood

region, N , is chosen such that w(i, σLST) ≈ 0 at the edge of N .

2.1. Computing the FASTR descriptor

The fractional anisotropy (FA) may be calculated from the eigenvalues of the LST: λ1, λ2, λ3 (where λ1 ≥ λ2 ≥ λ3 ≥
0). The principal eigenvector, v1, points in the dominant direction of the gradient vectors, ∇I, of the local patchN . v2

and v3 are discarded as they are — by definition — perpendicular to the principal eigenvector.

The strength of the dominant direction (i.e. how dominant it is) may be calculated from the coherence for 2D

images, and the FA for 3D volumes. Both coherence and FA share the following common set of properties6:

1. They are scalar, and are bounded between 0 and 1.

2. If they equal 0, there is no dominant direction within the local neighbourhood N .

3. If they equal 1, there is an absolute dominant direction within the local neighbourhoodN , i.e. all non-zero second

order gradient vectors are parallel.

The FA may be computed straightforwardly from the eigenvalues λ1, λ2 and λ3 of the LST:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ1
2 + λ2

2 + λ3
2

. (2)
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By multiplying the FA and principal eigenvector, v1, the FASTR descriptor can be computed for the voxel x:

FASTR(I, x) = FA · v1 . (3)

The contribution to the overall metric for each corresponding voxel location x in R and T is given by the square of the

dot product of the FASTR descriptors of R and T , i.e.

Cost(R, T, x) = 〈FASTR(R, x), FASTR(T, x)〉2 (4)

The squared dot product is a metric that increases as the images become more similar, since as the FASTR vectors in

the two images become more parallel/anti-parallel, the square of the dot product increases. Note that it is common to

treat parallel and anti-parallel vectors in the same way to assess similarity, such as performed by Haber et al. 3 with

their NGF descriptor and its numerous variants.

2.1.1. Influence of σLST

Similarity metrics often have one or more parameters which control their behaviour. For example, calculating mutual

information from joint histograms requires decisions about the number of histogram bins; the normalised gradient

fields have a critical parameter in the denominator to account for image noise; MIND and SSC require a neighbour-

hood size and displacement. FASTR has just a single parameter to consider, σLST, which intuitively matches the

scale of features being aligned. Figure 1 shows the effect of changing σLST, shown in the FA images computed using

different σLST. These images show the different scales of features captured using different values for σLST. Note that

in this implementation, the size of N is solely dependent on σLST, and is therefore not an independent parameter.

Fig. 1. Example fractional anisotropy images from a MR-T2 weighted head dataset, calculated using σLST = 1 (left), σLST = 2 (centre) and

σLST = 5 (right). Example image data courtesy of Dr Subash Thapa, Radiopaedia.org, rID: 40310.

3. Experiments

To demonstrate the performance of FASTR in multi-modality, rigid registration, the method was applied to a series

of head and neck images: first to CT and CBCT datasets; and secondly to MR and CT datasets. Although CT and

CBCT scanners are both based on the same physical principle, i.e. X-ray attenuation, the appearance of the images is

sufficiently different to consider this a multi-modality registration task. Two important differences between CT and

CBCT scanners lead to a greater number, and severity, of artefacts in the CBCT images. Specifically, less collimation

in the CBCT detector and a smaller field-of-view (truncating some of the projections) result in much higher scatter

fraction (and therefore lower contrast) and shadow artefacts.
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The FASTR method was tested with varying values for σLST: 1, 2.5 and 5, and compared with two state-of-art and

widely used similarity metrics, MI2 and SSC5. For the SSC, a Gaussian kernel variety was used (see section 3.1 of

Heinrich et al. 5) to aggregate neighbourhood responses, with σSSC = 0.8 and displacement Δ = 2. The SSC similarity

metric was calculated as the sum of squared differences between SSC(R) and SSC(T ).

All registrations were done in a multi-scale fashion (1/8, 1/4 and 1/2 scales) with Newtonian optimisation of the

cost function. For MI, pre-determined optimal sizes of the joint histogram were used: 160 × 160 bins at the finest

scale of the image pyramid, and 32 × 32 bins otherwise.

Registration accuracy was assessed using the target registration error (TRE), calculated from a set of manually

placed corresponding landmarks. There was an average of 4 landmarks per dataset for the CT→ CBCT registration

experiments, and an average of 17 landmarks per dataset for the CT→MR registration experiments.

3.1. Bilateral filter

To investigate whether the robustness of the FASTR metric can be improved by removing smaller gradients, a bilateral

filter7 was applied to the original image data before registration. The bilateral filter was of the form

I′(xc) =
∑
xi∈N

wi,bilateral · exp

(
− (I(xi) − I(xc))2

σnoise

)
· I(xi). (5)

where wi,bilateral is a Gaussian kernel with standard deviation σbilateral. For these experiments we set σbilateral = 10,

σnoise = 300, and set the neighbourhood region to a 21 × 21 × 21 voxel patch with xc at the centre of the patch. This

allows modest smoothing while preserving strong edge gradients.

Figure 2 shows an example slice from a head CT dataset, the bilateral filtered result, and the difference image

between the unprocessed and processed images. Note that the difference image is close to zero in regions of strong

structures, but areas of weak structure have been smoothed and are thus non-zero in the difference image.

Fig. 2. Original MR T2-weighted slice (left), same slice processed with bilateral filter σnoise = 300,N = 21 × 21 × 21 (centre) and absolute

difference image between original and bilateral filtered slice (right).

3.2. Results

As demonstrated in tables 1 and 2, FASTR aligns these images with lower TRE than MI. One reason for the difference

is that MI is a global metric, and as such can be confounded by inhomogeneous “illumination” across an image, such

as is often seen in MR and CBCT images. Interestingly, FASTR gives comparable results to the state-of-the-art SSC,

while running significantly faster (see table 3). Furthermore, FASTR is less memory intensive than the SSC, as it uses

3 feature channels compared with the 12 feature channels required for SSC.
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Registration ID 1 2 3 Mean TRE
Initial error 13.6 13.2 13.1 13.3 ± 0.3

MI 2.0 6.2 8.1 5.4 ± 3.1

SSC 2.1 2.3 3.0 2.4 ± 0.5

FASTR, σLST = 1 (filtered) 2.0 2.4 3.0 2.5 ± 0.5

FASTR, σLST = 1 (not filtered) 2.0 2.4 3.0 2.5 ± 0.5

FASTR, σLST = 2.5 (not filtered) 2.1 2.5 3.2 2.6 ± 0.6

FASTR, σLST = 5 (not filtered) 3.2 3.9 4.3 3.8 ± 0.6

Table 1. Target registration errors (TRE) for CT→ CBCT registration using Mutual Information (MI), Self-Similarity Context (SSC), and FASTR.

All results are in millimetres. ’Filtered’ and ’not filtered’ refers to whether the datasets were processed with a bilateral filter before FASTR

computation.

Registration ID 1 2 3 Mean TRE
Initial error 14.3 27.7 17.5 19.9 ± 7.0

MI 4.7 7.3 6.2 6.1 ± 1.3

SSC 3.6 3.6 5.9 4.4 ± 1.3

FASTR (σLST = 1) 3.9 3.8 5.7 4.4 ± 1.1

Table 2. Target registration errors (TRE) for CT→ MR registration using Mutual Information (MI), Self-Similarity Context (SSC), and FASTR.

All results are in millimetres.

Registration ID 1 2 3
MI 8.1s 3.7s 3.8s

SSC 453.3s 438.0s 497.9s

FASTR (σLST = 1) 76.0s 91.7s 91.4s

Table 3. Runtime (seconds) of the similarity metrics for each CT→ CBCT registration experiment.

As can be seen from table 1, the results from FASTR σ = 1, with and without a bilateral filter applied, are identical.

This implies that FASTR is insensitive to smaller image gradients, suggesting it should be robust to image noise.

4. Conclusion

We have described a novel structural image descriptor for image registration called the Fractionally Anisotropic Struc-

tural Tensor Representation, or FASTR. Calculated from the LST, it does not depend on absolute voxel intensities, and

is insensitive to slowly varying intensity inhomogeneity across the image. This is a very useful property, since many

imaging modalities suffer from such artefacts, i.e. MR bias-field artefacts; CBCT truncation artefacts; ultrasound

attenuation inhomogeneity.

Experiments demonstrated that for rigid registration of CT → CBCT and CT → MR datasets, FASTR produced

more accurate results than MI, and faster results than SSC. Similar accuracy between SSC and FASTR was anticipated,

since they both encode the directionality of gradients within a local patch.

Future work will perform similar experiments with a larger and more varied cohort of datasets, and evaluate FASTR

for non-rigid registration.

The results suggest that, compared with SSC, FASTR gives similar benefits in images with intensity inhomogeneity,

but at a fraction of the computation and memory demand.
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