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implies uniform distributional chaos for weighted backward shifts, but there are examples
of backward shifts which are uniformly distributionally chaotic and not hypercyclic.
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1. Introduction

The study of different chaotic properties for backward shift operators on Köthe sequence spaces, and more generally on
Banach or Fréchet sequence spaces, has been widely treated (see, e.g., [5,11,12,27–29,40,47,48]). Backward shift operators
serve as a test for different properties related to chaotic dynamics and, for instance, allow the existence of hypercyclic
operators on arbitrary separable infinite dimensional Fréchet spaces [1,10,18]. This fact contrasts with the existence of
infinite dimensional separable Banach spaces without chaotic operators in the sense of Devaney [17]. On the other hand
backward shifts are connected to semigroups of operators (see, e.g., [22,38,46]), which have applications in the asymptotic
behavior of solutions to certain linear PDEs. Semigroups of operators represent the continuous version of the iteration of
a single operator, although it has been shown recently that, in fact, there is no difference between the hypercyclic behavior,
either in the continuous or in the discrete case [20].

In the paper [36] Li and Yorke observed complicated dynamical behavior for the class of interval maps with period 3. This
phenomena is currently known under the name of chaos in the sense of Li and Yorke. It was soon realized that Devaney-
chaotic interval maps, or more generally, maps with positive topological entropy exhibit chaos in the sense of Li and Yorke
[32] and there are also interval maps with Li–Yorke chaos but with entropy zero [50] (it is also known that interval map
with zero entropy does not have nondegenerate subsystems which are chaotic in the sense of Devaney [35]). This motivated
Schweizer and Smítal to extend in [49] the definition of Li and Yorke in a way that the definition equivalent to positive
topological entropy is obtained for mappings from the compact interval into itself. This new property is currently known
under the name of distributional chaos. The equivalence of different kinds of chaos does not usually hold when the space
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is no longer one-dimensional (e.g. see [2] for a discussion). Distributional chaos always implies chaos in the sense of Li
and Yorke, as it requires more complicated statistical dependence between orbits than the existence of points which are
proximal but not asymptotic. The converse implication is not true in general. However in practice, even in the simple case
of Li and Yorke chaos, it might be quite difficult to prove chaotic behavior from the very definition. Such attempts have
been made in the context of linear operators (see [24,25]). Further results of [24] were extended in [44] to distributional
chaos for the annihilation operator of a quantum harmonic oscillator.

Our framework will be linear and continuous operators T : E → E on separable Fréchet spaces E , i.e. vector spaces E
which have an increasing sequence {‖.‖n}n�1 of seminorms that define a metric

d(x, y) :=
∞∑

n=1

1

2n

‖x − y‖n

1 + ‖x − y‖n
, x, y ∈ E, (1)

under which E is complete and separable.
An operator T : E → E is called hypercyclic if there is a vector x ∈ E such that its orbit Orb(T , x) := {x, T x, T 2x, . . .}

is dense in E . In this case x is a hypercyclic vector for T . Hypercyclity is then equivalent to transitivity in our context.
Devaney [23] defined a continuous mapping f on a metric space X to be chaotic (Devaney-chaotic) if it is topologically
transitive, i.e. for each pair U , V of non-empty open sets there is n ∈ N such that f n(U ) ∩ V �= ∅; the periodic points of f
form a dense subset of X ; and f possesses the following sensitivity to initial conditions: There is an ε > 0 such that for all
δ > 0 and x ∈ X , there are y ∈ X and n ∈ N such that d(x, y) < δ but d( f nx, f n y) > ε. When X is separable, complete and
has no isolated points, transitivity is equivalent to the existence of a dense orbit. It is known that T is Devaney-chaotic if
and only if T is hypercyclic and its periodic points form a dense subset of E (see, e.g., [4]).

The unilateral backward shift B on a sequence space is defined by

B(x1, x2, x3, . . .) := (x2, x3, x4, . . .).

Rolewicz [47] showed that, on the Hilbert space �2 of 2-summable sequences, any multiple of the backward shift by a
scalar of modulus larger than 1 is hypercyclic. MacLane [39] showed that the operator of differentiation, acting on the space
of entire functions of one complex variable, is hypercyclic. Salas [48] extended the study of backward shift operators on
�2 to weighted backward shifts and bilateral weighted shift operators. The representation of certain operators on function
spaces as weighted backward shift operators on Köthe echelon sequence spaces motivated us to study chaos of weighted
shifts. MacLane’s example can be easily represented as a Devaney-chaotic weighted backward shift on a Köthe echelon
space. The differentiation operator acting on other spaces of entire functions also admits such representation on certain
Hilbert sequence spaces [19], or more general spaces of entire functions [15,16]. There exist many sufficient conditions for
transitivity of operators [5,7–9,11,14,21,26,27,30,33]. No general method exists to verify if a given operator is distributionally
chaotic.

One of our main purposes is to give several conditions ensuring uniform distributional chaos for backward shifts. We also
compare distributional chaos with Devaney chaos and hypercyclicity, and show that Devaney chaos implies uniform distri-
butional chaos for weighted backward shifts, but there are examples of backward shifts which are uniformly distributionally
chaotic and not hypercyclic.

2. Preliminaries

2.1. Köthe sequence spaces

Our notation for Köthe sequence spaces and Fréchet spaces is standard and we refer to [34,42].
An infinite matrix A = (a j,k) j,k∈N is called a Köthe matrix if, for each j ∈ N there exists a k ∈ N with a j,k > 0, and

0 � a j,k � a j,k+1 for all j,k ∈ N. For 1 � p < ∞, we consider the (separable) Fréchet spaces

λp(A) :=
{

x ∈ K
N: ‖x‖k :=

( ∞∑
j=1

|x ja j,k|p

)1/p

< ∞, ∀k ∈ N

}
,

and for p = 0

λ0(A) :=
{

x ∈ K
N: lim

j→∞
x ja j,k = 0, ‖x‖k := sup

j∈N

|x j |a j,k, ∀k ∈ N

}
,

which are the corresponding Köthe sequence spaces.
Köthe spaces constitute a natural class of Fréchet sequence spaces in which many typical examples of weighted shifts are

chaotic in some of the senses considered in this article. The easiest example corresponds to the matrix with entries a j,k = 1
for all j,k ∈ N. Such a Köthe matrix gives λp(A) = �p (λ0(A) = c0), the space of p-summable sequences (null sequences).
A diagonal transform of the previous example yields the weighted �p-spaces. That is a j,k = a j for all j,k ∈ N.

The derivative D exhibits chaotic behavior in many spaces X of C∞-functions. D : X → X can be represented as a
weighted backward shift if the Taylor representation around 0 of functions f ∈ X allows an isomorphism of X with a Köthe
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space. The most important case corresponds to X = H(C), the space of entire functions on the complex plane, where the
map f �→ ( f ( j−1)(0)/( j − 1)!) j∈N gives the equality H(C) = λ1(A) for the Köthe matrix A with entries a j,k = k j−1, j,k ∈ N.

Gulisashvili and MacCluer [31] studied the quantum harmonic oscillator and observed that the annihilation operator is
Devaney-chaotic within the natural context of the Fréchet space of rapidly decreasing functions. This space can be identified
with λ1(A) for the matrix A with entries a j,k = jk , j,k ∈ N, and the annihilation operator becomes a weighted shift.
Oprocha [44] showed that the annihilation operator is distributionally chaotic.

2.2. Distributional chaos

The notion of distributional chaos was introduced by Schweizer and Smítal in [49]. The definition was stated for interval
maps, and the main motivation was to extend the definition of Li and Yorke chaos in such a way that a condition equivalent
to positive topological entropy is obtained (for interval maps). But this definition does not depend on the dimension of the
space and can be formulated in any metric space. Various variants of this definition were developed later (e.g. see [3]), and
it was also observed that in general this notion is independent from other definitions of chaos (e.g., there are systems with
positive topological entropy which do not exhibit distributional chaos [45] and vice-versa [37]).

We will consider in this paper only the definition of uniform distributional chaos, which is one of the strongest possibil-
ities [43]. This property can be defined in the following way:

Definition 1. Let f be a continuous self map on a metric space (X,d). If there exists an uncountable set D ⊂ X and ε > 0
such that for every t > 0 and every distinct x, y ∈ D the following conditions hold:

lim inf
n→∞

1

n

∣∣{i: d
(

f i(x), f i(y)
)
< ε, 0 � i < n

}∣∣ = 0,

lim sup
n→∞

1

n

∣∣{i: d
(

f i(x), f i(y)
)
< t, 0 � i < n

}∣∣ = 1,

then we say that f exhibits uniform distributional chaos (where |A| denotes the cardinality of the set A). The set D is called
a distributionally ε-scrambled set.

Generally speaking, for any distinct x, y ∈ D the iterations of these points are arbitrarily close and ε separated alternately,
but additionally there are time intervals where any of these two excluding possibilities is much more frequent than the
other.

If we introduce the following notation (where x, y ∈ X , n ∈ N and t ∈ R)

Φ
(n)
x,y(t) = 1

n

∣∣{i: d
(

f i(x), f i(y)
)
< t, 0 � i < n

}∣∣,
Φx,y(t) = lim inf

n→∞ Φ
(n)
x,y, Φ∗

x,y(t) = lim sup
n→∞

Φ
(n)
x,y

and additionally denote Ψα = χ(α,+∞) , where χA is the characteristic function of the set A, then we can state the definition
of uniform distributional chaos in a more compact way. Namely, a set D is distributionally ε-scrambled if Φ∗

x,y = Ψ0 and
Φx,y � Ψε for any distinct x, y ∈ D . A pair which fulfills the above property (i.e. Φ∗

x,y = Ψ0 and Φx,y � Ψε) is called a
distributionally chaotic pair (of modulus ε).

Theorem 2. Let ( f , X), (g, Y ) be two dynamical systems (we denote by d, ρ the metric on X and Y respectively) and let π : X → Y
be a conjugacy between f and g (i.e. π is a homeomorphism and π ◦ f = g ◦π ). Assume additionally that π is uniformly continuous.
In that case, f exhibits uniform distributional chaos if and only if g does.

Proof. The proof follows the same lines as the proof of [51, Theorem 2]. The original proof is for maps acting on compact
metric spaces, however only uniform continuity is needed in the argument. �
Remark 3. It directly follows from the definition of the metric (1), that a linear map π : E1 → E2 between Fréchet spaces
E1, E2 which is continuous at 0 ∈ E1 is uniformly continuous.

Corollary 4. Let Ti : Ei → Ei be an operator acting on separable Fréchet spaces Ei ; i = 1,2; and let T1 be conjugate with T2 by an
operator φ : E1 → E2 . In that case, T1 exhibits uniform distributional chaos if and only if T2 exhibits uniform distributional chaos.

3. Backward shift operators on Köthe sequence spaces

In order to apply notions from topological dynamics, the backward shift

B(x1, x2, x3, . . .) := (x2, x3, x4, . . .)
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must be continuous and well defined on the Köthe echelon space λp(A). This is equivalent to the following condition on
the matrix A:

∀n ∈ N, ∃m > n: sup
j∈N

a j,n

a j+1,m
< +∞ (2)

where in the case a j+1,m = 0, we have a j,n = 0 and we consider 0
0 as 1.

The easiest case is when A = (1), the constant matrix equal to 1, that gives λp(A) = �p . In this case B : �p → �p is not
distributionally chaotic since, for each x, y ∈ �p , we have that limn d(Bnx, Bn y) = 0.

Theorem 5. Let A be a Köthe matrix satisfying (2) and 1 � p < ∞ or p = 0. If there exists a pair x, y ∈ λp(A) such that Φx,y � Ψε

for some ε > 0, then B : λp(A) → λp(A) exhibits uniform distributional chaos.

Proof. We may assume that x = 0. Otherwise we redefine, by the translation invariance of the metric, x̂ = 0 and ŷ = x − y.
Since y ∈ λp(A) and there is ε > 0 such that Φ0,y � Ψε , we can find increasing sequences (mk)k∈N and (nk)k∈N in N such

that
∞∑

j=mk

|y ja j,k|p <
1

2k
, (3)

nk − mk

nk
>

k − 1

k
, and (4)

∣∣{n � nk: d
(
0, Bn y

)
< ε

}∣∣ <
nk

k
, k ∈ N. (5)

We define z = (z j) j∈N by the formula:

z j =
{

ky j, mk � j < mk+1,

y j, 1 � j < m0.

Observe that z ∈ λp(A), because

∞∑
j=mk

|z ja j,k|p =
∑
l�k

ml+1−1∑
j=ml

|z ja j,k|p =
∑
l�k

ml+1−1∑
j=ml

lp |y ja j,k|p �
∑
l�k

ml+1−1∑
j=ml

lp |y ja j,l|p �
∑
l�k

lp

2l
< +∞.

Fix N ∈ N and δ > 0 such that

‖x‖N :=
( ∞∑

j=1

|x ja j,N |p

)1/p

< δ implies d(0, x) < ε, ∀x ∈ λp(A). (6)

Let 0 < ε′ < 2−N−1 such that 2N+1ε′
1−2N+1ε′ < δ.

We can find a sufficiently fast increasing sequence (qk)k∈N in N such that, for z̄ = (z̄ j) j∈N defined by the formula

z̄ j =
{

z j, q2k−1 � j < q2k,

0, otherwise,

on one hand we have that each k ∈ N admits j = j(k) ∈ N so that [m j,n j] ⊂ [q2k−1,q2k] and

d
(

Bi z̄, Bi z
)
< ε′, ∀i ∈ [m j,n j], (7)

and, on the other hand, we have introduced in z̄ sufficiently large intervals of 0’s so that Φ∗
0,α z̄ ≡ Ψ0 for all α with |α| � 1.

Let us then define S = {zα = α z̄: α ∈ [0,1]}. We will show that S is distributionally ε′-scrambled. Note that Φzα,zβ =
Φ0,z|α−β| for every α �= β . In other words, it is enough to prove that Φ0,zα � Ψε′ for each zα ∈ S , α �= 0. Indeed, given k ∈ N,
if i ∈ [m j,n j] ⊂ [q2k−1,q2k] is such that d(0, Bi(α z̄)) < ε′ , by (7) we easily get that d(0, Bi(αz)) < 2ε′ . The definition of this

distance yields α‖Bi z‖N < 2N+1ε′
1−2N+1ε′ < δ since, otherwise, 2ε′ � 1

2N (
‖Bi(αz)‖N

1+‖Bi(αz)‖N
) � d(0, Bi(αz)). We additionally assume that

k is big enough so that ‖Bi y‖N � α‖Bi z‖N for all i ∈ [m j,n j]. Therefore, by (6), we get d(0, Bi y) < ε. That is, we have shown{
i ∈ [m j,n j]: d

(
0, Bi(α z̄)

)
< ε′} ⊂ {

i ∈ [m j,n j]: d
(
0, Bi y

)
< ε

}
.

The inequalities (4) and (5) conclude the proof. �
We recall that the upper density D(A) of a set A ⊂ N is defined by:

D(A) = lim sup
n→∞

|A ∩ {1, . . . ,n}|
n

.
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Theorem 6. If there exists a decreasing sequence of sets N ⊃ S1 ⊃ S2 ⊃ · · · such that for any n ∈ N it holds that
∑

j∈Sn
ap

j,n < +∞
and D(Sn) = 1 then B : λp(A) → λp(A), 1 � p < ∞, is uniformly distributionally chaotic.

Proof. There exists an increasing sequence (mn)n∈N such that |Dn|
mn

> n−1
n where Dn = Sn ∩ [0,mn]. If we denote D =⋃

n∈N
Dn then D(D) = 1 and D ⊂ [0,mk] ∪ Sk for every k ∈ N. In particular

∑
j∈D ap

j,k < +∞ for every k ∈ N.
By the definition of Köthe matrix, there is K such that a0,K > 0. This implies that there is an ε > 0 such that d(y,0) > ε

provided that y ∈ λp(A) and y0 = 1.
If we set x = ∑

i∈D ei then by the definition of the set D we obtain that x ∈ λp(A). But (B j(x))0 = 1 for every j ∈ D; in
particular

Φ
(mn)
0,x (ε) � mn − |Dn|

mn
� 1 − n − 1

n
−→ 0.

We have just proved that Φ0,x � Ψε and by Theorem 5 the proof is finished. �
Given a sequence {wi}i�2 of strictly positive scalars we may consider its associated weighted backward shift

B w(x1, x2, . . .) := (w2x2, w3x3, . . .). In our context of Köthe echelon spaces, this class of operators can be reduced to the
unweighted case in the following way. Set

v1 := 1, vi := 1

w2 . . . wi
, i > 1,

Ā := (āi,k)i,k∈N: āi,k := viai,k, ∀i,k ∈ N.

Via the diagonal transform φv(x1, x2, x3, . . .) := (v1x1, v2x2, v3x3, . . .) we construct the (commutative) diagram

λp( Ā)
B

φv

λp( Ā)

φv

λp(A)
B w λp(A)

which clearly transfers the dynamics of B to B w and vice-versa (see [40] for the details). Accordingly, the operator B w is
continuous if and only if

∀n ∈ N, ∃m > n: sup
i∈N

wi+1
ai,n

ai+1,m
< ∞. (8)

If condition (8) is fulfilled then, by Corollary 4, the study of distributional chaos for weighted backward shifts can
be reduced to the unweighted case, with the suitable Köthe matrix. In particular, the stronger condition given in [40,
Corollary 3.4] characterizing chaos in the sense of Devaney was

∞∑
j=1

ap
j,n

(w2 . . . w j)
p

< ∞.

This condition implies distributional chaos, since the hypothesis of Theorem 6 are satisfied for N = S1 = S2 = · · · .

Corollary 7. If there exists a decreasing sequence of sets

N ⊃ S1 ⊃ S2 ⊃ · · ·
such that for any n ∈ N it holds that

∑
j∈Sn

ap
j,n

(w2 . . . w j)
p

< ∞

and D(Sn) = 1 then B w : λp(A) → λp(A) presents uniform distributional chaos. In particular, if B w is Devaney-chaotic then it is
uniformly distributionally chaotic.

As a consequence we can give a collection of examples that are uniformly distributionally chaotic since they are actually
chaotic in the sense of Devaney.
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Examples 8. (1) If A is such that for each k ∈ N there is ik ∈ N with ai,k = 0 for all i > ik then λp(A) := K
N . It turns out

that B w exhibits chaos in the sense of Devaney on K
N for any weight w .

(2) The derivative operator D acting on the space of entire functions H(C) endowed with its natural compact open topol-

ogy may be represented as the backward shift B acting on the Köthe space λ1(A) where A = (ai,k)i∈N0,k∈N = ( eik

i! )i∈N0,k∈N ,

via the isomorphism f
Φ�→ ( f (i)(0))i�0. By [27] we know that D is Devaney-chaotic.

(3) Consider the following subspace of L2(R):

Φ =
{

φ ∈ L2(R): φ =
∞∑

n=0

xnψn,

∞∑
n=0

|xn|2(n + 1)r < ∞ for r = 0,1, . . .

}

together with the family of seminorms

pm

( ∞∑
n=0

xnψn

)
=

( ∞∑
n=0

|xn|2(n + 1)m

)1/2

, m � 0,

where vectors {ψn}n∈N form an orthonormal basis for L2(R). If we endow Φ with the metric

ρ(φ,ψ) =
∞∑

m=0

1

2m
· pm(φ − ψ)

1 + pm(φ − ψ)

then it is a separable Fréchet space and the operator â : Φ → Φ defined by

â(ψ1) = 0, â(ψn) = √
nψn−1, n > 1,

is continuous. For a suitable choice of the basis {ψn}n∈N operator â becomes the annihilation operator for a quantum
harmonic oscillator [13]. It was proved in [44] that the operator â exhibits uniform distributional chaos. But the system
(Φ, â) may also be represented as the weighted backward shift operator:

B w(x1, x2, . . .) := (
√

2x2,
√

3x3,
√

4x4, . . .)

defined on Köthe echelon space λ2(A) where

a j,k = ( j + 1)
k
2 .

So assumptions of Corollary 7 are fulfilled (in fact B w is Devaney-chaotic) and by Corollary 4 we obtain a simple proof of
the main result of [44].

(4) The Bessel operator Δμ = z−2μ−1 Dz2μ+1 D (μ > −1/2), acting on the space of even entire functions He(C) en-
dowed with the compact open topology may also be represented as a weighted backward shift with weights {wi}i�1 =
{(i + 1 + μ)/(i + 1/2)}i�1 acting on the Köthe space λ1(A), where A = (ai,k)i∈N0,k∈N = (e2ik/(2i)!)i∈N0,k∈N , and the linking
isomorphism is g �→ (g(2i)(0))i�0 (see [6,41] for more details). The series

∑
j∈N

e2 jk

(2 j)!∏ j
i=1

i+1+μ
i+1/2

is convergent for any k ∈ N, and hence Δμ is Devaney-chaotic on He(C).

4. Weighted �p-spaces

In this section we will assume that B (respectively, B w ) is the (weighted) backward shift operator acting on a weighted
�p-space �p((a j) j) defined by a sequence of weights (a j) j∈N . Note that, in this case, conditions (2) and (8) for the continuity
of the respective operators simplify to the existence of γ > 0 such that γ a j+1 > a j (respectively, γ a j+1 > w j+1a j ) for each
j ∈ N. Theorem 6 and Corollary 7 also adopt a simplified expression in this case.

Corollary 9. If there exists a set S ⊂ N such that
∑

i∈S ap
i < +∞ and D(S) = 1 then B : �p((a j) j) → �p((a j) j) exhibits uniform

distributional chaos.

If there exists a set S ⊂ N such that
∑

i∈S
ap

i
(w2...wi)

p < +∞ and D(S) = 1 then B w : �p((a j) j) → �p((a j) j) is uniformly distribu-
tionally chaotic.

With the above corollary in mind, we provide an example of a hypercyclic and uniformly distributionally chaotic operator
that is not Devaney-chaotic.
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Example 10. For k = 1,2, . . . denote nk = 2k2
and observe that

n1 + · · · + nk � 2 + 4 + · · · + 2k2 � 2k2+1

and so

nk+1

n1 + · · · + nk+1
� 2(k+1)2

2(k+1)2 + 2k2+1
� 1 − 2k2+1

2(k+1)2 + 2k2+1
� 1 − 1

4k + 1
. (9)

Now we take

a :=
{

1

2
,

1

22 , . . . ,
1

2n1
,

1

2
,

1

22
, . . . ,

1

2n1
,

1

2n1+1 , . . . ,
1

2n2
, . . . ,

1

2
,

1

22
, . . . ,

1

2nk
,

1

2nk+1 , . . . ,
1

2nk+1
, . . .

}

and S the set of indices associated to weights that are written in bold type.
Clearly we have

∑∞
i=1 ap

i = ∞ and therefore B : �p((a j) j) → �p((a j) j) cannot be chaotic in the sense of Devaney. On the
other hand we have that∑

i∈S

ap
i < ∞.

It remains to show that S has upper density equal to 1. To this aim it is enough to prove that there is a sequence {mk}k∈N

for which limk→∞ Mk = 1 where

Mk = |S ∩ {1, . . . ,mk}|
mk

.

Set mk := n1 + · · · + nk for each k ∈ N. The following lines show the process of counting the indices from {1, . . . ,mk} that
belong to S in order to compute the required limit.

M1 = n1

n1
= 1,

M2 = n1 + (n2 − n1)

n1 + n2
= n2

n1 + n2
,

M3 = n1 + (n2 − n1) + (n3 − n2)

n1 + n2 + n3
= n3

n1 + n2 + n3
,

. . . .

Finally by (9) we have that limk→∞ nk
n1+···+nk

= 1.

Given positive integers i < j and a number α > 0 we denote

Si, j(α) = {
k ∈ [i, j]: ak � α

}
.

Theorem 11. If there exist a sequence (αn)n∈N ⊂ (0,+∞) and increasing functions j0, j1 : N → N such that j1(n)− j0(n) � n for all
n ∈ N and

lim
n→∞

a j1(n)

αn
= 0, (10)

lim
n→∞

|S j0(n), j1(n)(αn)|
j1(n) − j0(n)

= 1 (11)

then B exhibits uniform distributional chaos.

Proof. The condition (10) implies that there is an increasing sequence nk such that:
∞∑

k=1

a j1(nk)

αnk

< +∞. (12)

Let us define x = (xi)i∈N by

xi =
{ 1

αnk
, i = j1(nk),

0, otherwise.

Note that for i ∈ S j0(nk), j1(nk)(αnk ) the following condition holds:

∥∥B j1(nk)−i(x)
∥∥ � x j1(nk)ai � ai

α
� 1.
nk
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But j1(nk) − i ∈ [0, j1(nk) − j0(nk)] and so

Φ
( j1(nk)− j0(nk))

0,x (1) < 1 − |S j0(nk), j1(nk)(αnk )|
j1(nk) − j0(nk)

−→ 0.

We have just proved that Φ0,x � Ψ1 and so the result follows by Theorem 5. �
Corollary 12. Let us set any r ∈ (0,1). If for any integer N > 0 there exists an integer i such that

a j+1 � ra j, j = i, . . . , i + N,

then B exhibits uniform distributional chaos.

Proof. By the assumptions, for every n ∈ N there are j0(n), j1(n) such that j1(n) − j0(n) > 2n and ai+1 � rai for every
j0(n) � i < j1(n). Let us set αn = r−na j1(n) .

Observe that when j0(n) � i < j1(n) − n then ai � ri− j1(n)a j1(n) � αn and so

∣∣S j0(n), j1(n)(αn)
∣∣ � j1(n) − j0(n) − n � 2n − n.

Additionally, limn→∞
a j1(n)

αn
= limn→∞ rn = 0 which, by Theorem 11, finishes the proof. �

We can give now an easy example of a uniformly distributionally chaotic backward shift which is not hypercyclic.

Example 13. Let a = (a j) j∈N := (1,2,1,22,2,1,23,22,2,1, . . .). The backward shift B : �p((a j) j) → �p((a j) j) is uniformly
distributionally chaotic since the hypothesis of Corollary 12 are satisfied for r = 1/2. But B is not hypercyclic because the
sequence of weights is bounded away from 0 [40, Proposition 3.1].

The following corollary shows that in some cases we may limit our considerations to a special subclass of sequences
(αn)n∈N . This may be useful in applications, where given a sequence of weights we have to choose (αn)n∈N . In such cases
these additional conditions may simplify the search.

Corollary 14. Let (an)n∈N be a sequence of weights such that conditions (10) and (11) are fulfilled by some sequence (αn)n∈N and
increasing functions j0, j1 .

(1) If (an)n∈N is bounded, then (equivalently) there exist a sequence (α̂n)n∈N ⊂ (0,+∞) and increasing functions ĵ0, ĵ1 : N → N

such that ĵ1(n) − ĵ0(n) > n and

lim
n→∞ α̂n = 0, lim

n→∞
a ĵ1(n)

α̂n
= 0,

lim
n→∞

|S ĵ0(n), ĵ1(n)
(α̂n)|

ĵ1(n) − ĵ0(n)
= 1.

(2) If (an)n∈N is bounded away from 0, then limn→∞ αn = +∞.

Proof. Let (an)n∈N be bounded. If lim infn→∞ αn = 0 then it is enough to take a subsequence of (αn)n∈N and modify func-
tions j0, j1 accordingly. Otherwise, suppose that the sequence (αn)n∈N is bounded from below by some M > 0. Since the
sequence (an)n∈N is bounded so is the sequence (αn)n∈N , if not Si, j(αmk ) would be empty for some increasing sequence
(mk)k∈N . By condition (10) we obtain that limn→∞ an = 0. There exists N > 0 such that an < M2 for all n > N . It is enough
to put ĵi = ji for i = 0,1 and α̂n = αn if n � N , α̂n = √

an otherwise. To finish the proof, observe that α̂n < M � αn and so
Si, j(αn) ⊂ Si, j(α̂n).

For the second case, let (an)n∈N be bounded away from 0. There exists M > 0 such that
a j1(n)

αn
� M

αn
which, by condi-

tion (10), implies limn→∞ αn = +∞. �
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