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HYPERBOLIC EQUATIONS

D. J. Evans and M. S. SaHIMIt

Department of Computer Studies, Loughborough University of Technology,
Loughborough, Leicestershire, England

Abstract—Here the strategy of the group explicit (GE) methods is applied to the numerical solution of
hyperbolic partial differential equations. Theoretical aspects of the stability, consistency, convergence and
truncation errors of this new class of methods are presented with supporting numerical evidence.

1. INTRODUCTION

In this paper, the group explicit (GE) methods which were first introduced by Evans and Abdullah
[1] to solve parabolic problems will be extended to hyperbolic equations of first and second order.
The development of these methods stems from the general observation that the alternate use of
different algorithms with truncation errors of opposite signs can lead to the cancellations of the
error terms at most points on the mesh lines. Although this alternating strategy does not necessarily
amount to the upgrading of the order of the approximation, it is, however, expected to provide
a better accuracy than the individual algorithms themselves as well as other schemes that are
traditionally employed to solve the given differential equation.

The GE techniques involve the utilisation of asymmetric approximations which when coupled
in groups of two adjacent points on the mesh result in implicit equations. These equations will then
be converted to explicit ones which produce the numerical solutions of the differential equation
thus exhibiting the simple nature of the methods.

This section will deal with the construction of two different schemes in which the GE procedure
is used to solve the simple hyperbolic equation of first order of the form,
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The application of the procedure can be extended (in a later paper), to the wave equation,
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An analysis of the local truncation errors will also be performed followed by an investigation of
the stability requirements of the various schemes.

2. GE METHODS FOR THE GENERALIZED WEIGHTED APPROXIMATION
TO THE FIRST ORDER EQUATION

The generalized weighted finite-difference analogue for equation (1) at the point
(xis 4;4.0) = [[AX, (j + 6)At]
is given by
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or
"1{9 [A=w)uyy o1+ 2w — D — wui—l,j+]]
+ (1=l —w)uyy;+ 2w — Duy— wua’-l,j]} = 01— Uy (4

where A = At/Ax, the mesh ratio.
With w = 1, this equation reduces to

a1+ Ao)“i,j-i—l - }'eui-l,j-{-l =[1-4(1- 0)]"i,j+ Al — e)ui—l.j &)
and for w =0 equation (4) becomes,
(1 —A0)u; ;) + A0u; gy =11+ A0 —0)]u, ;— A(1 — O)uyy ;- (6)

The local truncation error representations can be obtained by expanding the terms U, j+1s
U,._1;+1, Ui_y; and U; about the point [iAx, (j + 1/2)At] using the Taylor series. The expansion
for equation (5) leads to
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with o, +a,=4 and 0<6 < 1. A similar expansion for the terms U, ., Uiy +1, Uy and
U, ., ; about the point [iAx, (j + 1/2)At] provides the following truncation error expression for
formula (6):
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with ¢, +a,=4 and 0 <6 <1
Now, at the point [(i — 1)Ax, (j + 6)At], equation (6) takes the form

Mu; +Q=20)u g = —A1 =0y ;+[1+ 20— )]u;_y ;. )
By coupling the equations (5) and (9) the two formulae can be written simultaneously in matrix
form as
[ - Q +10)]|:u,._1,j+,j|=|: A(1-6) 1-4Q —B)J[u,._,'j]’ (10)
(1-18) A0 W1 1+41-6) —-i(1-8) u;
ie.
Auw,,, = Bu, )]
where
A=[ — A0 (1+10)] B=[ A(l1-0) 1—/1(1—0)]
(1-18) A8 ’ 1+4(1-6) —-4i(1-0)
and

w= (ui-l.ja ui,j)T'

The (2 x 2) matrix A can be easily inverted. Hence from equation (11), we have,

u,, =A4 'Bu, (12)
with
4™ = [(1__'1;?0) ! :0,10)] and A47'B= [(1 :i) (1__1,1)]'
From equation (12), this gives rise to the following set of explicit equations:
e =0+ Dy — Ay, (13)
and
U jo1= Ay ;4 (1 — Ay, (14

whose computational molecules are shown in Fig. 1.

Equations (13) and (14) are for adjacent points which are grouped two at a time on the mesh
line. Special formulae are needed to cope with the possibility of the existence of ungrouped points
near the boundaries. The solution at the ungrouped point near the right boundary at the advanced
time level can be computed from the equation (6) by putting i = m — 1. This leads to,

Up—1, 501 = {1+ A(1 — 0)]u,,_ Li— A —0)u, ,— ABu, ;. }/(1 — A0), (15)
where A6 # 1.
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Equation {13) Equation (14)

©
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Fig. 1

Equations (5) with i = 1, deals with the value of u at the ungrouped point near the left boundary.
Thus, we have,
U = (A=) g ;+ (1 — A1 — 6wy ; + ABuy ;. \}/(1 + 26). (16)

Since the initial line 0 < x <1 is uniformly divided with a spacing or increment Ax, the manner
in which the above points are grouped very much depends on whether the number m of intervals
of the line segment is even or odd. On this basis, a variety of group explicit schemes can be
devised—as we will presently see.

Even Number of Intervals

When m is even, we will have an odd number (m — 1) of internal points (i.e. points that do not
include the left and right boundaries whose values are given by u, and u,, respectively at every time
level). Consequently, the single ungrouped point will be located near either boundary.

(/) The GER scheme

This refers to the group explicit with right ungrouped point (GER) scheme. It results in the
consecutive application for (1/2)(m — 2) times of the equations (13) and (14) for the first (m — 2)
points grouped two at a time. This is followed by a final use of equation (15) for the (m — 1)th
point at every time level as shown in Fig. 2. Thus, we have the following set of equations:

—Aoui—l,j-f-l +(1+ le)ui.j+l =A(1-— o)ui——l,j+ [1-4i0- 0)]“:‘.,', .
, 1=2,4,...,(m=2)
a- /w)ui—],j+1 + j»0“1',]‘+1 =[1+4i(l- 9)]ui—|,j_‘ A(l— 9)“i,j,

and
(1= 20) 1,01 = — A0ty sy — AL = )ty + 1+ A(1 = O], ;o A0 #1,

[see equation (17) on facing page]
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where b, =[0,0, ..., —A(1 — 8)u,, ,— A0y, ;. ] which consists of known boundary values. Now,
if we define,
B | | | |
01 1 | | | 1
1 01 | | |
B R R
oL 0! |
11 0l I |
il Rt Sl Bl
E = | N [ (18)
| NN |
AR R I RN
| | I0 1 |
| | 11 01
N I R ER A
1
L ' ' ! b d - xem-1y
and
B | | | | I
-1 | | |
-1 11 | | |
I B I D
B 0! |
| -1 11 | |
I T | R N
G = | IR | , (19)
[ | S |
I R B A
-1 1
| IO | |
| | I —1 11
B T N
-1
L [ [ ! N R
then we have
(E] + AOGl)uj_',l = [El bl A.(l — O)Gl]“j'l' b].
On premultiplying this equation by E[' provides us with
ETY(E, + A8G))w,, = E{'[E, — A(1 —0)G\]u,+ E{ ')y,
i.e.
(El_lEl +3.9E1‘1G,)Ilj+1 = [ErlEl —2.(1 —O)E]—lGd“j'*'b‘.
But E;'E, =1 and E{'G, = G, which implies that,
(I + 240Gy, = [l ~ A(1 — 0)G,]u;+b,, (20)
where 7 is the identity matrix of order [(m — 1) x (m — 1)]. Hence, we obtain
w,, = +40G)"'[I — (1 - 6)G,Ju;+ b, (¥3))

where, b, = (I + 16G))~'b,.
The explicit equation (21) is the governing equation for the computation of the GER scheme.
(ii) The GEL scheme

:I‘hh is an abbreviation for the group explicit with left (GER) ungrouped point scheme and it
is in fact a reverse of the GER scheme. It is obtained by the use of equation (16) for the first internal
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Fig. 2. The GER scheme (even number of intervals). Fig. 3. The GEL scheme (even number of intervals).

point followed by the application of equations (13) and (14) for (1/2)(m — 2) times for the
remaining points on the mesh line. The scheme is displayed diagrammatically in Fig. 3 and is
determined by the following set of linear equations,

A+ 20)u; =01 —A0 = Nuy+ A1 — ) uy; + AbBuy ..,
—A0u;_y o+ (U + A0y ;= A —O)u_y ;+[1 = A1 — 6)]uy,
and i=3,5....m—1;, A8 #1.
A =20)u;_ jo1 +AOu ;o =1+ A0 =]y j— A(1 — ) uy,

In the implicit matrix form, these equations can be written as,

| | | | ar 7]
ht’lﬂ_ _______ J e _ P “‘
| -0 (1+49) 1 | | ",
| | | |
o= e, o __ “s
| | -8 (1+40) 1 | e
| | | |
N T _1(_1:’}?)__:10__1\___! ________ “s
| | I\ | |
| ! N 0 |
| | N |
S N B I O |
| | 0l |~ (1+0) || u,_,
! ! ! Ya—18) s .
i | | | | ] Rt I
[ | | | ar 7]
-a-en, O “
| A1—0) [1—i(1—8)] | "
o :[1+,1(1—e) —i(1—8) : J' 0 ”
- | N I | +b,,
| LN |
______ e e e e s NN !
| 01 I 20-0) [-i0-0 | u,_,
: : :[1+A(1—0)] —i(1—6) i |
.. JdL J
(22)
where

b2=[)'(1 _o)uo,j+}~0u0_j+|,0,...,O]T.
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If we define,
-1 | | | | 7]
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then the GEL scheme takes the form
(E2 + ABGz)u]'_',] = [E2 - }.(1 - 0)G2]“1+ bz.
If we premultiply this equation by E[ !, we get
(I +26G)u;, =1 +A(1 —0)G,]u;+b,, (25)
and this leads to the following explicit formula for the computation of the GEL scheme:
w,, = +0G) "Il - i(1 — 0)Gylu,+b,, (26)

where b, = (1 + 16G,)~'b,.

(#ii) The (S)AGE scheme

As the name suggests, this (single) alternating group explicit [(S)AGE] scheme entails the
alternate use of the GER and the GEL formulae [i.e. equations (20) and (25)] as we march our
solutions forward with respect to time as illustrated in Fig. 4. Thus, the two time-level process of
the (S)AGE scheme is given by,

(I + /'IOG,)IIH_, = [I - A(l - G)Gl]uj+ bl
and j=0,2,4,.... 27
(I +40Gy)u; ;=[] — A(1 = 0)G,lu;,; +b,
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(iv) The (D)AGE scheme

The (double) alternating group explicit scheme [(D)AGE] is a four-time level process. A single
application of the algorithm requires the utilisation of the GER and GEL schemes for the first
two time levels followed by the employment of the same formulae but now in reverse order for
the second two time levels. This alternating procedure is repeated as the solutions are progressed
vertically. Thus, we see that the (D)AGE scheme is basically a periodic rotation of the (S)AGE
scheme with the second half cycle implemented in opposite order to complete the four time level
process and is given by

(I + 48G ), =[I = A(1 — 0)G,]u, +b,
( + 246G,y , =[I — A(1 — 6)G,]u,, , +b,
(I +26G,)u;,, =[I — A(1 — 0)G,]u,, , + b,
(I + 106G ), =[I — A(1 — 8)G,]u;,; +b,

j=0,48,.... (28)

The scheme is represented diagrammatically by Fig. 5.
Before we proceed to establish the corresponding finite-difference analogues for the case when
the line segment 0 < x < 1 has an odd number of intervals, we observe that if we denote

. -1 1
G“>=[ . 1], i=1,2,...,12(m =2, (29)
then from equations (19) and (24), we have,
FG?” -
G®?®
\\\ 0
Gi= NGUmEm-2-1 G0
GlDm-2]
L 0 ~1 ] - vxim-n)
and
1 ]
G"»
@
G, = G2 0 : (31
0 \‘\Gm/z)(m—z)—ll
| GUPE=2 | e
—1 1 M —1 [ 1 [ 1 ]
— . __J’__J ______ —— —J e
ENEREnEnaEEER ERREERRNEREl

Fig. 4. The (S)AGE scheme (even number of intervals). Fig. 5. The (D)AGE scheme (even number of intervals).
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Odd Number of Intervals

We will have an odd number of intervals when m is odd. Therefore, at every time level, the
number of internal points is even. Accordingly, against there are two possibilities when determine
the manner in which the points are grouped on the mesh line. In the first possibility, we will have
(1/2)(m — 1) complete groups of two points. In the second possibility, however, we are led to
[(m — 3)/2] groups of two points and one point which is ungrouped adjacent to each boundary.
Based on these observations, the following group explicit schemes can be constructed in an
analogous fashion as in the even case. )

(i) The GEU scheme

In this scheme, there are two points which are ungrouped, one each which is adjacent to the
left and right boundary. Thus, for the left ungrouped point (the second point), we use equation
(16) whilst the solution at the right ungrouped point fthe (m — 1)th point] is determined by
equation (15). For the grouped points in between, we apply equations (13) and (14) in succession
for (1/2)(m — 3) times to give the solutions at these points. This is repeated for progressive time
levels and the whole procedure is known as the group explicit with ungrouped (GEU) ends method.
Thus, the GEU method requires the solution of

A+20)uy ;=01 —A(1 = Nuy ;+ A(1 — O ug ;+ Ay, ;. |,

—ABu_y o+ (L +A0)u = A1 =y j+[1— A1 = 0)u, ;,
(1 =A0)u;_y ;o +40u; 5 =1+ A0~ D]y, ;— A1 — Oy, ,
(=40 u,_y jo1= —A0up ;1 — A1 — O u,, ;+[1 + A1 — )], 5,

which can be written in the implicit matrix form as,

}i=3,5,...,m—2; A8 #1,

[see equation (32) on facing page)
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where by = [4(1 — 0)u, ;+ A0up 1,0, ..., 0, —A(1 — 8)u,, ;— A6u,, ;. \|". Now if we let

! ‘
GO
G? 0
¢= S ~glunm-2-1 33)
0 Gla2m-3)
L —1 ]
and
(G(l) 7
G? 0
G = N o 34
' S GUDm-3) (34
0
i G-

where the (2 x 2) matrices G9, i = 1,2,...,(1/2)(m — 1) are defined as in equation (27), then the
GEU scheme is given by

(I +16G)u,,, =1 — A(1 - 0)G\]lu;+ b, (3%)

and is described by Fig. 6.

(ii) The GEC scheme

This scheme, known as the group explicit complete (GEC) method is obtained by applying
successively (1/2)(m — 1) times equation (13) and (14) for the first to (m — 1)th point along each
progressive mesh line as displayed in Fig. 7. Thus, the relevant implicit equations are,

—Aoui—),jﬂ +(1 +j'9)ui‘j+) =A(1- 9)“:’—1.;"*‘ [1—-4(1— 0)]“:',,-’

i=24,...,(m—=1), 10 #1,
( —'w)“i—l,jﬂ +}~6ui,j+1 =[1+A( —9)]“i—1,j“)~(1 “9)"i,j

Left ungrouped Right ungrouped
point point

4 st group 1/2(m-=3)th group 4st group 4/2{m—1)th group

[ ]
| A4

O TH Y
- B alls

Fig. 6. The GEU scheme (odd number of intervals). Fig. 7. The GEC scheme (odd number of intervals).
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which in the matrix form are written as
~38  (1+48), ! I
(1-210) A8 I u,

| —19 (1 +A.9) um—Z

|
0 |
] | a=a0) a8 | ||
A1-8)  [1-a(1-0)] : 17w ]
N+i(1—80)] —A1—6] | | 4y
——————————— T T T T T T T T T oo |
N 0 |
_ N |
o !
I \\I J
___________ R |
| | 21-6) [p-ia-0]| |u,_,
:0 :[l+,l(1—0)] —i(1-9) o ||

(36)
Therefore, by using equation (34), the GEC scheme can be expressed as
(I +20G)u,, =1 — A(1 —8)G)u,. 37
(iii) The (S)AGE and (D)AGE scheme

The alternating schemes corresponding to the ones that we have developed for the even case are
given by

(I + 460G ), =[I — 2(1 — 0)G\lu;+b, } %)
7+ ieéz)“jn =[I-i(1- B)Gz]“j+l
for (S)AGE, Fig. 8, and
(I + 240G, =[I — 2(1 —0)G\]u,+b,
(I + 266w, , = I - A(1 - 6)Gylu;,, 39)

7+ /1962)“j+3 =[I-i(1- 9)62]“j+2
(U + 06, o= [ — A(1 = )G/Ju,,, +b,
for (D)AGE, Fig. 9.

—
— N RENN — — — _— — —

_— e narene nam p— —
S— SN

Fig. 8. The (S)AGE scheme (odd number of intervals), Fig. 9. The (D)AGE scheme (odd number of intervals).
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Notice that the above GE formulae are slightly different from those‘ obtained by Evans and
Abdullah [1] for parabolic problems in the sense that the same group G, (i =1 or 2) appears in
both sides of the equations. The following conclusions may therefore be drawn:

(a) the GE schemes can be derived from the class of locally one-dimensional methods

(LOD);
(b) there is no overlapping of the grouping of points. They are disjoint as shown in
Figs 2-9;

and
(c) there is no longer a need for the commutativity of the matrices G, and G,.

3. TRUNCATION ERROR ANALYSIS FOR THE GE METHODS

(i) Truncation error for the GER scheme
The set of explicit equations obtained by coupling equations (5) and (6) are
Uyt Auy— 1+ Dy ;=0 (40)
U jor— Aty j— (1= A)u; =0. 41)

The truncation errors for any two grouped points are given by the truncation errors of equations
(40) and (41) for i = 2,4,...,m — 2. By expanding the terms U,_, ;,,, U, U,_, , in equation (40)
about the point [(i — 1)Ax, (j + 1/2)At], we get

oU aU 102U (At)* o*U
T”“(5;+737>, e TAE [5 AT —*axzatz],_,,ﬂ,z

19U 1 , 0'U S
+At|:-§M_E( ) 6x35t:|z 1;+1/2+(AX)(AI)<_—Zaxzat)"‘l""”/2

18U Axd* 10U 10U_A o'
2{ _ 2 - et 2f -7 e
+(4x) (6 FEERY) axa/),._,,m,z”“) <sa o T 2430 48 oxor’ ) e
(Ax)'3°U_(A0@Ax) OV sy OU
[ 120 ax° 48 ax'or | (Ax) (A1) Fxvar

5
a°U 4 Y
ax7or 384( 9 axat4+19zo( iy ], e

——~(AX)(AI)’

ie.
10°U_ (Aty 98U 1% _ 1 ) 00U
S =R i

1 6%U ,(10°U  Ax ‘U
+(A")(A’)("Zaxzaz),._l,,.+,,2 (Ax) (6 o T 24 5x ).--.,,-+1/z
1 83U 10°U At 0°U
] i W Wil o1 (Ar)*2); =4. 42
+ (At) (8 axat2 + 24 az3 + 48 axat:!)i_l j+1/2+ 0[(Ax) I( t) ]’ o + o> ( a)
Similarly by expanding the terms U, ;. ,, U,_, ; and U; about the point [iAx, (j + 1/2)At] leads to

oU aUu 1 0*°U (A1) o*U
Tu ‘(a +E),,+,,2+A"[*i FEANT —axzatz],,.+,,2

2 2 a4
+At[ 10U (Ax)* o*U

63
3ot 12 axJaz],,H,,z”A‘)(A )(46 za:),,+.,2
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10U Axo* 10U 10U A1 d*U
of 20U AX Aapf-2Y oY Al
+(Ax) (6 a0 24 6x(‘f),,,+,/2+( & (sa 32t U T Baxar ).,m
(Ax)'3°U  AN@xY U | (AF(Ax) U (APAx 3°U
120 ox° T 48 oxm T 48 oxor | 96 oxor

PU  (Ary 35U
- 4 =’ - -
+384(A ) axat4+ 1920 365 |,,01p T

i.e.

2 2 54 2 2 a4
T4|=Ax|:—laU (Ar) 6U] At[ 10U (Ax) aU]
i j+172 j+12

25 T 16 axor Taaxer | 12 ox%0rt |,

U 193U Axo*U
A 2 - — T
+an(ax )(45 25t>u+|/z+( %) (66 P24 0x* >‘f“/2

10U 18U At o'U
e+ —— O[(Ax)™ (Ar)™}; +o,=4. 42b
+(@an <s oxor 24000 48 oxor’ ),,.+1,2+ [(AxF* @A o+ e (426)
The truncation error for the single ungrouped point near the right end is given by the truncation
error incurred for equation (6). This is obtained directly by putting i = m — 1 in equation (8) which

gives

102U (At 0*U
TR-A"[zza;‘f+—16 ez el I

2 ‘U
+At[—l(l—-20)a U—--——(A P —26) —— :I
2 m—1,j+1/2

oxot 12 ox*ot
1 U (12°U  Axd*U
+(Ax)(At)|:—Z(l 20) 5750 Ox20t :Im—l j+|/2+(A %) ( o 24 0x* )., Li+12

18U 18U At 24U
o200 10T A O[(Ax )" (Ar)4]; =4. (42
+(4) [86x6t2+24 w1 gas ],._1_,-+./2+ [(AxJ AT o +a,=4. (420)

(if) Truncation error for the GEL scheme

The truncation error for the single ungrouped point near the left boundary is given by the
truncation error for equation (5). Hence with i =1, the expression (7) gives

10°U (A1) U 3U  (Axy 2*U
TL‘A"[‘E ox2 16 ax*ar’ ,,+,,2+A’["‘(1_20)a 5 12 50 L1

1 2°U 1°U  Axd*U
+(Ax)(An)| (1 -26 +(Ax 2[———-——]

( )( )[4( ) 5 :|].j+|/2 ( ) 65x3 24 ax‘ Lji+12

10U 13U At o*U
2 —_— e —— — P o x2].
+ (A7) [sa it~ 51— 20 6x6t3:|,,j+,/2+0[(Ax) (Ar)4);

u+a,=4, 0<6<1. (43)

We note that the truncation errors for any two grouped points of the GEL scheme are given by
Ty and T, of the equations (42a) and (42b), respectively.

(iit) Truncation error for the GEU scheme

As indicated by Fig. 6 for the case when an odd number of intervals is used, the truncation error
of the scheme at the left ungrouped point is given by 7} of equation (43) whilst the error at the
single ungrouped point near the right end is T of equation (42c). For the points in between the
boundaries which are grouped two at a time, the truncation errors are given by 7,, and T, of
equations (42a) and (42b), respectively.
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(iv) Truncation error for the GEC scheme

In this scheme, the grouping of two points at a time along each mesh line is complete as shown
by Fig. 7. Hence, the truncation error for this scheme is given by T,, and T, respectively for
i=13...,m—4,m—2 when m is odd.

(v) Truncation error for the S(AGE) scheme

If we assume that the number of intervals is even, then as we know from Fig. 4, this scheme
entails the alternate use of the GER and the GEL schemes along the vertical direction. Accordingly,
its truncation error is given by the truncation errors of the GER and the GEL schemes along
the alternate time level. This produces the possible effect of the cancellation of the component error
terms at most internal points. A more accurate solution with this scheme is therefore expected than
any of the previous GE methods. A similar argument holds when m is odd.

(vi) Truncation error for the D(AGE) scheme

The GER, GEL, GEL and GER methods, in that order, are employed at each of every
four time levels. By the same reasoning as above, we will expect this four-step process to be as
accurate if not better than the S(AGE) method. In fact, our numerical experiment will show that
the D(AGE) procedure can be more superior than the S(AGE) scheme or any of the other GE
methods.

4. STABILITY ANALYSIS FOR THE GE METHODS

We shall now proceed to establish the stability requirement of the GE methods. From the
formulae (21), (26), (35) and (37), we present below the explicit expressions for the GER, GEL,
GEU and the GEC schemes

w,, = +20G)"'[I — (1 — 6)G,]Ju;+b,, (44)

W, = +40G)™'[I — A(1 — 6)G,lu;+b,, (45)

u.,, =0 +46G)"'[I - i(1 - 0)G\]u + b, (46)
and

w,, = +40G) [l - i(1 - 6)G)lu,. (47)
These processes may be written in a single form as

where I', the amplification matrix, corresponds to the scheme employed and b is the relevant
column vector of order (m — 1) as indicated in the formulae above.

(i) Stability of the GER scheme

From the equations (44) and (48), the GER amplification matrix is given by
Tger =

A+i)  —i S |
A (=41 | | |
_______ L e
|(l+l) —}.I | |
A (1=-4)1 IO
——————— 7____—_—7\—\:7————__7___——
________ S I 0 [P
| A+ —A
| g | N
________ ! _....__.___|__J_f__(l__l)J_____
| | | » A
| [ ! [ *'(1__19)
L ' ' ! ' Jn-nxem-m

49)
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with 46 # 1. It can be easily shown that I'gs possesses the eigenvalues 1, of multiplicity (m — 2),

and
1 A
+ a —).0):|'

If we denote p(I'ggr) as the spectral radius of I'ggg, then for the stability of the GER scheme, we
require p(Iggr) < 1. This implies that
14+ A <1 50

which gives

A

Since A is non-negative, then (1 — 10) <0 or
A0 >1 and A< —-2(1-46). (52)
Different cases of 6 are now treated to investigate the condition of stability of the GER scheme.
(a) For 68 =0, we have

=1+4

T

for all positive values of 4. Therefore p(I'ggr) > 1, which shows that GER scheme
is always stable.
(b) For 0 < 0 < 1/2, condition (52) gives

- 2
L.
A0>1 and A 20-1)

The second inequality can never be satisfied since A is non-negative whilst
(20 — 1) is always negative. Hence, for this particular case of 8, the GER method
is always unstable.
(c) for 8 =1/2, we obtain
A A
(1-49) (1 -(1/24)
and as in case (a), the GER scheme is absolutely unstable.
(d) For 1/2 < 8 <1, condition (52) becomes

1+ >1,

=|1+

2
Az
A8 >1 and a0-1
or
A> ! and A2 ————-——1
6 )
We deduce that, the scheme is conditionally stable for
2
A2
20 -1

We conclude from cases (a)—(d) that the GER scheme is:
(1) always unstable for 0 < 0 < 1/2,

and
(2) it is conditionally stable for
2
? —_—
4 20 -1)
when 0 €(1/2, 1].
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It may therefore be summarized that none of the cases above can really be considered useful
either because of their unconditional instability (when 0 <8 < 1/2) or due to their “inverse”
conditional stability (when 1/2 <8 <1 and which could lead to excessively large time steps).

(ii) Stability of the GEL scheme
From equations (45) and (48), the GEL amplification matrix is given by

FEE C ]
__a+e I I
FA+4) -1 1 |
| PN Y
_____ I St S B

FGEL’_‘ I |\\\|
| PN
_____ Lo e o b N
| | L(1+4) =2
[ 0, |
A (1=2)
L ! ! * J tm=1x@m-1j

The eigenvalues of I'gg; are 1 (of multiplicity (m — 2)] and

. A
[ B (1+;.o)]

and the GEL is stable if p(I'gg ) < 1. This requires that

A
l——7i<]1,
‘ a1+ ,10)' !
giving,
A
€ <2
0 (1+410) 2
Since 4 is non-negative then from condition (55), we must have (1 + A8) > 0. Hence,
A <21+ 40).
(a) For 8 =0, we have
A

In order that p(I'gg ) < 1, we must have |1 — A| < 1 which is satisfied for 4 <2.
Therefore, for this particular case of 8, the condition of stability is 4 <2.
(b) If 0 < 6 < 1/2, then from condition (56) we obtain A(1 — 28) < 2 which leads to
the following condition of stability:
2
€—FF.
A (1-20)
(c) For 6 =1/2, we get,
A A
UL P D A— P |
! 1+ 48) ‘ (a +(1/2)A)’

for every positive value of A. This implies that the scheme is always stable for
0 =1)2.
(d) For 1/2 <8 <1, inequality (56) leads to,
2
>
A (1-20)

(33)

(59

(35)

(56)
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Now, the quantity 2/(1 —26) is always negative whilst A is non-negative. Hence, the scheme
is absolutely stable for all values of A. From all the cases above, we conclude that the GEL
scheme is

(1) conditionally stable for 4 <2/(1 —20) with 0<8 < 1/2.

and
(2) it is absolutely stable for all values of A when 1/2<8 < 1.

(iit) Stability of the GEU scheme
From equations (46) and (47), the GEU amplification matrix is given by

i A i | [ | T
I | | [
- _(1_+£9)_1 ______ o d_ . ___ L~ __
TA+4) =4 | ! |
I | I |
_____ | __'1__(1___’1)_1__J_______|___-__
I N o !
FGEU= | I\\\I |
_____ I e N _L___
! ! I{d1+4) =1 1
{ ! | ]
_____ | ___.___._I__J__A__(i—_l_)L_-___
I | | [ J)
I [ | I
(1+46)
B I I { I d tm-nxm-1n)
57

whose eigenvalues are

-
1+ 40y

1 [of multiplicity (m — 3)]

and

A

1+(1_10).

Hence we can easily deduce from the conclusions drawn on the stability analysis of the GER and
the GEL schemes that the GEU method is conditionally stable for

2

SheTRy

when 0 e(1/2,1).

(iv) Stability of the GEC scheme
From. the equations (47) and (48), the GEC amplification matrix is given by



678 D. J. EvAaNs and M. S. SaHiMi

FGEC"'
e i - | ‘
_A_a=-Hv o] o !
LA+ =24 | | |
| | o |
______ I__l__(l___'l)_l___l________I_________
| N !
| N |
______ N (NN [ R
| | LA+4)  —4 |
| 0 | [
______ |_______l___l_f__(l___“_l_______
I | I I (14+4) —A
| | | |
L | [ | [ A (1_}”” [m— 1) x (m—1)]
(58)

Since I'ggc has (m — 1) eigenvalues, each equals to 1, then clearly the GEC scheme is always stable
with no restrictions on 4 and 6 €0, 1].

(v) Stability of the (S)AGE scheme
We shall first consider the case when m is even. By means of equations (27), we obtain
w, = +40G) I —i(1 - 6)Glu, , + ([ + A6G)'b,,
=+ A0G)~'[I — A(1 — )G,)(I + A0G,)" 1[I — A(1 — 6)G\]u; + b3, (59)

ie.

U, 2= sacet;+ b3, (60)

where
Fsace = {I + 40G)~'[I — (1 — )G, 1} {( + A6G)~'[I — A(1 - 6)G,]}
=Ir, 61)
and b; is the appropriate column vector of order (m — 1). We observe that I', and I', are exactly

the amplification matrices of the GEL equation (53) and the GER equation (49) schemes,
respectively. Hence, by multiplying these matrices, we obtain

(a b
c d —c e
e f d —f
c d —c e 0
e f d_ —f
Fgpge = \\\\ (62)
\c‘d —c e
0 e f d —f
c d g
L e S b m-nxem-m
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where
a=(1+D)[1-1/(1+40))],
b=—A[1-14/11+ A0)],
c=A(1+4),
d=1-1%
e =A%
f=i1-2),
g =—All+4/(1-46)]
and '

h=1-)[1+4i/1-20)]. (63)

Note that diag(I'spge) = (@, d, d, . . ., d, h) with d occurring (m — 3) times. It is difficult to evaluate
directly the eigenvalues of I'syge in a closed form. However, we know from matrix theory that if
the eigenvalues of I'syge are denoted by u;, i=1,2,...,m — 1, then

':_ill i =tr(I'sace)s
where tr(I'sagg) is the trace of I'gygg which is the sum of the diagonal elements of I'guge, i.c.
i+t u,_=a+(m-=3)d+h

Now if we insist p(Isage) < 1 it follows that

i+ m+ - tpnl=latm=3)d+h|<|ml+ml+  +lpn 1| <(m 1)
Hence we seek the values of 4 such that,

la+m—-3d+h|<|a|+m-=3)|d}+|h|<(m—1),

ie.

(I + DI =2/ +A0)]| + (m = 3) (1 = A+ (1 = D)[[1 + /(1 — 20)]| < (m —1).
Let

d(A) =1+ )1 = 1/A+ 0]+ (m =3)|(1 =) |+ A=D1+ /(1 - 8)]].

¢(A) is non-negative and if 2 <1 for 8€[0, 1], 40 # 1 we find that ¢ (1) will be a continuous
function of 4, i.e.

P =0+ =2/A+A0)]+(m —3)A = 2D+ (1 —A)[1 + 1/(1 — 28)].

¢ (A) attains its greatest value of (m — 1) at 1 =0 and ¢(1) <m — 1 in the range 0 < 1 < 1.
Therefore, if, p(Isage) < 1, then 4 <1, for 8 €[0, 1], 10 # 1.

Now suppose that we form the sequence I'Z, _,I'} _,.... It is observed that the entries of
the product I'¥,  contain combinations of powers in 4, (1 —4) and [1 — A/(1 + 0)]. Hence if
A,

Iliﬂ F:AGE = 0

which implies that I'g,gg is convergent. A necessary and sufficient condition for this to be so is
p(Tsace) < 1. We conclude that the (S)AGE scheme is stable for 4 < 1.

When m is odd, the equations constituting the (S)AGE procedure are given by equation (38).
This time, however, the amplification matrix Iy, is the product of the amplification matrices of
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the GEC and the GEU schemes and it takes the form, 7

[ a —c¢ e
-b d ~-f
c d —c¢ e
e da —f
¢ d —c e
0
e f d_-f
Fsace = \\ (64)
0 cd —c e
e f d ~—f
c d g
L e f hlimnxm-n

The matrix has the same diagonal elements as in equation in (62) and clearly the (S)AGE scheme
for the odd case is also conditionally stable for 4 < 1.

(vi) Stability of the D(AGE) scheme
The four-step process of equation (28) can also be written in the form
W, 4= I'pagelt; + b, (65)
where the amplification matrix I'p,gg is given by
Ipage = {(I +A0G)~'lI — A(1 — 0) G\}}{{ + 40G)~'[I — A(1 — 6)G,}}
x {(I +40G)~'[1 — A(1 — 0)G,](I + A0G))'[I — A(1 - 8) G\]}
= I'gerl oLl sace (66)

and b; is the relevant column vector of order (m — 1). By multiplying the matrices in equation (60),
we find that

Tpace =
- A
P q r s
—q t u v
r —-u w X r s
-5 v —X z u v
r -u w x r s
-5 v —-X zZ_ u v
“~o 0
\\
\\
.
\\
\\
r —u "w X r s
-5 v —X z u v
0
r —-u w X y
-s v —-x z gq
L y —q1 Py ] m-xm-1j}

(67
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where ; \
= 2| 1 —————— | —A%(1 +24),
p (1+A)[1 (1+w)] (1+22)

g=—{A1+ D)1 =A/(1+ 0P+ 11 —-1)(1+24)},

r=2(1+4)4%

s = =243

t=—A1=2/(1 + A0)P + (1 — A)*(1 +24),

u=-2.(1-24%,

v=2(1-2)A%

w=(1+AY(1 —24)—A}(1+24),

x =24242-1),

y =271+ A/(1 —i0)],

z = (1 —AP(1 +24) — A1 - 22),

g1=—2A(1 = )[1 + /(1 - 28)],

pr=(1 =201+ /(1 - i8> (68)
Now, diag(I'page) =(,t,w,2,w,z,...,w,2,p,) With w, z each occurring alternately for

(m — 4)/2 times.

If u,, i=1,...,m —1 represents the eigenvalues of I'p,ge then

':zll s =tr(I'page),
ie.
Wt =p+t+(1/2)(m —4Hw+(1/2)(m —4)z + p,
Slmt st =1+ +(1/2)(m —Hw +(1/2)(m — 4z + p, |
Sluml+ el + - + o]

If we require that p(I'page) < 1 then we have

lp+t+1/2)m —Hw +(1/2)(m -z +pii<|p]

+1t1+1/2)(m —Hw|+(1/2)(m —4)|z | +|p]
and we seek values of A such that
e+ +Q/2)(m = 4w+ (1/2)(m — )iz |+|pl<m —1.

Now,

lpl+12] +1/2)(m —4)|w|+(1/2)(m —4)|z| +|p,]

A
=|( +}.)2|:l —~(—1—:_—T0):|2 — A1 +20) |+ = A1 = A0 + 0P+ (1 — A)*(1 +24) |

+(1/2)(m — )| (1 4+ A)(1 —24) — 221 +24)| + (1/2)(m — 4)|(1 — A)*(1 + 24)
— A1 =20) [+ | =20)[1+ 201 - 9P,
<A+ AP = A/(1+ A0+ | A%A +24) |+ | =271 — A/(1 + AP | +1(1 — A)*(1 + 24)|
+(1/2)(m — {1 (1 + 221 —24)| +|A%(1 +24) |}
+(1/2)m = H{I1(A - A1 +22)| +{A%A =24)[} +1(1 = 20)[1 + A/(1 - 10)F |,
=y (4).
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¥ (4) is non-negative and if 4 <1/2 for 8 €[0, 1] we observe that (1) is a continuous function
of 4, i.e.

YA) =1+ AP = A/ + A0)P + A% (1 +20) + A1 — A/(1 + A0)P + (1 — A)*(1 + 24)
+(1/2)(m — H{(1 + 2)P(1 = 24) + A1 + 24)} + (1/2)(m — ) {(1 — A)*(1 + 24)
+AX1 =22} + (1 =20)[1 + A/ — A0)F
=[AR2+A+A N -A/Q+ AP +[A2+ 0 = DA +20) + (m —H(1 —24?)
+ (1 =20)[1+4/(1 — A8)]%
Our problem is now reduced to seeking A such that Y (1) < (m — 1). Y (4) achieves its greatest
value of (m — 1) at A =0 and in the range 0 < 1 < 1/2, Yy (1) <m — 1. Therefore, if p(I'psge) < 1
then A < 1/2 for 8 €[0, 1]. For convenience, let us replace I'gy, I'gers 'sage and I'page by Iy, Iy,
I'; and I',, respectively. We now construct the sequence of matrices I',, '3, I'3,...,I',....
Consider,
r,=r,r.r;, [from equation (66)]
=I,I' ('),
= 1"2(1"%)1"2.
Hence,
F% = (Fzrfrz)(rzrlrs),
=TI ,Mirir(r,r),
= Ir(rir)rir,.
Similarly, we also have
I} =TT,
Ii= ALY,

and continuing in this manner, we find that,
[y=T(riry-'Ii,. (69)

Combinations of powers in 24, (1 — 24) and

| A
[ _(1+/w)]

appear in the entries of (I'2I'2y. Therefore, if 1 < 1/2 then
im (I'iIr)=0

and from equation (69),
limrIr,=0,

the null matrix.

Hence the sequence I',, I'2, '}, ... converges and a necessary and sufficient condition for this
to be sois p(I',) < 1.

We conclude that the DAGE scheme is conditionally stable for 4 < 1/2.

The corresponding amplification matrix for the (D)AGE scheme when m is odd is found to be,
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I'pace =
er q: r W
¢ x r s
r, —x w u v
0
r  —u xX r s
-5 V=X W U v
\\ \\ \\\ \\: ~
\\ \\ \\ ~ \\
\\\ \\\\\\ \\\\\\
~ ~ \\ ~ \\
~ ~ ~ \\ ~
\\ \\ \\ \\ \\
0 e —u Yy xS s
-5 v —x W u v
r —u x y
-5 v —x w q
L y —q PlJ[(m—l)x(m-l)]
(70)
where
A 2
=(14+2)] 1 =————+—],
p=0+ )[ (1+10)}
= =211+ 1)1 A
.= a+9) |

r= 212[1 -Zl_—i-iﬂ)_)]’

A
e =241 + /1)[1 —m],
f=1—42%1+2),
wi=1+41%(4 + 1),

A
r2=222|:1 —m] (71)

and the other entries of the matrix take on the same values as in equation (68). As previously, it
can be established that the scheme has conditional stability for 1 < 1/2.

5. APPLICATION OF THE GE METHODS TO A MORE GENERAL
FIRST ORDER EQUATION

Our discussion on the GE methods easily carries over to the case of solving a more general
equation of the form,

ou oU
5t—+5;—k(x, t). (72)
The basic implicit formulae defining the GE schemes now become,
A+2A0)u; j oy —ABu;_y jo =1 — A0 = D)u, j+ A0 = O)u;_( ;+ Atk g (73)

and
MW+ (A= 2A0)u_y ;= —A(1 —0)u;+ 1 +A(L—O)]w;_y ;+ Atk ., (74)
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from which the following set of explicit equations determining the solutions at the grouped points
are derived:
Wi e =0+ Du_y ;— Auy+ At[(1 + 20k, ;45— ABK, ;4] 5)
and
Wojer=Au_y j+ (L= Auy+ At[Abk,_, o+ (1 — A8)k, ;4 6] (76)

The equations describing the u-values at the left and right ungrouped points are given respectively
by

U 1 = {41 — O)ug ; + [1 + A1 — 0)]uy + A0u, ;. | + Aty ;. 6}/(1 + 20) )
and
bt g1 = {{LH A= 0Nty ;= A1 = 0) ity — ABtt 1 + Atk . 0}/(1 — A0), 30 % 1. (78)

The one-, two- and four-step procgsses are then developed in exacly the same manner as before.

6. GE METHODS FOR THE SPATIALLY-CENTRED APPROXIMATION
TO THE FIRST ORDER EQUATION
Let us now consider the hyperbolic equation of first order of the form

ou + ou
ot Ox
If we approximate the time and spatial derivatives by the foward and central different formuiae,

respectively at the point (x;, ¢,), we obtain

ou - Ui,j+l - U,

=0, (79)

hd J
Y A T0@), (80)
and
aU_Ui+l,j'_Ui-—l,j 2
= Ay TolAxD), (81)
Now, by using the Taylor’s series about the point (x;,,, t;) we have,
ou
Ui jir=Uip ;+ (At)<a—) + 0([Ar]) (82)
X Ji+1,j
or
ou
Uierj= Ui jor — (At)<5—> + 0[A1]). (83)
X Jiv1,i
If we substitute this expression into equation (81), we get
ouU
U' i —(At) T - U,'_] i
oU [ L (az ).+. ; '1] (AP
oy = i+l 140 o([AxP). 84
ox 28% 0\ 3y ) +o0axD) ®4)

By virtue of equation (79), equation (84) together with equation (80) leads to the following finite-
difference analogue:

U jer — Wiy '(“t+l.j+l —U_ 1.j)
- 3

At 2Ax

or

Ut H Ty =g+ ru_y (®5)
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where we have assumed the consistency relation
At

=50

Ax
as At, Ax—0 and

r=(1/2i = (1/2)—27:

Figure 10 shows the computational molecule for formula (85) and the approximation is known as
the RL (right to left) type since its computation at the mesh points proceeds from the right
boundary. Similarly, if we reverse the above procedure, we obtain the following LR approximation,

PU U = WU (86)

and its computational molecule is given by Fig. 11.
The local truncation error for equation (85) is obtained from the following Taylor series
expansion about the point (x;, ¢, )

_[(ou  aU QU 1 APRPU 1 L0 U
T [(E+5§> "zzz‘a—t*m—rx TR Tl = 23'(“’)(“
o LY,

— 2 2 4 P 3(A

43'( )aaz2+43v( 2 5,3 514 5 25'(A")( 05 4at
U R
2 2 4
25'(A *){(An 3¢3z2+45v(A *)A) e 165'( )a ar*
1 _@yev,
3251 Ax oF e

i.e.

AcT10U LU , U z(aw)
= —| = + Ax
Tss Ax[26 8B et ;8 3%t ), 6( Now), i

+ (Ar)? (512%3] - % a‘fg ), o ( Ax) ——O[(Ax)(A1)2), a;+a=5; (87)
and the truncation error for approximation (86) is given by
“T {@_lt] ‘%}U')%%% —3 )zg’faf% Tt s 632(;: 43'( Y g Ja(fz
[m O+ e |5 G e 1
xS S anan LT

1 (At)’](?’U }
) —_— 4 + - ,

oUu oU At laU 263U U
=[] — _ Ax 2
Tss (az * 6x),j+.,2+ Ax [2 ot (A Yot ( Y o 12

U 18U 10U 1
R 2 2 e . a %]
(A ) (6x ),,.H,z*'(A’) (24 17 8 oxor ),,.+,,2+Ax Ol(Axy"(As)];

ie.

o o= 5. (88)
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i=1 i i-1 i i

Fig. 10 Fig. 11

As previously, the two equations in implicit form, i.e. equations (85) and (86) can be coupled
to produce the following set of explicit equations:

2
[ui—l,j+l _ 1 |: Uy, j— T+ Tl — T Uy
- 2 2
Uij+1 A=rY L —ru v uy—riu_y j+ru

or
Uy jr 1 =hUi_y;+ ’2(“1'," ui—Z,j) —Fliy,; (39)
and
U j1=nNh;+ r2(ui—l‘j - “i+1,j) — Uy s (90)
where
1 —r r?

a—ry 2Ta-m a=ry)

with r # 1. The corresponding computational molecules are shown in Fig. 12.
The solution at the right ungrouped point is given by equation (85) with i =m — 1, i.e.

um—l,j+l=—rum,j+1+um—l,j+rum—2,j9 (91)

whilst the solution at the ungrouped point near the left boundary is determined by equation (86)
with i =1, i.e.

u,_j+l= —“ruo_j+[+u1j+ru2j. (92)

Without loss of generality, we shall consider only the GER, GEL, S(AGE) and D(AGE) schemes
of the GE class of methods. The truncation errors and stability of these methods will be investigated
in some detail.

Equation (89) Equation (90}
© O

and

i-2 i=1 i i1

~.
~
1
n
~
!
-
~
+
-
A
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(i) The GER scheme
From equations (85), (86) and (91), the implicit equations constituting the GER scheme are given

by

g U o =g ity |

i=2,4,...,(m-2)
FUp_y e U = U U s

and

Up 1, j41 = —FUpy o1 Uy j+ Ty 2 s

which, in matrix form, can be written as,

i | [ | Far 7 - ar A
| | |
b | ! ! “ 1 L L th
r 11 | [ | U, (1 7 l" "
il Aottt Bt et
1 r Uy | I I
| [ | [ ro1 7
lr 11 0, | [ -Lb- - -L-- |
S Al Nt Rl | ' '\\ 0! |
[ N [ [ = : : N : | +b,,
I I ‘\\I | | | | \\| |
iutal i Bl Tl [
| /0 1 r: Up_3 _I___I_O___\\L__ '
I e 1 || s b PTor ]t
i A Bl el R ' ! '
| | | | 1 U, | | | Ir 1_ Lum—l_ j (93)
- P I d j+1

where b, = (ru;, 0, ..., —ru, ;. ,)". The matrix equation (93) can be represented in the more
compact form by

(I + G])“j+] = (I + er)Uj + b], (94)
where ‘
r [ [ [ . T ! [ | .
0 1| [ [ | G [ [ | [
1 01 [ | [ [ [ [ [
e Rl Tl He il kel Ei E T
@
|0 1| [ [ |G [ [ [
11 01 10| | [ 10 |
G= | TV TR TTIT T o [T T T T T
[ N | [ [ N |
| RN I l i ‘\J [
i el By Rl T T T T T Samen! T
[ [ |0 1| [ [ |G |
I 0l 11 01 [ 0 [
i i Rt Ea B il i Bt Ht B
i n [ [ |0_ i [ [ [ |O_
r o [ [ | 7
9|___I__|___l____
| GO | | |
G, = _|_“|__|T\_—|____ ®3)
| | RN
T T T T T -
[ |0| |G

CAMWA. 15/6-8—R
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0 1
M=
&=[1 o]

i=12,...,(1/2)(m — 2); m being even.

and

(i) The GEL scheme
The implicit equations for the GEL scheme are given by

Uy jyy = Wyt Tl — Ty ;1

Uity =g ey,
i=3,5....,m-1),
PUi e T Uy = U U s

~ | I I 1T 7
L. “
i1 or [ ! U,
by | [ "
SN TR R I B :
l '1 rl I Uy
| — IO )
S U IR E D ’
| | N [ )
I i o ! i
J I A N !
{ [ o '1or Up_s
{ ! { b "
J ] ] l 1 L™ a
i I | ! 7T 7
bory | | | “‘
r 11 i ! l u,
plaiied Tefindied Toulalintind Teathatind Wt
o | | U
tr 11 0, l U,
- '__[—“-I\_\"_“I-"T_ | +b,, (96)
| I Y ) |
| ! N ) )
"’I""l"'"“‘l‘l"i_ |
| 1 0 TR ¥m -3
I ! ftr 11 u o,
it Bt Bl fhe
i [ ! " aa | ¥t Y,
where
b2=(_‘ruo‘j+1,0,0,...,rumj)T,
ie.
(I+er)“j+1 = (l+rGl)“j+b2- (97)

(iii) The (S)AGE ‘and (D)AGE schemes
The two-step (S)AGE scheme is given by the following equations:
I +rG)w, = +rGlu+b,,
and j=0,2,4,... r, (98)
T+rGlu = +rG)u,,+b,
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while the four-step (D)AGE method is computed from
(I+rG|)llj+|=(I+er)llj+b1 A
T +rGHu =T +rG)u,,, +b,

T +rGhu =T +rG)u,,+b;, 70,438, ... 99
and

(I+rGl)llj+4=(I+"G2)“j+3+bl J

7. TRUNCATION ERROR ANALYSIS FOR THE GE METHODS

(i) Truncation error for the GER scheme
From equation (94), the explicit form of the GER scheme is given by

u,, = +rG) (I +rG)u;+b,, (100)

where b, = (I + rG,)~'b,. The matrix presentation (100) consists of the following equations:

Uiy =Py — U_g ) — Py, (101)
U jpr =T+ Uy j— Uy ) — Ty, for i=2,4,... (m-—2), (102)

and
Um 1, j 41 = TPl ) F U+ Ty, . (103)

The truncation error for equation (101) is obtained by expanding the terms U,_, ;.,, Uy, U,_, ;,
U,_,jand U,,, ; using the Taylor’s series about the point [(i — 1)Ax, (j + 1/2)Ar]

U @)@y [, 1., 0% ; 0V
Twn—(At)(at>(‘ LD (At—ZAX)[ 2 ( )6 0t? 24( )3 o |1 41

ox
, 0@ (50 L G2 (U L By
(RQAx + At)\0x0t J_\ ;41y 24 \ 0F G=1,j+1/2) (4(Ax)* ~ (A1))

o U 1 ‘U o‘U
x —(A) ==+~ (A Y ——5+= ( x)? ]
[ Ox30t ox21? ox* i 1 iv

g(Ax)3(Az)(Ax+2At)[ U (A1) 6“0] :
(i—-1,j+1/2)

1 @A) | a2 axer (104)

In the same way, a Taylor series expansion for U, ;. ,, U;_y ;, Uiy, s U ;and U, _, ;about the point
[iAx, (j + 1/2)A¢] gives the following truncation error expression for equatlon (102):

oU (Ax)(Ar) , 8°U , O
T“’Z_(At)(at )(,.l.+”2)+(At 2Ax) [2 (At) oxor’ ( Y xor 0x0 fi 1)

(Ax)(At) (82U (Ax)*(Ary
+@ax 1 A0 (6x6t)(,. o T 5 & ( atU>(,‘,+ | @GBX = B0D

U R . 0'U s
X [ZW—(N) 6x26t (At) 26t2+ (A ) 6x :|(,_,+l/2)

2(Ax)(AN(Ax +280 [0V 1 3°U i
3 @ity o 2% 50 T

(105)
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The truncation error for the single ungrouped point near the right end is given by the equation
B7) with i=m — 1, ie.

Ac[1oU 1, LU 1,
Tk-rx[zs;%“’) e T 05 e e
R 13°U 10°U
Ax2< ) +At2<—————— ) + e 106
( ) 5x m—1,7+1/2) ( ) 24 6t3 83xat (m—1,j+1/2) ( )

(ii) Truncation error for the GEL scheme
From equation (97), the GEL scheme takes the explicit matrix form,

w,, = +rG)'(I +rG)u,+b,, (107)

where b, = (I + rG,)~'b,. When written component-wise, equation (107) becomes,

Uy je1 = —Tg j i+ Uy + ruy, (108)
Uiy g1 =Nty Uy — o )=ty 1=3,5...,m—1, (109)

and
U jy =T+ ru_ ;— i) — U3 ;. (110)

The truncation error for the equation (108) can be obtained directly from equation (88) by putting
i=1, to give,

_(oU U AT10U 1 00 , 83U
TL’(at ax>,,,.+,/2+ [2 o TwB g (A) zat],,+,,2

1 oU 183U 18U
3 A 5 N — 0 —= e,
6( *) (ax3>1,j+1/2+(At) (24 o 8dxor? >, j+,/2+ (111)

The truncation errors for any two grouped points [equations (109) and (110)] are given by T, and
Ty, of the expressions (104) and (105), respectively for i =3,5,...,m — 1.

(iii) Truncation errors for the (S)AGE and (D)AGE schemes

Based on the truncation errors of the GER and the GEL schemes, the truncation errors of the
(S)AGE and (D)AGE methods are analysed in exactly the same manner as for the alternating
schemes of the generalized weighted approximation of Section 3.

8. STABILITY ANALYSIS FOR THE GE METHODS

Before we proceed to investigate the stability condition of the GE schemes, we shall first of all
establish the following results which will be used in our stability analysis.

From equation (95), we find that the matrices G, and G, have the same set of eigenvalues which
consists of 0,1 [of multiplicity (1/2)(m — 2)] and —1 [of multiplicity (1/2)(m — 2)]. Hence, we
observe that although these matrices are symmetric, they are not positive definite. Furthermore,
each of the matrices (I +rG,) and (I +rG,) has the eigenvalues 0,1+ r [of multiplicity
(1/2)(m —2)] and 1 —r [of multiplicity (1/2)(m — 2)]. Hence, the spectral radius of (I +rGy)
(k =1,2) is given by

pU +rG) =I(I +rGyll (112)

=1+r for all positive values of r.
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The inverses of (I + rG,) take the form,

r | | | | T
1 =r, | | |
—r 11 | | |
----- == === i Bt |= ===
L | |
b —r 1 | i 0 [
——-- |~ === NS Rt ===
(I+rG)™! =1—12— | |\‘\ | | (113)
(1 =r9 | | N |
—--- - |~— === | == === j= ===
| 1 0 Loy
| | I —r 1 1
=== | == === |~~~ -~ ~ - |~~~ =
1_ 2
L ' ' ' d=r )_ {m = 1) x (n — 1))
and
P | | .
S T N
I |
| | |
____n_‘i_l_l\____l _____
B 1 | N ol
I +rGy) l=(l—r2) | | \\\ | (114)
| | N
____l______IO_ _\_\l _____
I | 11 —r
| | |
—r 1
L ! ! ‘ J m-nxm-n

A direct evaluation of the eigenvalues of ( + rG,) ' shows that these eigenvalues are 1, 1/(1 —r)
of multiplicity (1/2)(m — 2) and 1/(1 + r) of multiplicity (1/2)(m — 2).
(i) Stability of the GER scheme

From the equation (100), the amplification matrix of the GER scheme is known to be

Toer =T +rG) ' + rG,). (115)
Hence,

p(Tger) = T'Gerllas
=|I +rG) "' +1G)|l1,
<A +rG) LT + 16l (116)
=a,. 117
To enable us to find the spectral radius of I'ggg , we shall now consider expression (116) for different

cases of r.

(a) For 0 <r <1, we have
p(rG) =1rG,l|,

=r.
Therefore, if || rG,||, < 1, then it follows that,

1

NI +rG) ', S ———.
AL I eAT

1
T+ 117G,1I, (118)
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Hence, using expressions (116) and (118) we find that

I +rGy)ll2
Topp) S +—F———
PR o) ST TG T,
=0(,.
It is clear that p(Iger) <, With
1
dl = +r 1.
1—r

(b) For r > 1, we have
T+rG) ' +rG)=1
and
I, <HT +rG) LN +rGD) 2,
which implies,
1

@+ 6ol (119)

d +rG)~'ll, 2

Hence, we get from expressions (116) and (119) that p(Iger) < o, With

o ||(1+"G2)||2=1+"=
THA 4G, THr

We deduce from the cases (a) and (b) that for all values of r, the GER scheme is always unstable.

Alternatively, this condition of stability can also be established by first considering the
eigenvalues of (I +rG,)~" which are 1, 1/(1 —r) of multiplicity (1/2)(m —2) and 1/(1 +7r) of
multiplicity (1/2)(m — 2) for k =1, 2. It is seen that,

1

a—n if 0<r<l,
=17
P[(I+er) ]“ 1 , if 1<r<2, (120)
1A =r)]
1, if r>2

Now, using expressions (116), (117) and (120) we find that:

@) for0<r<l,

1 .
a1=(—-+-"".')'>1 and ||FGER||2Sa| Wlth a|>1;
1-r
(b) for 1<r<2,
1 .
“1=|§1—t':%[>1 and || Fgep <@ with o> 1;

(c) for r > 2,
a;=14+r>1 and ||Tgerll2<o with o >1.

From (a)—(c) we deduce that the GER scheme is always unstable.

(i) Stability of the GEL scheme _
From the equation (107), the amplification matrix of the GEL scheme is given by

Foee = +rG)~'(I +rG)). (121)
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and
p('er) = 1 T2,
=1 +rG)~'U +rG)ll,
<A +rG)~ LM + 1G], (122)

Since ||(I + rG,)'|l, =1 +rG) |1, and || +rG) |, =11 +rG,)||,, the analysis of the
stability of the GEL method will be the same as that of the GER scheme and we therefore conclude
that the GEL scheme is also absolutely unstable.

(iii) Stability of the (S)AGE and (D)AGE schemes
The second equation of condition (98) gives us
W= +7rG) T +rGlu, + U +rGy)'b,. (123)
By inserting u;,, obtained from the first equation leads to
W= +rG) T +rG){U +rG)~ ' + rGy)}u, + b3,
= (I +rG) ' I(I +rGyu;+ b3,
=Iu;+b;. (124)

Hence, the amplification matrix of the (S)AGE scheme is I'g,ge = I with eigenvalues equal to 1 of
multiciplicity (m — 1). (S)AGE is therefore stable (weakly) for whatever choice of r or A.
Similarly, from the last two equations of equations (99) we obtain

Wos = +1G) (T +rG){U +1Gy) "I + 1)y + (I +1Gy) " 'b} + (I +1G))'by,
=T +rG) H{I +rG)I +rG) "} + rG)u,,, + b7,
= +rG) ' I + Gy, + b7,
= +rG) ' +rG)u;,,+b7,
=Iu,,+by. , (125)
The vector u;, , of equation (124) is then inserted into equation (125) to give
W, = I+ by (126)

Again, the amplification matrix I'p,qg is the identity matrix with (m — 1) eigenvalues, each equal
to 1 implying that the (D)AGE scheme is also weakly stable.

9. NUMERICAL EXAMPLES AND COMPARATIVE RESULTS

To demonstrate the application of the GE schemes on hyperbolic problems, four numerical
experiments were conducted.
Experiment 1

The weighted GE algorithms of Section 2 were implemented on the following two first-order
hyperbolic problems: ’

(a) Problem 1.

‘_3..(.{ + a_..U =0
ot ox
subject to .
U(x, 0) = cos x,
U@©,t)=cost,
and

Ul,t)=cos(1 —1). (127)
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The analytical solution is given by

U(x, t) = cos(x —1). ' (128)
(b) Problem 2:
%—i] + %—g =k(x,t),

[k(x,1) = —2sin(x — t) e~ %],
subject to

U(x, 0) =sin x,

U@©,t)= —sinte™%,
and

U@, ) =sin(l —t)e % (129)
The analytical solution is given by
U(x,t)=sin(x —t)e 2. (130)

The GE solutions to Problems 1 and 2 are compared with the solutions obtained from some
of the standard methods, such as the classical explicit scheme (EXP) and the schemes of
Lax—Wendroff (L-W), Roberts—Weiss (R—W) and Crank—Nicolson (C-N) [or the centred-in-
distance, centred-in-time (CD—CT) scheme).

A comparison of their accuracies is obtained by computing the absolute error (A.E.)

A.E.='e,~,jl=|u,-j—U,-j', (131)
or the percentage error (P.E.)
eyl
P.E.=—" x 100, 132
1T, (132

at each point along the mesh line where u and U are the numerical and the analytical (exact)
solutions respectively. Tables 1 and 2 provide the absolute errors of the numerical solutions to
Problem 1 at t =0.4 and ¢t =1.0 for A =0.5 and # =0.5. Similarly, the A.E. for the numerical
solutions to Problem 2 are shown by Tables 3 and 4. The average of all the absolute errors along
the time levels ¢ = 0.4 and ¢ = 1.0 for each of the schemes involved is also entered in the tables.

Experiment 2

Several runs were made on the implementation of the (S)AGE and (D)AGE schemes for a
range of values of 0 in [0, 1] and for ¢ = 0.2(0.2)1.0. For each particular value of 8, the entries in
Tables 5 (Problem 1) and 6 (Problem 2) give the average of the absolute errors along each of the
chosen time levels.

Experiment 3

The (S)AGE and (D)AGE schemes of the spatially-centred’ approximations of Section 6 were
applied on Problem 1 and the A.E. and P.E. calculated. Table 7 displdys these errors at each mesh
point on the time level ¢ = 1.0 for 4 =0.1.

10. DISCUSSION OF NUMERICAL RESULTS

It is clear from Tables 1-4 that the (S)AGE and (D)AGE schemes are more accurate than the
GEL method in solving Problems 1 and 2. This result is expected because of the cancellation of
error terms at most points of the grid system when the GER and the GEL schemes are applied
in their appropriate order of alternation for the (S)AGE and {D)AGE processes. We also find
that at some of the mesh points (along ¢ =0.4 and ¢t = 1.0), the (S)AGE and (D)AGE schemes
can have about the same magnitude of absolute errors as that of the high-order Lax-Wendroff,
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Table 8
Number of Number of Number of additions
Method multiplications divisions (subtractions)
EXP m — 2m
L-W 2m m S5m
GER/GEL/(S)AGE/(D)AGE m+1 1 2m +1
C-N(CD-CT) 8m—1 Im-2 Tm —3

Roberts—Weiss and the Crank—Nicolson methods. In fact, an examination of the average of A.E.
for Problem 2 (Tables 3 and 4) clearly shows that the (S)AGE and (D)AGE schemes are more
superior than the other methods that we have considered. Furthermore, the computational
complexity incurred in solving the first-order hyperbolic equation (1) is also considerably less
than that of, say, the Crank-Nicolson method. Table 8 gives us a comparison of the amount of
arithmetic involved at m internal mesh points along each time row where the solutions of the various
difference schemes are determined. It is seen that the (S)AGE and (D)AGE schemes even compare
well with the explicit, second-order accurate Lax-Wendroff formula.

We observe from the entries in Tables 5 and 6 that the (S)AGE and (D)AGE schemes are most
accurate along the time rows ¢ = 0.2(0.2)1.0 for A = 0.5 when the time weighting @ takes the value
of about 0.5. A possible explanation of this result is that, the terms involving the coefficients
(1 — 20) in the truncation errors in equations (42) and (43) vanish when @ is exactly 0.5. This leads
to a considerable increase in the accuracy of the solutions at the ungrouped points and the overall
effect of the cancellation of errors due to the alternate use of the GER and GEL algorithms is the
improvement in the solutions as they progress forward in time.

Table 7 obviously shows that the stability advantage of the (S)AGE and (D)AGE schemes
is clearly overridden by their very poor accuracy when applied to the spatially-centred approxi-
mations of Section 6. This stems from the consistency difficulty of the two asymmetric formulae
[equations (85) and (86)] which when coupled together determine the basic equations of the GE
schemes. From equation (87) we see that in order for Ty;—0 as Ax, At —0, it is essential Az -0 faster
than Ax —0. Even if we assume that this consistency requirement is accomplished, we still find from
equation (88) that the difference equation (86) would be consistent with the differential equation
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rather than with the hyperbolic equation (1). The truncation error expressions for the GER and
GEL further confirm the above consistency problem.
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