Green Functions Associated to Complex Reflection Groups

Toshiaki Shoji

Department of Mathematics, Science University of Tokyo, Noda, Chiba 278-8510, Japan

Communicated by Michel Broué

Received November 7, 2000

Green functions of classical groups are determined by the data from Weyl groups and by certain combinatorial objects called symbols. Generalizing this, we define Green functions associated to complex reflection groups $G(e, 1, n)$ and study their combinatorial properties. We construct Hall–Littlewood functions and Schur functions in our scheme and show that such Green functions are obtained as a transition matrix between those two symmetric functions, as in the case of GL_n.

© 2001 Academic Press

CONTENTS

0. Introduction.
1. Preliminaries.
2. Symmetric functions associated to partitions.
3. Symmetric functions associated to symbols.
5. Green functions.
6. Some special cases.
7. Examples.

0. INTRODUCTION

Green polynomials $Q^\mu_\lambda(q)$ of $GL_n(K_q)$, where λ, μ are partitions of n, were first introduced by Green [G] in 1955 in a combinatorial framework.

¹ The author is grateful to G. Malle and F. Lübeck for some useful discussions, and to Malle for the computation of examples by using a computer.

0021-8693/01 $35.00
Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.
of symmetric functions. They are obtained as the transition matrix between power sum symmetric functions and Hall-Littlewood functions. Those Green functions play a crucial role in [G] in describing irreducible characters of $GL_n(F)$. More generally, we consider a connected reductive group G defined over a finite field F, with Frobenius map F. In 1976, Deligne and Lusztig constructed in [DL] Green functions associated to finite reductive groups $G(F)$ in general. They defined a function Q^G_T, for each F-stable maximal torus T of G, as the restriction on unipotent elements of the Deligne–Lusztig virtual characters $R^G_T(\theta)$. The Green function Q^W_T, for an irreducible character χ of the Weyl group W of G, is defined as a certain linear combination of Q^G_T for various T. In the case of $GL_n(F)$, $Q^W_T(\mu)$ coincides with $\tilde{K}_{\mu}(q)$, the modified Kostka polynomial which is defined as a linear combination of various $Q^G_T(q)$, where χ^λ is the irreducible character of $W = \Xi_n$ corresponding to λ, and μ_{μ} is the unipotent class corresponding to μ. The computation of $R^G_T(\theta)$ is reduced to the computation of Green functions associated to various reductive subgroups. In [L5] (see also [S2]), Lusztig showed that Green functions have a geometric interpretation in terms of intersection cohomology complexes of the closure of unipotent classes. Using this, he proved in [L3], generalizing the result in [S1], that there exists a simple algorithm of computing Green functions. Here Green functions are determined as a unique solution of a certain type of matrix equation

\[PA'P = \Omega \]

(\ast)

with unknown P, Λ. (The entries of the matrix P describe Green functions $Q^W_T(\mu)$.) Note that the matrix Ω is completely determined by the property of irreducible characters of W, while the shapes of P and Λ are determined by the property of the Springer correspondence between unipotent classes of G and irreducible characters of W. It is known, by the geometric interpretation of Green functions, that the entries of the matrices P and Λ are in $\mathbb{Z}[q]$.

In [GM], Geck and Malle considered an analogy of the equation (\ast). In their case, the matrix Ω is the same as above, but the shapes of P and Λ are different, which is determined by the property of unipotent characters of $G(F)$. They computed the solution of this equation in the case of exceptional groups, and checked that the entries of P and Λ are again in $\mathbb{Z}[q]$, and that those solutions provide the polynomials associated to special pieces discussed in [L6]. They conjecture that this will hold in general, but it is still open for the case of classical groups (see also [S3]).

In the case of classical groups, unipotent characters are parametrized by “symbols” introduced by Lusztig [L1]. While the Springer correspondence is described by “u-symbols” which are also introduced by Lusztig [L2] by
modifying the notion of symbols. The remarkable thing is that the matrix equation \((*)\) for either case is completely described by the combinatorial property of symbols or \(u\)-symbols. The notion of symbols is generalized by Malle [Ma1] so that it fits to the case of complex reflection groups \(G(e, 1, n)\) as a generalization of Weyl group of type \(C_n\), where he described the unipotent degrees of \(G(e, 1, n)\) in terms of such (generalized) symbols. Now the ingredients used to construct the equation \((*)\) makes sense even for this case, and one can define a matrix equation by using the combinatorics of symbols. So it would be natural to call the solution of this equation the Green function associated to \(G(e, 1, n)\).

In this paper, we develop a combinatorial theory of symmetric functions which fits the situation for \(G(e, 1, n)\). In this case, the role of partitions is replaced by symbols. In particular, we construct Hall–Littlewood functions associated to \(G(e, 1, n)\), which are parametrized by symbols. But note that for a fixed \(G(e, 1, n)\), there exist several different types of symbols, such as symbols or \(u\)-symbols in the case of the Weyl group of type \(C_n\). Hence one obtains several classes of Hall–Littlewood functions corresponding to the choice of symbols. We show that a large part of arguments used to construct Green polynomials of \(GL_n(F_q)\) can be generalized to our setting, and that Green functions are obtained as the transition matrix between Schur functions and Hall–Littlewood functions. Thus obtained Green functions are shown to be rational functions in \(Q(t)\), where \(t\) is an indeterminate.

As some examples show, it is very likely that these Green functions are actually polynomials in \(t\) with positive integral coefficients. In Section 6 we show, in some special cases under the condition that \(e = 2\), that Green functions are polynomials with integral coefficients, which supports the conjecture.

1. PRELIMINARIES

1.1. Let \(W \cong \mathbb{Z}_n \ltimes (\mathbb{Z}/e\mathbb{Z})^n\) be the imprimitive complex reflection group \(G(e, 1, n)\), and \(V = C^n\) the natural reflection representation of \(W\). Let \(S(V)\) be the symmetric algebra of \(V\), and \(I_+\) the ideal of \(S(V)\) generated by the homogeneous \(W\)-invariant vectors of strictly positive degrees. We denote by \(R = \bigoplus R_i\) the coinvariant algebra of \(W\), which is a graded algebra defined as the quotient of \(S(V)\) by \(I_+\). Let \(t\) be an indeterminate. The Poincaré polynomial \(P_W(t)\) is defined as \(P_W(t) = \sum_{i \geq 0} (\dim C R_i) t^i\), which is explicitly given as

\[
P_W(t) = \prod_{i=1}^{n} \frac{t^{e_i} - 1}{t - 1}.
\]
For any class function f on W, we define $R(f)$ by

$$R(f) = (t - 1)^n P_W(t) \frac{1}{|W|} \sum_{w \in W} \text{det}_V(w) f(w),$$

where det_V denotes the determinant on V. Note that $R(f)$ coincides with $\sum \langle f, R_i \rangle_{W'}$, where $\langle \cdot , \cdot \rangle_W$ denotes the inner product of class functions on W. Hence $R(f) \in \mathbb{Z}[t]$ for a generalized character f of W.

Let N^* be the number of complex reflections in W. Then N^* is the maximal degree in R, and the W-module R_{X^*} coincides with $\overline{\text{det}}_V$, the complex conjugate of det. We denote by w the set of e-partitions of size n. The set W^\wedge of irreducible characters of W is in natural bijection with the set $\mathcal{P}_{n,e}$. We denote by χ^α the irreducible character corresponding to $\alpha \in \mathcal{P}_{n,e}$. In particular, the unit character corresponds to $((n), - , \ldots, -)$ and $\overline{\text{det}}_V$ corresponds to $\alpha = (-, \ldots, -,(1^n))$.

Let $m_0, m_1, \ldots, m_{e-1}$ be positive integers such that $m_k \geq n$, and put $m = (m_0, \ldots, m_{e-1})$. We denote by $Z_n^{m,0} = Z_n^{m,0}(m)$ the set of e-partitions α such that $|\alpha| = n$ and that each $\alpha^{(k)}$ is regarded as an element in \mathbb{Z}^{m_k}, written in the form $\alpha^{(k)} = a_1^{(k)} \geq \cdots \geq a_{m_k}^{(k)} \geq 0$. We fix integers $r \geq s \geq 0$ and consider an e-partition $\Lambda^0 = \Lambda^0(m) = (\Lambda_0, \ldots, \Lambda_{e-1})$ defined by

$$\Lambda_0 = (m_0 - 1)r \geq \cdots \geq 2r \geq r \geq 0,$$

$$(1.2.1) \quad \Lambda_i = s + (m_i - 1)r \geq \cdots \geq s + 2r \geq s \geq r$$

for $1 \leq i \leq e - 1$.

We denote by $Z_n^{\Lambda,0} = Z_n^{\Lambda,0}(m)$ the set of e-partitions of the form $\Lambda = \alpha + \Lambda^0$, where $\alpha \in Z_n^{m,0}$ and the sum is taken entry-wise. We denote by $\Lambda = \Lambda(\alpha)$ if $\Lambda = \alpha + \Lambda^0$, and call it the e-symbol of type (r,s) corresponding to α. We write $|\Lambda| = n$ if $\Lambda \in Z_n^{\Lambda,0}$.

Put $m' = (m_0 + 1, \ldots, m_{e-1} + 1)$, and we define a shift operation $Z_n^{\Lambda,0}(m) \rightarrow Z_n^{\Lambda,0}(m')$ by associating $\Lambda' = (\Lambda_0', \ldots, \Lambda_{e-1}') \in Z_n^{\Lambda,0}(m')$ to $\Lambda = (\Lambda_0, \ldots, \Lambda_{e-1}) \in Z_n^{\Lambda,0}(m)$, where $\Lambda_0' = (\Lambda_0 + r) \cup \{0\}$ and $\Lambda_k' = (\Lambda_k + r) \cup \{s\}$ for $k = 1, \ldots, e - 1$. In other words, for $\Lambda = \Lambda(\alpha)$, Λ' is obtained as $\Lambda' = \alpha + \Lambda^0(m')$, where α is regarded as an element of $Z_n^{m,0}(m')$ by adding 0 in the entries of α. We denote by $\overline{Z}_n^{\Lambda,0}(m')$ the classes in $\bigcup_m Z_n^{\Lambda,0}(m')$ under the equivalence relation generated by shift operations. Note that $\mathcal{P}_{n,e}$ coincides with the set $\overline{Z}_n^{0,0}$. Also note that Λ^0 is regarded as a symbol in $Z_n^{\Lambda,0}$ with $n = 0$.
Two elements Λ and Λ' in $\mathbb{Z}_n^{r,s}$ are said to be similar if there exist representatives in $\mathbb{Z}_n^{r,s}(\mathbf{m})$ such that they contain the same entries with the same multiplicities. The set of symbols which are similar to a fixed symbol is called a similarity class in $\mathbb{Z}_n^{r,s}$.

We shall define a function $a: \mathbb{Z}_n^{r,s} \to \mathbb{N}$. For $\Lambda \in \mathbb{Z}_n^{r,s}$, we put

$$a(\Lambda) = \sum_{\lambda \in \Lambda} \min(\lambda, \lambda') - \sum_{\mu, \mu' \in \Lambda^0} \min(\mu, \mu'),$$

where in the first sum, we assume that $\lambda \neq \lambda'$ if λ and λ' are contained in the same Λ^0, and similarly for the second sum (this occurs only when $r = 0$). The function a on $\mathbb{Z}_n^{r,s}$ is invariant under the shift operation, and it induces a function a on \mathbb{Z}_r. Clearly, the a-function takes a constant value on each similarity class in $\mathbb{Z}_n^{r,s}$.

Remark 1.3. (i) The general notion of e-symbols is obtained by Malle [Ma2]. The e-symbols described above are just a part of such symbols corresponding to the set of e-partitions, which is enough for our later discussions. In [Ma1], the e-symbols are specified to the case where $\mathbf{m} = (m + 1, m, \ldots, m)$ for some $m > 0$. However, our arguments in subsequent sections work well for arbitrary \mathbf{m}.

(ii) The notion of symbols had appeared in several articles in various forms. If $e = 1$, $\mathbb{Z}_n^{1,s}$ is in bijection with the set of partitions of n. In the case where $e = 2$, the set $\mathbb{Z}_n^{1,0}$ was used in [L1] to parameterize unipotent characters of $Sp_{2n}(\mathbb{F}_q)$ or $SO_{2n+1}(\mathbb{F}_q)$. In that case, the a-function defined in (1.2.2) coincides with the original a-function, i.e., the exact power of t dividing the generic degree $D_\rho(t) \in \mathbb{Q}[t]$ of the corresponding unipotent character ρ. In the case $e = 2$, the set $\mathbb{Z}_n^{2,1}$ (resp. $\mathbb{Z}_n^{2,0}$) was used in [L2] to describe the generalized Springer correspondence for $G = Sp_{2n}(k)$ (resp. $G = SO_{2n+1}(k)$) in the case where $\text{ch} \ k \neq 2$. In those cases, the similarity classes are in 1 to 1 correspondence with the unipotent classes of G, and the value $a(\Lambda)$ for the symbol Λ corresponding to the unipotent class u coincides with $\dim \mathcal{B}_u$, where \mathcal{B}_u is the variety of Borel subgroups in G containing u (see, for example, [L4, 4.4]). Moreover, the set $\mathbb{Z}_n^{4,2}$ was used in [LS] to describe the generalized Springer correspondence for $Sp_{2n}(k)$ with $\text{ch} \ k = 2$. On the other hand, for arbitrary e, the set $\mathbb{Z}_n^{1,0}$ was used in [Ma1] to parameterize unipotent degrees associated to the complex reflection groups $G(e, 1, n)$.

1.4. Under the identification of $\mathbb{Z}_n^{r,s}$ with $\mathcal{P}_{n,e}$, we may consider the a function on the set $\mathcal{P}_{n,e}$. Also the similarity classes in $\mathcal{P}_{n,e}$ are defined by inheriting the classes in $\mathbb{Z}_n^{r,s}$. We write $\alpha \sim \beta$ if $\alpha, \beta \in \mathcal{P}_{n,e}$ are in the same similarity class. We choose a total order \succ on $\mathcal{P}_{n,e}$ such that
where either of $\lambda_{a, b}$ satisfies similar conditions as in the second and third one in (1.4.2), and $\Lambda = (\lambda'_{a, b})$ as in the first
one. Let $\sigma = (\sigma_{a,b})$ be the permutation matrix realizing the complex conjugation of irreducible characters of W; i.e., $\sigma_{a,b} = 1$ if $\chi^b = \overline{\chi^a}$ and $\sigma_{a,b} = 0$ otherwise. Then we have $\Omega' = \Omega \sigma$, and the equation $P \Lambda' P = \Omega'$ implies that

$$P \cdot \Lambda \sigma \cdot \sigma^{-1} P \sigma = \Omega'.$$

Note that if $\chi^b = \overline{\chi^a}$ for $\alpha = (\alpha^{(0)}, \ldots, \alpha^{(e-1)})$, then $\beta = (\beta^{(0)}, \ldots, \beta^{(e-1)})$ is given by $\beta^{(k)} = \alpha^{(e-k)}$ for $k = 1, \ldots, e-1$ and $\beta^{(0)} = \alpha^{(0)}$. It follows that the permutation of symbols in $Z_{e^n}^r$ induced from the complex conjugation $\chi^a \mapsto \overline{\chi^a}$ preserves each similarity class. In particular, the matrices $\Lambda \sigma, \sigma^{-1}P\sigma$ have the same shape as Λ and P, respectively. Now it is easily checked that Eq. (1.4.2) has a solution if and only if Eq. (1.5.2) has a solution, and in that case, we have $P' = P, \Lambda' = \Lambda \sigma, P'' = \sigma^{-1} P \sigma$. In the remainder of the paper, we consider Eq. (1.5.2) instead of (1.4.2).

2. SYMMETRIC FUNCTIONS ASSOCIATED TO PARTITIONS

2.1. In this section we shall define several symmetric functions associated to e-partitions. We fix $\mathbf{m} = (m_0, \ldots, m_{e-1})$ as in 1.2 and introduce indeterminates $x_j^{(k)}$ $(0 \leq k \leq e-1, 1 \leq j \leq m_k)$. We denote by x the whole variables $(x_j^{(k)})$, and also denote by $x^{(k)}$ the variables $x_1^{(k)}, \ldots, x_{m_k}^{(k)}$. Power sum symmetric functions and Schur functions are defined as in [M, Appendix B]. Let ζ be a primitive eth root of unity in \mathbb{C}. For each integer $r \geq 1$ and i such that $0 \leq i \leq e-1$, put

$$p_i^{(r)}(x) = \sum_{j=0}^{e-1} \zeta^{j} p_i(x^{(j)}),$$

where $p_i(x^{(j)})$ denotes the rth power sum symmetric function with respect to the variables $x^{(j)}$. We put $p_i^{(0)}(x) = 1$ for $r = 0$. For an e-partition $\alpha = (\alpha^{(0)}, \ldots, \alpha^{(e-1)})$ with $\alpha^{(k)}: \alpha_1^{(k)} \geq \cdots \geq \alpha_{m_k}^{(k)}$, we define a function $p_\alpha(x)$ by

$$p_\alpha(x) = \prod_{k=0}^{e-1} \prod_{j=1}^{m_k} p_{\alpha_j^{(k)}}^{(j)}(x).$$

(Note that our definition of the power sum symmetric function given in (2.1.1) is not the same as the one in [M], which coincides with the complex conjugate of ours.)

Next, we define the Schur function $s_\alpha(x)$ and monomial symmetric functions $m_\alpha(x)$ associated to α by

$$s_\alpha(x) = \prod_{k=0}^{e-1} s_{\alpha^{(k)}}(x^{(k)}), \quad m_\alpha(x) = \prod_{k=0}^{e-1} m_{\alpha^{(k)}}(x^{(k)}).$$
where \(s_{\alpha}(x^{(k)}) \) (resp. \(m_{\alpha}(x^{(k)}) \)) denotes the usual Schur function (resp. monomial symmetric function) associated to the partition \(\alpha^{(k)} \) with respect to the variables \(x^{(k)} \).

Note that the set of conjugacy classes of \(W \) is parametrized by \(\mathcal{P}_{n,e} \) ([M, Appendix B], see also [S2]). We denote by \(w_{\mathbf{B}} \) a representative of the class in \(W \) corresponding to \(\mathbf{B} \in \mathcal{P}_{n,e} \). It is known by [M] that the following Frobenius type formula holds for the irreducible characters of \(W \),

\[
(2.1.3) \quad p_{\mathbf{B}} = \sum_{\alpha \in \mathcal{P}_{n,e}} \chi_{\alpha}^{(w_{\mathbf{B}})} s_{\alpha}.
\]

2.2. In what follows we regard the variables \(x_i^{(k)} \) defined for \(k \in \mathbb{Z}/e\mathbb{Z} = \{0, 1, \ldots, e - 1\} \). For each \(0 \leq k \leq e - 1 \) and an integer \(r \geq 0 \), we define a function \(q_{r, \pm}(x; t) \) by

\[
(2.2.1) \quad q_{r, \pm}(x; t) = \sum_{i \geq 1} (x_i^{(k)})^{r+\delta} \prod_{j \neq i} x_i^{(k)} - x_j^{(k)} = q_{r, \pm}(x; t) \quad (r \geq 1),
\]

where \(\delta = m_k - 1 - m_k \pm 1 \), and by \(q_{r, \pm}^{(1)}(x; t) = 1 \) for \(r = 0 \). In the product of the denominator, \(x_i^{(k)} \) runs over all the variables in \(x^{(k)} \) except \(x_i^{(k)} \), while in the numerator, \(x_i^{(k)} \) runs over all the variables in \(x^{(k)} \). Note that if \(x_i^{(k)} = x_i^{(k+1)} = x_i \) and \(m_k = m_k \pm 1 \), \(q_{r, \pm}^{(1)}(x; t) \) coincides with the function \(q_{r}(x; t) \) given in [M, III, 2.9]. The following lemma describes the generating function for \(q_{r, \pm}^{(1)}(x; t) \).

Lemma 2.3. (i) \(q_{r, \pm}^{(1)}(x; t) \) is a polynomial in \(\mathbb{Z}[x; t] \), which is homogeneous of degree \(r \) with respect to the variables \(x^{(k)} \), \(x^{(k+1)} \).

(ii) \(q_{r, \pm}^{(1)}(x; t) \) has the stability property for both variables \(x^{(k)} \), \(x^{(k+1)} \), i.e., the substitution of \(x_i^{(k)} = 0 \) produces the function \(q_{r, \pm}^{(1)}(x; t) \) with respect to the variables \(x_i^{(k+1)}, \ldots, x_{m_k}^{(k+1)} \), \(m_k \), \(m_k \pm 1 \), similarly for \(x^{(k+1)} \).

(iii) Let \(u \) be an indeterminate. Then we have

\[
(2.3.1) \quad \sum_{r=0}^{\infty} q_{r, \pm}^{(1)}(x; t) u^r = \frac{\prod_{i=1}^{m_k} x_i^{(k)} - x_i^{(k+1)} - tu x_i^{(k+1)}}{\prod_{i=1}^{m_k} x_i^{(k)} - x_i^{(k+1)} - tu x_i^{(k)}}.
\]

Proof. First we consider the case where \(\delta = -1 \), and put \(m = m_k = m_k \pm 1 \). By Lagrange’s interpolation, we have

\[
\prod_{i=1}^{m_k} \frac{z - b_i}{z - a_i} = 1 + \sum_{i=1}^{m_k} \frac{a_i - b_i}{z - a_i} \prod_{j \neq i} \frac{a_i - b_j}{a_i - a_j}.
\]

Substituting \(a_i = \sigma x_i^{(k)} \), \(b_i = \tau x_i^{(k+1)} \) into this formula, we have

\[
\prod_{i=1}^{m_k} \frac{1 - tu x_i^{(k+1)}}{1 - x_i^{(k+1)}} = 1 + \sum_{i=1}^{m_k} \frac{\sigma x_i^{(k)} - \tau x_i^{(k+1)}}{1 - x_i^{(k)} - \sigma x_i^{(k+1)}} \prod_{j \neq i} \frac{x_j^{(k+1)} - x_j^{(k)}}{x_i^{(k+1)} - x_i^{(k)}}.
\]
The coefficient of \(u^r \) in the expansion of the right hand side coincides with \(q_{r, z}^{(k)}(x; t) \). This shows (2.3.1) in the case where \(\delta = 1 \). In particular, in this case \(q_{r, z}^{(k)}(x; t) \) is a polynomial in \(x^{(k)}, x^{(k+1)} \), and \(t \), with integral coefficients, which is homogeneous of degree \(r \) with respect to the variables \(x \). Now one can check by using the definition (2.2.1) that if \(q_{r, z}^{(k)}(x; t) \) is a polynomial in \(x^{(k)}, x^{(k+1)} \), then it has a stability property for both variables \(x^{(k)}, x^{(k+1)} \). It follows from this that \(q_{r, z}^{(k)}(x; t) \) satisfies the assertions (i), (ii) in the lemma even in the general case \(\delta = 1 \). Since the right hand side of (2.3.1) also has the stability property, the formula (2.3.1) for the general case follows from the case \(\delta = 1 \). The lemma is proved.

2.4. For an \(e \)-partition \(\alpha = (\alpha^{(0)}, \ldots, \alpha^{(e-1)}) \in \mathcal{P}_n, e \), we define a function \(q_{\alpha, z}(x) \) by

\[
q_{\alpha, z}(x; t) = e \prod_{k=0}^{e-1} \prod_{j=1}^{m_k} q_{\alpha_j^{(k)}, z}(x; t).
\]

For a partition \(\alpha^{(k)} : \alpha_1^{(k)} \geq \cdots \geq \alpha_{m_k}^{(k)} \geq 0 \), we define a function \(z_{\alpha_1^{(k)}}(t) \) by

\[
z_{\alpha_1^{(k)}}(t) = \prod_{j=1}^{m_k} \left(1 - \xi^k t^{\alpha_j^{(k)}} \right)^{-1},
\]

which is determined only by parts such that \(\alpha_j^{(k)} \neq 0 \). Then we define \(z_\alpha(t) \) by

\[
z_\alpha(t) = z_\alpha \prod_{k=0}^{e-1} z_{\alpha_1^{(k)}}(t),
\]

where \(z_\alpha \) is the order of the centralizer of \(w_\alpha \) in \(W \). Explicitly, \(z_\alpha \) is given as follows. For \(\alpha \in \mathcal{P}_n, e \), put \(l(\alpha) = \sum_{k=0}^{e-1} l(\alpha^{(k)}) \), where \(l(\alpha^{(k)}) \) is the number of parts in the partition \(\alpha^{(k)} \). For a partition \(\alpha = (1^{n_1}, 2^{n_2}, \ldots) \), put \(z_\alpha = \prod_{i \geq 1} i^{n_i} n_i! \). Then \(z_\alpha = e^{l(\alpha)} \prod_{k=0}^{e-1} z_{\alpha_1^{(k)}} \).

We now introduce infinitely many variables \(x^{(k)}_i, y^{(k)}_j \) for \(i = 1, 2, \ldots \) and \(0 \leq k \leq e - 1 \). Since \(p_\alpha(x), q_{\alpha, z}(x; t), m_\alpha(x) \) have the stability property for the variables \(x^{(k)}_i \), we may regard them as functions with infinitely many variables \(x^{(k)}_1, x^{(k)}_2, \ldots \). Under this setting, we have the following proposition, which is a variant of Lemma 7.8 in [S4].

Proposition 2.5. Let

\[
\Omega(x, y; t) = e \prod_{k=0}^{e-1} \prod_{i, j} \frac{1 - \alpha_i^{(k+1)} y_j^{(k)}}{1 - x_i^{(k)} y_j^{(k)}}.
\]
Then we have

\begin{align}
\Omega(x, y; t) &= \sum_{\alpha} q_{\alpha, +}(x; t)m_\alpha(y) = \sum_{\alpha} m_\alpha(x)q_{\alpha, -}(y; t), \\
\Omega(x, y; t) &= \sum_{\alpha} z_\alpha(t)^{-1} p_\alpha(x)\overline{p}_\alpha(y),
\end{align}

where α runs over all the e-partitions of any size. In (2.5.2), $\overline{p}_\alpha(y)$ denotes the complex conjugate of $p_\alpha(y)$.

Proof. We show the first equality of (2.5.1). It follows from Lemma 2.3 that we have

\[
\Omega(x, y; t) = \prod_{k=0}^{e-1} \prod_{i,j} \sum_{j^{(k)}} q_{i,j}^{(k)}(x; t)^{\left(y_j^{(k)} \right)^{j^{(k)}}}.
\]

By multiplying out, the right hand side turns out to be $\sum_{\alpha} q_{\alpha, +}(x; t)m_\alpha(y)$, which shows the first equality. If we note the equality

\[
\log \Omega(x, y; t) = \sum_{k=0}^{e-1} \prod_{i,j} \sum_{m=1}^{\infty} \frac{1}{m} \left(x_i^{(k)} y_j^{(k)} \right)^m - \frac{t^m}{m} \left(x_i^{(k)} y_j^{(k-1)} \right)^m,
\]

the second equality in (2.5.1) follows from the first one, by replacing the role of $x_i^{(k)}$ and $y_j^{(k)}$.

Next we show the equality (2.5.2). The proof is similar to the case where $e = 1$, which is given in [M, III, 4.1]. See also [S4, Lemma 7.8]. We start from the formula (2.5.3). By a similar argument as in [M], we have

\[
\log \Omega(x, y; t) = \sum_{k=0}^{e-1} \sum_{i,j} \sum_{m=1}^{\infty} \left\{ \frac{1}{m} \left(x_i^{(k)} y_j^{(k)} \right)^m - \frac{t^m}{m} \left(x_i^{(k)} y_j^{(k-1)} \right)^m \right\}.
\]

But since

\[
\frac{1}{e} \sum_{a=0}^{e-1} (\xi - \xi')^a = \delta_{k', k},
\]

we have

\[
\log \Omega(x, y; t) = \sum_{k=0}^{e-1} \sum_{i,j} \sum_{m=1}^{\infty} \left\{ \frac{1}{em} \xi^{-a\left(k - k' \right)} \left(x_i^{(k)} y_j^{(k')} \right)^m - \frac{t^m}{em} \xi^{-a\left(k - k' \right)} \left(x_i^{(k)} y_j^{(k-1)} \right)^m \right\} = \sum_{a=0}^{e-1} \prod_{m=1}^{\infty} \frac{1 - \xi^m}{em} p_m(x)p_m(y).
\]
Hence
\[
\Omega(x, y; t) = \prod_{a=0}^{e-1} \prod_{m=1}^{\infty} \exp \left\{ \frac{1 - \xi^a t^m}{em} p_m(a)(x) \overline{p_m(a)(y)} \right\} = \sum_{\alpha} z_\alpha(t)^{-1} p_\alpha(x) \overline{p_\alpha(y)},
\]
and we get (2.5.2). Thus, the proposition is proved.

3. SYMMETRIC FUNCTIONS ASSOCIATED TO SYMBOLS

3.1. In this section, we assume that \(e > 1 \) and \(r > 0 \). In order to proceed with the arguments smoothly, we need to consider a more general situation than Section 2. Let \(\hat{Z}_{e,0}^r = \hat{Z}_{e,0}^r(m) \) be the set of \(e \)-compositions \(\alpha = (\alpha^{(0)}, \ldots, \alpha^{(e-1)}) \), where \(\alpha^{(k)} = (\alpha_1^{(k)}, \ldots, \alpha_{n_k}^{(k)}) \in \mathbb{Z}_{\geq 0}^{n_k} \) such that \(\sum_{k,j} \alpha^{(k)} = n \). We denote by \(\hat{Z}_{e,0}^r(m) = \hat{Z}_{e,0}^r(m) \) the set of “symbols” \(\Lambda = \alpha + \Lambda(m) \), where \(\alpha \in \hat{Z}_{e,0}^r \) and \(\Lambda(m) \in Z_{e,0}^r(m) \) is as in 1.2. Hence \(\hat{Z}_{e,0}^r \supset Z_{e,0}^r \) and \(\hat{Z}_{e,0}^r(m) \supset Z_{e,0}^r(m) \). We denote by \(\Lambda(\alpha) \) the element in \(\hat{Z}_{e,0}^r(m) \) corresponding to \(\alpha \in \hat{Z}_{e,0}^r \) under the above bijection.

In this section, we shall define a symmetric function \(R_\alpha(x; t) \) associated to \(\Lambda = \Lambda(\alpha) \in \hat{Z}_{e,0}^r \). For this, first we prepare some notation. Take \(\alpha \in \hat{Z}_{e,0}^r \) and write it as \(\alpha = (\alpha^{(k)}) \). We fix a total order \(< \) on the set \(M = \{(i, k) \mid 1 \leq i \leq m_k, 0 \leq k \leq e - 1\} \). Let \(\nu_0 = (i, k) \in M \) be the element such that \(\alpha^{(k)} \neq 0 \) and that \(\alpha^{(j)} \neq 0 \) for any \((j, h) \) such that \((j, h) > \nu_0 \).

We define a function \(I^{(k)}_{i, \pm}(x; t) \) for \(0 \leq k \leq e - 1, 1 \leq i \leq m_k \) by
\[
I^{(k)}_{i, \pm}(x; t) = \begin{cases} \prod_{\substack{1 \leq j \leq m_{k+1} \\{i, k\}, \{j, k\} \neq (i, k) \pm 1} \left(x_i^{(k)} - t x_j^{(k \pm 1)} \right) & \text{if } (i, k) \leq \nu_0, \\ \prod_{\substack{1 \leq j \leq m_k \\{i, k\}, \{j, k\} \neq (i, k) \pm 1} \left(x_i^{(k)} - t x_j^{(k)} \right) & \text{if } (i, k) > \nu_0. \end{cases}
\]

Put
\[
\delta^{(k)}_{i, \pm} = \# \{ j \mid (i, k) < (j, k) \} + \# \{ j \mid (i, k) > (j, k \pm 1) \}
\]
if \((i, k) \leq \nu_0 \), and put \(\delta^{(k)}_{i, \pm} = 0 \) if \((i, k) > \nu_0 \). Now set \(\delta^{(k)} = (\delta^{(k)}_{i, \pm}, \ldots, \delta^{(k)}_{n_k, \pm}) \). For each integer \(r \geq 1 \), let
\[
v_r(t) = \prod_{i=1}^{r} \frac{1 - t^i}{1 - t}.
\]
We define a polynomial $v_\alpha(t)$ by

$$v_\alpha(t) = \prod_{k=0}^{e-1} v_{\mu_k}(t),$$

where $\mu_k = \#\{j \mid (j, k) > v_0\}$. For a sequence $\beta = (\beta_1, \ldots, \beta_{m_k})$ we write

$$(x^{(k)})^\beta = (x_1^{(k)})^{\beta_1}(x_2^{(k)})^{\beta_2} \cdots (x_{m_k}^{(k)})^{\beta_{m_k}}.$$

Finally, put $R_{\alpha, \gamma}(x; t)$ associated to α and the order $< \gamma$ on \mathcal{M} by

$$R_{\alpha, \gamma}^\pm(x; t) = v_\alpha(t)^{-1} \sum_{w \in \Xi_m} w \left\{ \prod_k (x^{(k)})^\alpha + \delta^{(k)} \right\} \times \prod_{k, i \leq r_0} R_i^{(k)}(x; t) / \prod_{(i, k) < (j, k)} \left(x_i^{(k)} - x_j^{(k)} \right).$$

3.2. We regard Ξ_{m_k} as a subgroup of Ξ_{m_k} as a permutation group with respect to the letters $\{1 \leq j \leq m_k \mid (j, k) > v_0\}$. Thus $\Xi_\alpha = \Xi_{m_0} \times \cdots \times \Xi_{m_{e-1}}$ is regarded as a subgroup of Ξ_m. We note that (3.1.2) can also be written as

$$R_{\alpha, \gamma}^\pm(x; t) = \sum_{w \in \Xi_m / \Xi_\alpha} w \left\{ \prod_k (x^{(k)})^\alpha + \delta^{(k)} \right\} \times \prod_{k, i \leq r_0} R_i^{(k)}(x; t) / \prod_{(i, k) < (j, k)} \left(x_i^{(k)} - x_j^{(k)} \right).$$

We show (3.2.1). It is known [M, III] that

$$\sum_{w \in \Xi_m} w \left\{ \prod_{i < j} (x_i - x_j) \right\} = v_\alpha(t),$$

for variables x_1, \ldots, x_n. Since the factors $R_i^{(k)}(x; t), \prod_{(i, k) < (j, k)} (x_i^{(k)} - x_j^{(k)})$ for $(i, k) \leq r_0$ and $(x^{(k)})^\alpha + \delta^{(k)}$ are invariant under the action of Ξ_α, we
have

\[
\sum_{w \in \mathfrak{S}} \left(\prod_{k} (x^{(k)})^{a(k)+\delta(k)} \prod_{k,i} I_{i,k}^{(k)}(x; t) \left/ \prod_{i} \prod_{(i,k) < (j,k)} (x^{(k)}_i - x^{(k)}_j) \right. \right) \\
= \prod_{k} (x^{(k)})^{a(k)+\delta(k)} \prod_{k,i} I_{i,k}^{(k)}(x; t) \left/ \prod_{i} \prod_{(i,k) < (j,k)} (x^{(k)}_i - x^{(k)}_j) \right. \\
\times \sum_{w \in \mathfrak{S}} w \left(\prod_{k} \prod_{(i,k) < (j,k)} (x^{(k)}_i - x^{(k)}_j) \right) \\
\times \left(\prod_{j \geq 1} (x^{(k)}_j - t x^{(k+1)}_j) \right) \left/ \prod_{j \neq i} (x^{(k)}_i - x^{(k)}_j) \right.
\]

The last sum is equal to \(v_\alpha(t) \) by (3.2.2). Hence (3.2.1) holds.

We consider the special case where \(v_\alpha = \{(i, k)\} \) is the smallest element in \(\mathcal{A} \). Then we have \(a^{(k)} = r \) for some \(r > 0 \), and \(a^{(k)}_j = 0 \) for any \((j, h) \neq (i, k) \). Under this setting, we have

\[
(3.2.3) \quad R_{x, <}^{\pm}(x; t) = q^{(k)}_{r, \pm}(x; t).
\]

In fact, by the formula (3.2.1), we have

\[
R_{x, <}^{\pm}(x; t) = \sum_{w \in \mathfrak{S}_{m_k}/\mathfrak{S}_{m_k-1}} w \left(\prod_{k} \prod_{(i,k) < (j,k)} (x^{(k)}_i - x^{(k)}_j) \right) \\

\times \left(\prod_{j \geq 1} (x^{(k)}_j - t x^{(k+1)}_j) \right) \left/ \prod_{j \neq i} (x^{(k)}_i - x^{(k)}_j) \right.
\]

where \(\mathfrak{S}_{m_k} \) is the symmetric group with respect to the letters \(\{1, 2, \ldots, m_k\} \) and \(\mathfrak{S}_{m_k-1} \) is the subgroup of \(\mathfrak{S}_{m_k} \) fixing the letter \(i \), and \(\delta^{(k)} = (m_k - 1) - m_k \pm 1 \). Thus (3.2.3) holds.

Let \(\nu_1 = (q, p) \) be the smallest element in \(\mathcal{A} \). Put \(\mathfrak{m}' = (m_0, \ldots, m_p - 1, \ldots, m_{n-1}) \), and let \(\alpha' \in Z^{(q, p)}(\mathfrak{m}') \) be the element obtained from \(\alpha \) by removing \(a^{(p)}_q \), where \(n' = n - a^{(p)}_q \). The set \(\mathcal{A}' = \mathcal{A} \setminus \{\nu_1\} \) has a total order \(< \) inherited from \(\mathcal{A} \). We consider the functions \(R_{x, <}^{\pm}(x; t') \) with variables \(x' = \{x^{(k)}_j \mid (j, k) \neq (q, p)\} \). We have the following lemma.

Lemma 3.3. Let \(R_{x, <}^{\pm}(x; t) \) be the function obtained from \(R_{x, <}^{\pm}(x'; t) \) by replacing the variables \(x^{(p)}, \ldots, x^{(p)}_m \) (\(x^{(p)}_q \) is removed) by \(x^{(p)}, \ldots, x^{(p)}_m \), then we have

\[
R_{x, <}^{\pm}(x; t) = \sum_{i=1}^{m_p} (x^{(p)}_i)^{a^{(p)}_i + \delta^{(p)}_i} g_i R_{x, <}^{\pm}(x; t),
\]
where \(g_i \) \((1 \leq i \leq m_p)\) is given by
\[
g_i(x; t) = \prod_j \left(x_i^{(p)} - tx_j^{(p \pm 1)} \right) / \prod_{j \neq i} \left(x_j^{(p)} - x_j^{(p)} \right).
\]

Proof. Since \((q, p) \leq \nu_0\), we have \(\mathbb{E}_\alpha = \mathbb{E}_{\alpha'} \subset \mathbb{E}_m \subset \mathbb{E}_m \) and \(\mathbb{E}_m / \mathbb{E}_m \approx \mathbb{E}_{m_p} / \mathbb{E}_{m_p} \). \((\mathbb{E}_{m_p} \) is identified with the subgroup of \(\mathbb{E}_{m_p} \) fixing the letter \(q \).\) Note that since \(\nu_1 \) is minimum, no factor of the form \(x_i^{(p \pm 1)} - tx_j^{(p)} \) appears in the expression of \(R_{\alpha, \lambda} \). It follows, by (3.2.1), that we have
\[
R_{\alpha, \lambda}(x; t) = \sum_{w \in \mathbb{E}_m / \mathbb{E}_m} w \left(x_q^{(p)} \right) a_i^{(p \pm 1)} g_q R_{\alpha', \lambda}(x'; t),
\]
which implies the equality in the lemma.

3.4. Let
\[
\Psi_{\pm}^{(k)}(u) = \sum_{r=0}^{\infty} q_{r, \pm}(x; t) u^r,
\]
\[
F(u_1, u_2) = (1 - u_1) / (1 - tu_2).
\]
We regard \(F(u_1, u_2) \) as a formal power series \((1 - u_1)(1 + tu_2 + (tu_2)^2 + \cdots)\). We introduce infinitely many variables \(u_1^{(k)}, u_2^{(k)}, \ldots \) for \(0 \leq k < e \). We fix a total order \(\prec \) on the set \(\mathcal{M}^* = \{(i, k) \mid 0 \leq k < e, i = 1, 2, \ldots \} \) and define a function \(\Phi_{\pm} \) with multi-variables \(u = \{u_{i}^{(k)}\} \) by
\[
\Phi_{\pm}(u) = \prod_{k=0}^{e-1} \prod_{l \geq 1} \Psi_{\pm}^{(k)}(u_i^{(k)}) \prod_{(j, k) < (i, k)} F\left((u_i^{(k)})^{-1} u_j^{(k)} \right) \prod_{(i, k) < (j, k)} F\left((u_j^{(k)})^{-1} u_i^{(k \pm 1)} \right).
\]
Take \(\alpha \in Z_{e, 0}^{n, 0} \), and let \(\mathcal{M} \) be as in 3.1. Then \(\mathcal{M} \) can be embedded in \(\mathcal{M}^* \). We say that \(\mathcal{M} \) is compatible with \(\mathcal{M}^* \) if the embedding preserves the order, and if the inequality \(\nu < \nu' \) holds for \(\nu \in \mathcal{M}, \nu' \in \mathcal{M}^* \). We show the following proposition.

Proposition 3.5. Assume that \(\mathcal{M} \) is compatible with \(\mathcal{M}^* \). Then \(R_{\alpha, \lambda} \) coincides with the coefficient of \(u^a = \prod_{k,l} (u_i^{(k)})^{a_{i,l}} \) in the function \(\Phi_{\pm}(u) \).

Proof. We prove the proposition by induction on \(l = \#\{ \nu \in \mathcal{M} \mid \nu \leq \nu_0 \} \). First assume that \(l = 1 \). Then \(\nu_0 = (i, k) \) is the smallest element in \(\mathcal{M} \), and so in \(\mathcal{M}^* \). If \(a_i^{(k)} = r \), we have \(R_{\alpha, \lambda} = q_{i,l}^{(k)} \) by (3.2.3), and the assertion follows. Assume that \(l > 1 \). Let \(\nu_1 = (q, p) \) be the minimum element in \(\mathcal{M} \), and let \(\alpha' \) be as in 3.2. We may assume, by induction, that
the assertion holds for $R^{\pm}_{\alpha,<}(x'; t)$. We denote by $\Phi^{[i]}_{\pm}$ the function obtained from Φ_\pm by setting $x_i^{(p)} = 0$. Then by (2.3.1) we have

$$
(3.5.1) \quad \Phi^{[i]}_{\pm}(u) = \Phi_{\pm}(u) \prod_{j, l \geq 1} F\left(x_i^{(p)}u_j^{(p)}, x_i^{(p)}u_j^{(p \mp 1)}\right).
$$

By applying the induction hypothesis to $R^{[i]}_{\alpha,<}$, together with Lemma 3.3, we see that $R^{\pm}_{\alpha,<}(x; t)$ is the coefficient of u^n in

$$
\sum_{a \geq 0} \left(u_q^{(p)}\right)^a \sum_{i=1}^{m_p} \left(x_i^{(p)}\right)^{a + \delta^{(p)}_i} g_i \Phi^{[i]}_{\pm}(u'),
$$

where $u' = u - \{u_q^{(p)}\}$. Now by (3.5.1), the last expression is equal to

$$
(3.5.2) \quad \Psi_{\pm}(u') \sum_{a \geq 0} \left(u_q^{(p)}\right)^a \sum_{i=1}^{m_p} \left(x_i^{(p)}\right)^{a + \delta^{(p)}_i} g_i \prod_{j \neq q} F\left(x_i^{(p)}u_j^{(p)}, x_i^{(p)}u_j^{(p \mp 1)}\right).
$$

We expand the product in (3.5.2) as a power series in $x_i^{(p)}$,

$$
\prod_{j \neq q} F\left(x_i^{(p)}u_j^{(p)}, x_i^{(p)}u_j^{(p \mp 1)}\right) = \sum_{m \geq 0} f_m(u'; t)(x_i^{(p)})^m,
$$

where $f_m = f_m(u'; t)$ is a polynomial in u', t. Write the expression (3.5.2) as $\Phi_{\pm}(u')X$. Then substituting the above expansion into X, we have

$$
X = \sum_{a \geq 0} \left(u_q^{(p)}\right)^a \sum_{m \geq 0} f_m \sum_{i=1}^{m_p} \left(x_i^{(p)}\right)^{a + \delta^{(p)}_i + m} g_i
$$

$$
= \sum_{a, m \geq 0} \left(u_q^{(p)}\right)^a \sum_{i=1}^{m_p} q_i^{a + m} f_m
$$

$$
= \sum_{b=0}^{\infty} \left(u_q^{(p)}\right)^b q_i^{b \pm m} \sum_{m=0}^{b} f_m \left(u_q^{(p)}\right)^{-m}.
$$

Hence the positive degree part in X with respect to $u_q^{(p)}$ coincides with

$$
\Psi_{\pm}^{(p)}(u_q^{(p)}) \sum_{m \geq 0} f_m(u_q^{(p)})^{-m} = \Psi_{\pm}^{(p)}(u_q^{(p)}) \prod_{j \neq q} F\left(u_q^{(p)}^{-1}, u_j^{(p)}\right) F\left(u_q^{(p)}^{-1}, u_j^{(p \mp 1)}\right).
$$
Thus \(R^{\pm}_{\alpha, <} \) is the coefficient of \(u^\alpha \) in

\[
\Psi_\pm(u_0) \prod_{j \neq q} \left(\frac{1 - u_j}{1 + u_j} \right) F\left(\left(u_q\right)^{-1} u_j, \left(u_q\right)^{-1} u_j \right) \cdot \Phi_\pm(u).
\]

\[
= \Phi_\pm(u).
\]

The proposition is proved. \(\blacksquare \)

3.6. Let \(M = \sum_i m_i \). We define an operator \(R_{i,j} \) on the set \(\mathbb{Z}^M \) by \(R_{i,j}(\lambda) = \lambda' \), where if \(\lambda = (\lambda_1, \ldots, \lambda_M) \in \mathbb{Z}^M \), then \(\lambda' \in \mathbb{Z}^M \) is given by

\[
\lambda'_i = \lambda_i + 1, \quad \lambda'_j = \lambda_j - 1
\]

and \(\lambda'_l = \lambda_l \) for \(l \neq i, j \). A raising operator (resp. lowering operator) \(R \) on \(\mathbb{Z}^M \) is defined as a product of various \(R_{i,j} \) with \(i < j \) (resp. \(i > j \)). We identify \(\mathcal{M} \) with the set \(\{1, 2, \ldots, M\} \) via the total order on \(\mathcal{M} \) and regard \(\alpha \in \hat{\mathbb{Z}}_n^{0,0} \) as an element in \(\mathbb{Z}^M \). Under this identification, we express the operator \(R_{i,j} \) as \(R_{\alpha', \alpha} \) for \(\nu, \nu' \in \mathcal{M} \).

The definition of \(q_{\alpha, \pm} \) can be applied to \(\alpha \in \hat{\mathbb{Z}}_n^{0,0} \) as well. We extend the definition of \(q_{\alpha, \pm}^{(k)} \) to the case \(r < 0 \) by setting \(q_{\alpha, \pm}^{(k)} = 0 \). Accordingly, we define \(q_{\alpha, \pm} \) by setting \(q_{\alpha, \pm} = 0 \) if some \(a_j^{(k)} < 0 \). Then an action of raising operators on the functions \(q_{\alpha, \pm} \) is defined by \(R(q_{\alpha, \pm}) = q_{\alpha', \pm} \) with \(\alpha' = R\alpha \).

Let us define a function \(b: \mathcal{M} \to \mathbb{N} \) by \(b(\nu) = k \) if \(\nu = (i, k) \in \mathcal{M} \). As a corollary to Proposition 3.5, we have the following.

Corollary 3.7. Let \(\alpha \in \hat{\mathbb{Z}}_n^{0,0} \). Then the function \(R^{\pm}_{\alpha, <} \) is expressed in terms of raising operators as

\[(3.7.1) \quad R^{\pm}_{\alpha, <} = \prod_{\nu < \nu'} \left(\frac{1 - R_{\nu'}(\nu)}{1 + R_{\nu'}(\nu)} \prod_{b(\nu') = b(\nu)} \left(1 - t R_{\nu'}(\nu) \right) \right) q_{\alpha, \pm}.
\]

In particular, \(R^{\pm}_{\alpha, <} \) is a polynomial in \(x, t \), and is expressed as

\[(3.7.2) \quad R^{\pm}_{\alpha, <}(x; t) = \sum_{\beta \in \hat{\mathbb{Z}}_n^{0,0}} c_{\alpha, \beta}(t) q_{\beta, \pm}(x; t)
\]

with \(c_{\alpha, \beta}(t) \in \mathbb{Z}[t] \).

Proof. We notice that \(\prod_{k} \Psi_\pm^{(k)}(u_k) = \sum_{\beta} q_{\beta, \pm} u^\beta \). Then it follows from Proposition 3.5, by using a similar argument as in [M, III, 2], that one can write \(R^{\pm}_{\alpha, <} \) in a form as in (3.7.1). The formula (3.7.2) follows easily from this. \(\blacksquare \)
3.8. We consider \(\Lambda = \Lambda (\alpha) \in \hat{Z}_{n}^{r,t} \) and write it as \(\Lambda = (\lambda^{(k)}) \). We choose a total order \(\prec \) on \(M \) satisfying the property that \(\nu \prec \nu' \) if \(\lambda_{i}^{(k)} > \lambda_{j}^{(l)} \) for \(\nu = (i, k) \), \(\nu' = (j, l) \in M \). We now define a function \(R_{\Lambda}^{(x)}(\nu; \iota) \) by \(R_{\Lambda}^{(x)} = R_{\Lambda}^{(x)}_{\prec} \). For this \(R_{\Lambda}^{(x)} \), we can obtain a more precise result than Corollary 3.7. First we show some properties of \(a \)-functions.

Let \(\lambda = (\lambda_{1}, \ldots, \lambda_{M}) \), \(\mu = (\mu_{1}, \ldots, \mu_{M}) \in \mathbb{Z}^{M} \). We define a usual partial order \(\lambda \geq \mu \) on the set \(\mathbb{Z}^{M} \) by \(\lambda_{1} + \cdots + \lambda_{i} \geq \mu_{1} + \cdots + \mu_{i} \) for \(i = 1, \ldots, M \). Then as is well known

\[
(3.8.1) \text{ Let } R \text{ be a raising operator on } \mathbb{Z}^{M}. \text{ Then } R(\lambda) \geq \lambda \text{ for } \lambda \in \mathbb{Z}^{M}.
\]

For a partition \(\lambda = (\lambda_{1} \geq \cdots \geq \lambda_{M} \geq 0) \), we define \(n(\lambda) \) by

\[
n(\lambda) = \sum_{i \geq 1} (i - 1) \lambda_{i}.
\]

It is known (e.g., [M, III, (6.5)]) that

\[
(3.8.2) \text{ Let } \lambda, \mu \text{ be partitions such that } \lambda \geq \mu. \text{ Then we have } n(\lambda) \leq n(\mu), \text{ and the equality } n(\lambda) = n(\mu) \text{ occurs only when } \lambda = \mu.
\]

A symbol \(\Lambda \in \mathbb{Z}^{r,t}_{n} \) can be identified with an element in \(\mathbb{Z}^{M} \) via the order on \(M \). Hence the raising operator acts on symbols \(\Lambda \) also. Note that the \(a \)-function on \(\mathbb{Z}^{r,t}_{n} \) can be extended to the function on \(\hat{Z}^{r,t}_{n} \) which is also denoted by \(a \). We have the following lemma.

Lemma 3.9. Let \(\Lambda \in \mathbb{Z}^{r,t}_{n} \) and assume that \(\Lambda' \in \hat{Z}^{r,t}_{n} \) is obtained from \(\Lambda \) by applying a raising operator. Then we have \(a(\Lambda) \geq a(\Lambda') \), and the equality \(a(\Lambda) = a(\Lambda') \) occurs only when \(\Lambda = \Lambda' \).

Proof. Let \(\xi \in \mathbb{Z}^{M} \) be a partition corresponding to \(\Lambda \), and \(\xi' \in \mathbb{Z}^{M} \) the element obtained by applying a raising operator on \(\xi \). Then by (3.8.1), we have \(\xi' \geq \xi \). If \(\xi'' \) is the partition obtained from \(\xi' \) by arranging the parts of \(\xi' \) in decreasing order, then we have \(\xi'' \geq \xi' \). Hence we have \(n(\xi'') \leq n(\xi) \) by (3.8.2). But for a partition \(\xi = (\xi_{1} \geq \xi_{2} \geq \cdots \geq \xi_{M}) \), \(n(\xi) \) is also expressed as

\[
n(\xi) = \sum_{i \neq j} \min\{\xi_{i}, \xi_{j}\}.
\]

Hence \(n(\xi'') \leq n(\xi) \) is equivalent to \(a(\Lambda') \leq a(\Lambda) \). The equality case also follows from (3.8.2).

3.10. Let \(\alpha \in \hat{Z}^{0,0}_{n} \). We define the \(a \)-function on \(\hat{Z}^{0,0}_{n} \) by \(a(\alpha) = a(\Lambda) \) if \(\Lambda = \Lambda (\alpha) \in \hat{Z}^{r,t}_{n} \). Let \(\alpha' \) be the element in \(\mathbb{Z}^{0,0}_{n} \) obtained from \(\alpha = (\alpha^{(0)}, \ldots, \alpha^{(r-1)}) \) by arranging the entries in \(\alpha^{(k)} = (\alpha_{1}^{(k)}, \ldots, \alpha_{m_{k}}^{(k)}) \) in
Lemma 3.11. Let $\alpha \in \hat{Z}_n^{0,0}$ and $\alpha' \in Z_n^{0,0}$ be as above. Then we have $a(\alpha') \leq a(\alpha)$. The equality occurs only when $\alpha = \alpha'$.

Proof. We consider a sequence $a^{(k)} = (\alpha_1, \ldots, \alpha_m) \in \mathbb{Z}_{\geq 0}^m$ and put $\lambda^{(k)} = (\lambda_1, \ldots, \lambda_m)$, where $\lambda_i = \alpha_i + (m - i)r + s$ (for example, in the case where $k \geq 1$; the case $k = 0$ is similar). Assume that $\alpha_i < \alpha_{i+1}$ for some i. Let $\alpha' = (\alpha'_1, \ldots, \alpha'_m)$ be a sequence obtained from α by putting $\alpha'_i = \alpha_{i+1}, \alpha'_i = \alpha_i$ and $\alpha'_{i} = \alpha_j$ for $j \neq i, i + 1$. Put $\lambda' = (\lambda'_1, \ldots, \lambda'_m)$ with $\lambda'_i = \alpha'_j + (m - j)r + s$ for each j, and let λ' be a symbol obtained from λ by replacing $\lambda^{(k)}$ by λ and by leaving other $\lambda^{(i)}$ unchanged. In order to prove the lemma, it is enough to show that $a(\lambda') < a(\lambda)$. Now it is easy to see that $\lambda'_i = \lambda_{i+1} + r, \lambda'_{i+1} = \lambda_i - r$. If $\lambda_i \leq \lambda_{i+1}$, then λ' coincides with $R_{i,i+1}^+, \lambda$, and we have $a(\lambda') < a(\lambda)$. On the other hand, if $\lambda_i > \lambda_{i+1}$, then we have $\lambda'_i = \lambda_i + r, \lambda'_{i+1} = \lambda_{i+1} - r$ with $r = \alpha_{i+1} - \alpha_i$. Hence λ' coincides with $R_{i,i+1}^- \lambda$, and again we have $a(\lambda') < a(\lambda)$. So the lemma is proved.

We have the following.

Proposition 3.12. Let $\alpha \in Z_n^{0,0}$ and put $\lambda = \lambda(\alpha) \in Z_n^{*,*}$. Let R_{λ}^+ be as in 3.8. Then

(i) R_{λ}^+ can be expressed as

$$R_{\lambda}^+(x; t) = q_{\alpha, \pm}(x; t) + \sum_{\beta \in Z_n^{*,0}} c_{\alpha, \beta}(t) q_{\beta, \pm}(x; t)$$

with $c_{\alpha, \beta}(t) \in \mathbb{Z}[t]$, where $c_{\alpha, \beta} = 0$ unless $a(\beta) < a(\alpha)$.

(ii) The polynomial $R_{\lambda}^+(x; t)$ has the stability property in the following sense; let $\lambda' = (m'_1, \ldots, m'_{e-1})$ with $m'_k = m_k + 1$. Let $\lambda' \in Z_n^{*,*}(\lambda')$ be the symbol obtained from $\lambda \in Z_n^{*,*}(\lambda)$ by the shift operation. Then the polynomial $R_{\lambda}^+(x; t)$ with $\lambda_{m_{k+1}+1} = 0 (0 \leq k \leq e - 1)$ coincides with $R_{\lambda}^+(x; t)$.

Proof. We show (i). By Corollary 3.7, R_{λ}^+ is expressed as a linear combination of $q_{\beta, \pm}$ with coefficient $c_{\alpha, \beta} \in \mathbb{Z}[t]$, where $\beta \in \hat{Z}_n^{0,0}$. Since the formula (3.7.1) involves raising operators only, we see that $c_{\alpha, \beta} = 0$ unless $\lambda(\beta)$ is obtained from λ by applying the raising operators. This implies, in view of Lemma 3.9, that $c_{\alpha, \beta} = 0$ unless $a(\beta) \leq a(\alpha)$, and that the case $a(\beta) = a(\alpha)$ occurs only when $\beta = \alpha$. Now by virtue of Lemma 3.11, we may replace $\beta \in \hat{Z}_n^{0,0}$ by $Z_n^{0,0}$. Hence the assertion follows.

Next we show (ii). Let \mathcal{M}' be a set associated to $Z_n^{*,*}(\lambda')$ similar to \mathcal{M}. Then $\mathcal{M} \subset \mathcal{M}'$ and we may choose a total order on \mathcal{M}' compatible with
the order on \mathcal{M} given in 3.8. Then in the expression of R_λ^\pm given in (3.7.1), the factors corresponding to $R_{v,v'}$ with $v' \leq v_0$ have exactly the same form as the factors for R_λ^\mp. The factors corresponding to $R_{v,v'}$ with $v' > v_0$ are negligible since $R_{v,v'} \alpha$ contains a negative part and so $R_{v,v'} q_{\alpha,z} = 0$. Hence (ii) follows from the stability property for $q_{\mu,z}$ (see Lemma 2.3). The proposition is proved.

3.13. Let $\tilde{Z}_n^{0,0}$ be the set of $\alpha = (\alpha_i^{(k)})$ with $\alpha_i^{(k)} \in \mathbb{Z}$. The definition of Schur functions s_{α} given in (2.1.2) can be extended to the case where $\alpha \in \tilde{Z}_n^{0,0}$. In that case, s_{α} is a Laurent polynomial with respect to the variables $x_i^{(k)}$. If $\alpha_i^{(k)} + (m_k - j)$ are positive and all distinct for $j = 1, \ldots, m_k$ (for a fixed k), then s_{α} coincides with the usual Schur function up to sign. If $\alpha_i^{(k)} + (m_k - j)$ are not all distinct for a fixed k, then $s_{\alpha} = 0$. The operator $R = \Pi R_{v,v'}$ acts on Schur functions by $R(s_{\alpha}) = s_{\alpha'}$ if $R(\alpha) = \alpha'$. We now consider $\alpha \in Z_n^{0,0}$ and let $\Lambda = \Lambda(\alpha)$. Then we have the following formula:

\[(3.13.1) \quad R_\Lambda^\pm(x;0) = s_\alpha(x).\]

In fact, if we substitute $t = 0$ to R_Λ^\pm in the formula (3.1.2), we have

\[R_\Lambda^\pm(x;0) = \sum_{w \in \mathcal{M}} w \left(\prod_{k} (x(s_{\alpha}^{(k)})^k \prod_{(i,k) < (j,k)} (x_i^{(k)} - x_j^{(k)})) \right),\]

where $s^{(k)} = (s_1^{(k)}, \ldots, s_{m_k}^{(k)})$ is defined by $s_i^{(k)} = \# \{ j \mid (i,k) < (j,k) \}$. But since $\Lambda \in Z_n^{0,0}$, $(i,k) < (j,k)$ is equivalent to $i < j$ by the definition of the order on \mathcal{M}. Hence we obtain (3.13.2). Now (3.13.1) is immediate from the definition of $R_{\alpha,\alpha'}^\pm$ in (3.1.2) together with (3.13.2).

Note that Schur functions s_{α} (in a general sense) are linearly independent if $\beta = (\beta_0^{(k)}, \ldots, \beta^{(e-1)})$ are all distinct, where $\beta^{(k)}$ is obtained from $\alpha^{(k)}$ by arranging the entries $(\alpha_i^{(k)} + (m_k - j))$ in decreasing order. By Corollary 3.7, we know that R_λ^\pm is a polynomial in x, t. Hence it is written as a linear combination of Schur functions $s_{\beta}(x)$ for $\beta \in Z_n^{0,0}$. It follows that in the expansion of (3.13.1) as a sum of Schur functions, we may only pick up s_{β} with $\beta \in Z_n^{0,0}$.
Proposition 3.14. Assume that $\Lambda \in \mathbb{Z}_n^{\ast}$. Then $R_\Lambda^\pm(x ; t)$ can be written as

$$
R_\Lambda^\pm(x ; t) = \sum_{\beta \in \mathbb{Z}_{\geq 0}} u_{\alpha, \beta}(t) s_\beta(x)
$$

with $u_{\alpha, \beta}(t) \in \mathbb{Z}[t]$, where $u_{\alpha, \beta} \in t \mathbb{Z}[t]$ for $\beta \neq \alpha$, and $u_{\alpha, \alpha} \in t \mathbb{Z}[t]$.

Proof. Since both of $R_\Lambda^\pm(x ; t)$ and $s_\beta(x)$ have the stability property, we may assume that $\nu_0 = (m_k, k)$ for some k. It follows that $\nu_\alpha(t) = 1$ and we see that (3.13.1) can be written, in this case, as

$$(3.14.1) \quad R_\Lambda^\pm = \prod_{s < s', v \leq v_0, b(v') = b(x \pm 1)} (1 - t R_{v'} s_\alpha).$$

Therefore R_Λ^\pm can be written as a linear combination of s_β with coefficient $u_{\alpha, \beta} \in \mathbb{Z}[t]$. Now the last assertion follows from (3.14.1) together with the fact that $R_\Lambda^\pm(x ; 0) = s_\alpha(x)$.

3.15. Let m be as in 2.1. We denote by $\Xi_m = \otimes_{k=0}^{\infty} \mathbb{Z}[x_1^{(k)}, \ldots, x_{m_k}^{(k)}]^{\Xi_m}$ the ring of symmetric polynomials (with respect to Ξ_m) with variables $x = (x_1^{(k)})$. Ξ_m has a structure of a graded ring $\Xi_m = \bigoplus_{i \geq 0} \Xi_m$, where Ξ_m^i consists of homogeneous symmetric polynomials of degree i, together with the zero polynomial. We consider the inverse limit

$$\Xi = \lim_{m} \Xi_m^i$$

with respect to homomorphisms $\rho_{m', m}: \Xi_m^i \rightarrow \Xi_m$, where $m' = (m_0',\ldots,m_{r'}')$ with $m_k' = m_k + l$ for some integer $l \geq 0$, and $\rho_{m', m}$ is induced from the homomorphism $\otimes, \mathbb{Z}[x_1^{(k)}, \ldots, x_{m_k}^{(k)}] \rightarrow \otimes, \mathbb{Z}[x_1^{(k)}, \ldots, x_{m_k}^{(k)}]$ given by sending $x_i^{(k)}$ to 0 for $i \geq m_k'$, and leaving other $x_i^{(k)}$ invariant. $\Xi = \bigoplus_{i \geq 0} \Xi_m^i$ is called the space of symmetric functions. The Schur function $s_\alpha(x)$ with infinitely many variables $x_1^{(k)}, \ldots,$ is regarded as an element in Ξ with $n = |\alpha|_l$ and the set $\{s_\alpha(x)\}$ with $\alpha \in \mathbb{Z}_{\geq 0}^n$ forms a \mathbb{Z}-basis of Ξ. Put $\Xi[t] = \Xi[t] \otimes_{\mathbb{Z}} \Xi$. For $\Lambda \in \mathbb{Z}_n^{\ast}$, the function R_Λ^\pm is regarded as an element in Ξ, and by Proposition 3.14, the set $\{R_\Lambda^\pm | \Lambda \in \mathbb{Z}_n^{\ast}\}$ forms a basis of the $\mathbb{Q}(t)$-space $\Xi_\mathbb{Q}[t] = \mathbb{Q}(t) \otimes_{\mathbb{Q}} \Xi$. This implies, by Proposition 3.12 (ii), that $\{q_\alpha, \pm | \alpha \in \mathbb{Z}_{\geq 0}^n\}$ also gives rise to a basis of $\Xi_\mathbb{Q}[t]$. A similar property holds if one replaces Ξ by Ξ_m.
4. HALL–LITTLEWOOD FUNCTIONS

4.1. As described in Proposition 3.14, R_{Λ}^{x} can be expressed in terms of Schur functions. However, the transition matrix between R_{Λ}^{x} and s_{α} is not necessarily a triangular shape as a block matrix. In order to recover this property, we shall define a new function Q_{Λ}^{x} by modifying R_{Λ}^{x}. In this section we are only concerned with the set $Z_{n}^{0,0}$ and $Z_{n}^{r,s}$. Let $\Lambda = \Lambda(\alpha)$ \(\in Z_{n}^{r,s}\) and \(\mathcal{A} = \mathcal{A}_{\Lambda}\) be as in 3.8. First we note the following lemma.

Lemma 4.2. For each $0 \leq i < e$, let $\alpha_{i} \in Z_{n}^{0,0}$ be an element such that $\alpha_{i}^{(1)} = n$ and that $\alpha_{i}^{(k)} = 0$ for $(j,k) \neq (1,i)$. Assume that $\alpha \in Z_{n}^{0,0}$ is such that $a(\alpha)$ is minimum among $Z_{n}^{0,0}$. Then α coincides with some α_{i}.

Proof. Let $\Lambda' \in Z_{r,s}$ and take λ, λ' in the entry of Λ' such that $0 < \lambda' < \lambda$. Let $\Lambda'' \in Z_{r,s}$ be the element obtained from Λ' by replacing λ by $\lambda + 1$, and λ' by $\lambda' - 1$. Then clearly we have $a(\Lambda'') < a(\Lambda')$. Hence, repeating this operation, we reach the minimum element with respect to a, which must have the form $\Lambda(\alpha_{i})$.

4.3. Let \mathcal{A} be the subring of $Q(t)$ consisting of functions which have no pole at $t = 0$. Then \mathcal{A} is a local ring with the unique maximal ideal $t\mathcal{A}$. Hence $\mathcal{A}^{0} = \mathcal{A} - t\mathcal{A}$ is the set of units in \mathcal{A}. In what follows, we identify the set $\mathcal{P}_{n,e}$ with $Z_{n}^{0,0}$ and fix a total order $<$ on $Z_{n}^{0,0}$ as in 1.4. We consider a square matrix indexed by the set $Z_{n}^{0,0}$ and regard it as a block matrix, where each block corresponds to a similarity class.

Let $X = \{X_{\alpha} | \alpha \in Z_{n}^{0,0}\}$ and $Y = \{Y_{\alpha} | \alpha \in Z_{n}^{0,0}\}$ be two bases of $Q(t)$ \(\otimes \Xi_{n}\), indexed by $Z_{n}^{0,0}$. We denote by $M(X,Y)$ the transition matrix between two bases, i.e., $M(X,Y) = (m_{\alpha,\beta})$ if $X_{\alpha} = \sum_{\beta} m_{\alpha,\beta} Y_{\beta}$. We also use $Z_{n}^{r,s}$ as the index set under the identification $Z_{n}^{r,s} \cong Z_{n}^{0,0}$. We shall construct two types of functions $P_{\Lambda}^{x}(x;t)$ and $Q_{\Lambda}^{x}(x;t)$ as linear combinations of $R_{\Lambda}^{x}(x;t)$.

Theorem 4.4. (i) For each $\Lambda \in Z_{n}^{r,s}$, there exists a unique function $P_{\Lambda}^{x}(x;t)$ satisfying the following properties.

(a) $P_{\Lambda}^{x}(x;t)$ can be expressed as

$$P_{\Lambda}^{x}(x;t) = \sum_{\beta \in Z_{n}^{0,0}} c_{\alpha,\beta}(t) q_{\beta,\alpha}(x;t),$$

where $c_{\alpha,\beta}(t) \in Q(t)$ and $c_{\alpha,\beta}(t) = 0$ unless $\beta \succ \alpha$ or $\beta \sim \alpha$.

(b) $P_{\Lambda}^{x}(x;t)$ can be expressed as

$$P_{\Lambda}^{x}(x;t) = s_{\alpha}(x) + \sum_{\beta \in Z_{n}^{0,0}} u_{\alpha,\beta}(t) s_{\beta}(x),$$

where $s_{\alpha}(x)$ and $u_{\alpha,\beta}(t)$ are functions of x and t, respectively.
where \(u_{\alpha, \beta}(t) \in t\mathscr{A} \), and \(u_{\alpha, \beta}(t) = 0 \) unless \(\beta < \alpha \) and \(\beta \sim \alpha \).

(ii) For each \(\Lambda \in \mathbb{Z}_+^{n} \), there exists a unique function \(Q^\Lambda(x; t) \) satisfying the following properties.

(a) \(Q^\Lambda(x; t) \) can be expressed as
\[
Q^\Lambda(x; t) = q_{\alpha, \pm}(x; t) + \sum_{\beta \in \mathbb{Z}_{+}^{0,0}} d_{\alpha, \beta}(t) q_{\beta, \pm}(x; t),
\]
where \(d_{\alpha, \beta}(t) \in \mathbb{Q}(t) \) and \(d_{\alpha, \beta}(t) = 0 \) unless \(\beta > \alpha \) and \(\beta \sim \alpha \).

(b) \(Q^\Lambda(x; t) \) can be expressed as
\[
Q^\Lambda(x; t) = \sum_{\beta \in \mathbb{Z}_{+}^{0,0}} w_{\alpha, \beta}(t) s_{\beta}(x),
\]
where \(w_{\alpha, \beta}(t) \in \mathscr{A} \), and \(w_{\alpha, \beta}(t) = 0 \) unless \(\beta < \alpha \) or \(\beta \sim \alpha \). Moreover, \(w_{\alpha, \beta} \in t\mathscr{A} \) if \(\beta \neq \alpha \), and \(w_{\alpha, \alpha} \in \mathscr{A}^* \).

(In the above formula, the coefficients \(c_{\alpha, \beta}(t) \), etc., depend on the sign \(\pm \).)

Proof. We construct the functions \(P^\Lambda \) and \(Q^\Lambda \) by backward induction on the total order \(< \) on \(\mathbb{Z}_+^{n} \). We assume that \(P^X, Q^X \) have been constructed for any \(\Lambda' \) such that \(\Lambda' \succ \Lambda \) and that \(\Lambda' \sim \Lambda \). Let \(Z \) be the similarity class containing \(\Lambda \). We shall construct \(P^X, Q^X \) simultaneously for \(\Lambda \in Z \).

By Proposition 3.14, the function \(R^X \) can be written as \(R^X = \sum_{\beta} u_{\alpha, \beta} s_{\beta} \) with \(u_{\alpha}(t) \in t\mathbb{Z}[t] \) if \(\alpha \neq \beta \). Let \(Z_1 \) be the set of \(\beta \in \mathbb{Z}_+^{0,0} \) such that \(\beta > \alpha \) and that \(\beta \sim \alpha \). Then, by using the property (i) (b) in the theorem, one can find a function \(Q^\Lambda \) of the form \(Q^\Lambda = R^X - \sum_{\beta \in Z_1} u_{\alpha, \beta} P^X_{\beta} \) with \(u_{\alpha}(t) \in t\mathscr{A} \) satisfying the property
\[
Q^\Lambda(x; t) = \sum_{\beta \sim \alpha} w_{\alpha, \beta} s_{\beta} + X_{\alpha},
\]
where \(X_{\alpha} \) is a sum of \(s_{\gamma} \) such that \(\gamma \prec \alpha \) and that \(\gamma \sim \alpha \) with coefficients in \(t\mathscr{A} \). Hence we see that \(w_{\alpha, \beta} \in t\mathscr{A} \) if \(\beta \neq \alpha \), and that \(w_{\alpha, \alpha} \in \mathscr{A}^* \); i.e., \(Q^\Lambda \) satisfies the property (ii), (b). On the other hand, it follows from Proposition 3.12, together with the property (i), (a) in the theorem, that \(Q^\Lambda \) satisfies the property (ii), (a). Thus we have constructed \(Q^\Lambda \).

Next, we shall construct the function \(P^\Lambda \). We now regard (4.4.1) as a system of equations for all \(\Lambda = \Lambda(\alpha) \) in the similarity class \(Z \). Let \(C = (w_{\alpha, \beta}) \) be the matrix with entries in \(\mathscr{A} \), indexed by \(Z \), which is the coefficient matrix of this system of equations. Since \(\det C \in \mathscr{A}^* \), the inverse matrix \(C^{-1} \) exists, with entries in \(\mathscr{A} \). Then by applying \(C^{-1} \) to the system of equations (4.4.1), one can find functions \(P^X(x; t) \) for each
\[\Lambda = \Lambda(\alpha) \in Z, \text{ which can be expressed in terms of Schur functions as} \]

\[P_\Lambda^\pm = s_\alpha + \sum_{\beta} u_{\alpha, \beta} s_\beta, \]

where \(\beta \in Z_n^{0,0} \) runs over all the elements such that \(\beta < \alpha \) and that \(\beta \sim \alpha \), and \(u_{\alpha, \beta} \in Z[A] \). Moreover, since \(P_\Lambda^\pm \) is a linear combination of various \(Q_\Lambda^\pm \) with \(\Lambda' \sim \Lambda \), it is expressed as a linear combination of \(q_{\beta, \pm} \) with \(\beta > \alpha \) or \(\beta \sim \alpha \). Hence \(P_\Lambda^\pm \) satisfies the required properties, (a), (b) of (i).

It remains to construct \(P_\Lambda^\pm \) in the case where \(a(\Lambda) \) is minimal. If \(a(\Lambda) \) is minimal, then \(\Lambda = \Lambda(\alpha_i) \) for some \(i \) by Lemma 4.2. Then \(R_\Lambda^\pm \) coincides with \(q_{\alpha_i, \pm} \) by (3.2,3). We consider the similarity class \(Z \) containing \(\Lambda \) which consists of certain \(\Lambda_i = \Lambda(\alpha_i) \). Then the functions \(R_\Lambda^\pm \) already satisfy the properties required for \(Q_\Lambda^\pm \). So we may put \(Q_\Lambda^\pm = R_\Lambda^\pm \). Then by using a similar argument as above, one can find \(P_\Lambda^\pm \) satisfying (a), (b) of (i) for each \(\Lambda_i \in Z \). Thus \(P_\Lambda^\pm \) can be constructed.

We show the uniqueness of \(\{ P_\Lambda^\pm \} \). The uniqueness of \(\{ Q_\Lambda^\pm \} \) is proved similarly. Suppose that the functions \(\{ P_\Lambda^\pm \} \) satisfy the conditions (a) and (b) of (i). By the property (b), the sets \(\{ P_\Lambda^\pm \} \) and \(\{ P_\Lambda^\pm \} \) form bases of the space \(\mathbb{Q}(t) \otimes \mathbb{Z}^{n} \). Let \(A = M(P, s) \) be the transition matrix between the functions \(\{ P_\Lambda^\pm | \Lambda \in Z_n^{0,0} \} \) and \(\{ s_\alpha | \alpha \in Z_n^{0,0} \} \), and similarly define the transition matrix \(A' = M(P', s) \) between \(\{ P_\Lambda^\pm \} \) and \(\{ s_\alpha \} \). Then by our assumption, both of \(A \) and \(A' \) are block lower triangular matrices with identity diagonal blocks. Hence \(A(A')^{-1} = M(P, P') \) is also a lower triangular block matrix with identity diagonal blocks. On the other hand, let \(B = M(P, q) \) be the transition matrix between \(\{ P_\Lambda^\pm \} \) and \(\{ q_{\alpha_i, \pm} \} \), and similarly define \(B' = M(P', q) \). Then by our assumption, both of \(B \) and \(B' \) are block upper triangular matrices, and so is \(B(B')^{-1} \). But since \(B(B')^{-1} = M(P, P') = A(A')^{-1} \), we see that \(A(A')^{-1} \) is simultaneously lower triangular and upper triangular with identity diagonal blocks. Hence \(A = A' \) and we conclude that \(P_\Lambda^\pm = P_\Lambda^\pm \) as asserted. Thus the theorem is proved.

Remarks 4.5. (i) We call \(P_\Lambda^\pm(x; t) \) the Hall–Littlewood function associated to the symbol \(\Lambda \). It is likely that \(P_\Lambda^\pm(x; t) \in \mathbb{Z}[x; t] \). In some cases, including the classical case, where \(e = 2, r = 2 \), these statements are verified to be true. (See Remarks 5.5(i).)

(ii) The previous construction of \(P_\Lambda^\pm \) depends on the choice of the total order \(> \) compatible with the similarity classes. However, the construction still works if one replaces the relation \(\alpha \sim \beta \) by the equivalence relation defined by the condition that \(a(\beta) = a(\alpha) \). In the above known cases, these two types of Hall–Littlewood functions coincide with each
other. It would be interesting to know whether this is true in general since it will imply the independence of P^\pm_Λ from the choice of the total order.

We can regard P^\pm_Λ as an element in $\mathcal{Q}(t) \otimes \mathbb{R}^n$ associated to the symbol class Λ. As a corollary to Theorem 4.4, we have the following.

Corollary 4.6. Let $\mathcal{Q}(x, y; t)$ be as in Proposition 2.5. Then we have

\begin{equation}
\Omega(x, y; t) = \sum_{\Lambda, \Lambda'} b_{\Lambda, \Lambda'}(t) P^\Lambda_\Lambda(x; t) P^\Lambda_{\Lambda'}(y; t),
\end{equation}

\begin{equation}
\Omega(x, y; t) = \sum_{\Lambda} Q^\Lambda_\Lambda(x; t) P^\Lambda_\Lambda(y; t) = \sum_{\Lambda} P^\Lambda_\Lambda(x; t) Q^\Lambda_{\Lambda'}(y; t),
\end{equation}

where in (4.6.1), Λ, Λ' run over all the elements in $\bigcup_{n=1}^\infty \mathbb{Z}^n_\mathbb{R}$, and $b_{\Lambda, \Lambda'}(t) = 0$ unless $|\Lambda| = |\Lambda'|$ and $\Lambda \sim \Lambda'$. In (4.6.2), Λ runs over all the elements in $\bigcup_{n=1}^\infty \mathbb{Z}^n_\mathbb{R}$.

Proof. Let

$$A_\pm = M(q_{\pm}, P^\pm), \quad B_\pm = M(m, P^\pm), \quad C_\pm = M(q_{\pm}, m)$$

be the transition matrices between $\{q_{\pm}\}$ and $\{P^\pm\}$, $\{m_{\pm}\}$ and $\{P^\pm\}$, and $\{q_{\pm}\}$ and $\{m_{\pm}\}$, respectively. Put $D_\pm = B_\pm A_\pm$. Then by Theorem 4.4 (i), (a), $(A_\pm)^{-1}$ is a block upper triangular matrix, hence so is A_\pm. Now B_\pm^{-1} can be written as

$$B_\pm^{-1} = M(P^\pm, s) M(s, m).$$

By Theorem 4.4 (i), (b), $M(P^\pm, s)$ is block lower triangular. On the other hand, $M(s, m)$ is also lower triangular. In fact, for each partition λ, s_λ is written as a linear combination of m_μ with $\mu \leq \lambda$. It follows that s_λ is a linear combination of m_β, where β satisfies the following property. If we write $\Lambda(\alpha) = (\Lambda_0, \ldots, \Lambda_{r-1})$ and $\Lambda(\beta) = (\Lambda_0, \ldots, \Lambda_{r-1})$, then the partitions Λ_i and Λ_i' have the same size, and $\Lambda_i \leq \Lambda_i'$ (as partitions). This implies that $a(\Lambda') \geq a(\Lambda)$ and the equality holds only when $\Lambda = \Lambda'$. Hence $M(s, m)$ is lower triangular with identity diagonal blocks. As a conclusion, we see that B_\pm is lower triangular, and so D_\pm is a block upper triangular matrix.

On the other hand, by (2.5.1), the matrices C_\pm satisfy the relation

$$C_+ = C_-. $$

Since $D_\pm = B_\pm C_\pm B_\pm$, we see that $D_\pm = D_\mp$. This implies that D_\pm is a block diagonal matrix. If we put $A_+ = (A^+_{\alpha, \Lambda})$, $B_+ = (B^+_{\alpha, \Lambda})$, we have

$$\sum_{\alpha} q_{\alpha, +}(x; t) m_{\alpha}(y) = \sum_{\Lambda, \Lambda', \alpha} A^+_{\alpha, \Lambda} B^+_{\alpha, \Lambda'} P^\Lambda_\Lambda(x; t) P^\Lambda_{\Lambda'}(y; t)$$

$$= \sum_{\Lambda, \Lambda'} b^+_{\Lambda, \Lambda'}(t) P^\Lambda_\Lambda(x; t) P^\Lambda_{\Lambda'}(y; t),$$

GREEN FUNCTIONS 673
where the matrix \((b_{\Lambda,\Lambda}(t)) \) coincides with \(D_\Lambda \). Thanks to (2.5.1), by putting \(b_{\Lambda,\Lambda}(t) = b_{\Lambda,\Lambda}'(t) = b_{\Lambda,\Lambda}' \) (here \(D_\Lambda = (b_{\Lambda,\Lambda}') \)), we obtain the formula (4.6.1).

We now look at the previous argument more precisely. In the argument below, we use a notation \(X_D \) to denote the diagonal part of the block matrix \(X \). Let us consider the matrix \(D_\pm = 'B_\pm A_\pm \). Since we know that \(D_\pm \) is block-wisely diagonal, and \('B_\pm, A_\pm \) are block upper triangular, we see that \(D_\pm = ('B_\pm) D, B_\pm D, A_\pm D \). But \(M(P^\pm, s)_D \) is the identity matrix by Theorem 4.4 (ii), (b). Also it is easy to check that \(M(s, m)_D \) is the identity matrix, and so we have \(D_\pm = (A_\pm)_D \). Let \(M(Q^\pm, P^\pm) \) be the transition matrix between \(Q^\pm \) and \(P^\pm \). Then we have

\[
M(Q^\pm, P^\pm) = M(Q^\pm, P^\pm)_D = M(Q^\pm, q_\pm)_D M(q_\pm, P^\pm)_D.
\]

Since \(M(Q^\pm, q_\pm)_D \) is \(I \) by Theorem 4.4 (ii), (a), and \(M(q_\pm, P^\pm) = A_\pm \) by definition, we have \(M(Q^\pm, P^\pm) = D_\pm \). Now the formula (4.6.2) follows easily from (4.6.1), if we notice that \(b_{\Lambda,\Lambda} = b_{\Lambda,\Lambda}' = b_{\Lambda,\Lambda}' \) with \(D_{\pm} = (b_{\Lambda,\Lambda}') \).

4.7. As discussed in 3.15, \(\{s_a(x)\} \) gives rise to a basis of the \(\mathbb{Z}[t] \)-module \(\Xi[t] \), hence so is \(\{m_a(x)\} \). Also, we see that \(\{q_a, + (x; t), \{Q^\pm(x; t)\}, \{P^\pm(x; t)\} \) turn out to be bases of \(\Xi_q[t] \). Moreover, \(\{p_a(x)\} \) gives a basis of \(C(t) \)-space \(\Xi_c[t] = C(t) \otimes_\mathbb{Z} \Xi \). We now define a scalar product on \(\Xi_q[t] \) by the condition that

\[
\left\langle q_{a, +}(x; t), m_{\beta}(x) \right\rangle = \delta_{a, \beta},
\]

and extend it to a sesquilinear form on \(\Xi_c[t] \). By using a similar argument as in [M, Chap. I, 4], it follows from Corollary 4.6 and Proposition 2.5 that we have

\[
\left\langle m_a(x), q_{\beta, -}(x; t) \right\rangle = \delta_{a, \beta},
\]

\[
\left\langle P^\pm_a(x; t), Q^\pm(x; t) \right\rangle = \left\langle Q^\pm_a(x; t), P^\pm_a(x; t) \right\rangle = \delta_{a, \Lambda},
\]

\[
\left\langle p_a(x), p_\beta(x) \right\rangle = z_a(t) \delta_{a, \beta}.
\]

In the special case where \(e = 2 \), the function \(q_{a, +} \) (resp. \(P^\pm_a \), \(Q^\pm_a \)) coincides with \(q_{a, -} \) (resp. \(P^\pm_a, Q^\pm_a \)). We also have \(p_a = \bar{p}_a \) and \(z_a(t) \in \mathcal{Q}(t) \). Hence in this case, the scalar product \(\langle , \rangle \) turns out to be symmetric.

Proposition 4.8. The functions \(P^\pm_a \) are characterized by the following two properties. (Then the functions \(Q^\pm_a \) are characterized as dual bases of \(P^\pm_a \) in the sense of (4.7.2).)**
(i) \(P_\mathcal{A}^\pm(x; t) \) can be expressed in terms of \(s_{\mathbf{p}}(x) \) as

\[
P_\mathcal{A}^\pm = s_\mathbf{a} + \sum_{\mathbf{b}} u_{\mathbf{a}, \mathbf{b}}^\pm s_\mathbf{b}
\]

with \(u_{\mathbf{a}, \mathbf{b}}^\pm \in \mathbb{Q}(t) \), where \(\mathcal{A} = \mathcal{A}(\mathbf{a}) \), and \(u_{\mathbf{a}, \mathbf{b}}^\pm = 0 \) unless \(\mathbf{b} < \mathbf{a} \) and \(\mathbf{b} \cong \mathbf{a} \).

(ii) \(\langle P_\mathcal{A}^+, P_\mathcal{N}^- \rangle = 0 \) unless \(\mathcal{A} \sim \mathcal{N} \).

Proof. The fact that \(P_\mathcal{A}^\pm \) satisfies the properties (i) and (ii) follows from the previous discussion. We show, by induction on the order \(\prec \), that (i)–(iii) determine \(P_\mathcal{A}^\pm \) uniquely. First we note that the \(\{ P_\mathcal{A}^\pm : \mathcal{A} \in Z_n^+ \} \) give bases of \(\mathbb{Z}_n[t] \) by (i). Then the matrix \(\langle \langle P_\mathcal{A}^+, P_\mathcal{N}^- \rangle \rangle_{\mathcal{A}, \mathcal{N}} \) is non-singular. It follows, by (i), that the diagonal submatrix corresponding to each similarity class is also non-singular.

When \(\mathcal{A} \) runs over symbols contained in a fixed similarity class, (4.8.2) may be regarded as a system of linear equations, with unknown variables \(\{ d_{\mathcal{A}, \mathcal{N}}^+ \} \). Since the matrix \(\langle \langle P_\mathcal{A}^+, P_\mathcal{N}^- \rangle \rangle_{\mathcal{A}, \mathcal{N}} \) is non-singular by the above remark, we see that (4.8.2) determines the coefficients \(d_{\mathcal{A}, \mathcal{N}}^+ \) uniquely. Hence \(P_\mathcal{A}^+ \) is determined uniquely. A similar argument, by using the equality \(\langle P_\mathcal{A}^+, P_\mathcal{N}^- \rangle = 0 \) instead of (4.8.2), implies that \(P_\mathcal{A}^- \) is also unique. Thus the proposition is proved.

Remark 4.9. By making use of the arguments in Proposition 4.8, one can give an alternate construction of \(P_\mathcal{A}^\pm \). In fact, by substituting \(t = 0 \) into (2.5.2), we have

\[
\Omega(x, y; 0) = \sum_{\mathbf{a}} z_{\mathbf{a}}^{-1} p_\mathbf{a}(x) \bar{p}_\mathbf{a}(y).
\]

On the other hand, a similar argument as in [M, I, 4] implies that

\[
\Omega(x, y; 0) = \sum_{\mathbf{a}} s_\mathbf{a}(x) s_\mathbf{a}(y).
\]

It follows that one can define a hermitian form on \(\mathbb{C} \otimes \bar{\Xi} \) satisfying the properties that \(\langle p_\mathbf{a}, p_\mathbf{b} \rangle = z_{\mathbf{a}} \delta_{\mathbf{a}, \mathbf{b}} \) and that \(\langle s_\mathbf{a}, s_\mathbf{b} \rangle = \bar{\delta}_{\mathbf{a}, \mathbf{b}} \). In particular,
the sesquilinear form on \(\mathbb{C}[t] \otimes \Xi\) defined in 4.7 is transferred to the hermitian form on \(\mathbb{C} \otimes \Xi\) by substituting \(t = 0\).

We now construct \(P_{\lambda}^\pm\) satisfying two properties in Proposition 4.8 as follows. Take \(\lambda \in \mathbb{Z}_n^+\). We assume that the \(P_{\lambda}^\pm\) are already constructed for \(\lambda'\) such that \(\lambda' < \lambda\) and that \(\lambda' \sim \lambda\). We assume further that \(P_{\lambda}^\pm(x; t) \in \mathcal{A}_C \otimes \Xi\) and that \(P_{\lambda}^\pm(x; 0) = s_\alpha(x)\) for \(\lambda = \lambda(\alpha')\). (Here \(\mathcal{A}_C = \mathbb{C} \otimes \mathcal{A}\) is the subring of \(\mathbb{C}(t)\) consisting of functions which have no pole at \(t = 0\).) We put \(P_{\lambda}^\pm\) as in (4.8.1) and determine the coefficients \(d_{\lambda, \lambda'}^\pm\) so that it satisfies the condition (ii) in the proposition. We consider the system of equations (4.8.2). Note that the coefficient matrix \((\langle P_{\lambda}^+, P_{\lambda}^- \rangle)\) is non-degenerate since it gives rise to a matrix \((\langle s_\alpha, s_{\alpha'} \rangle)\) by substituting \(t = 0\), which is the identity matrix by the above remark. In particular, the determinant of this matrix lies in \(\mathcal{A}_C\). Thus Eq. (4.8.2) has a unique solution \(d_{\lambda, \lambda'}^\pm \in \mathcal{A}_C\) and we obtain \(P_{\lambda}^\pm \in \mathcal{A}_C \otimes \Xi\). Since \(\langle s_\alpha, s_{\alpha'} \rangle = 0\), we have \(d_{\lambda, \lambda'}^\pm \in t\mathcal{A}_C\). This implies that \(P_{\lambda}^+(x; 0) = s_\alpha(x)\). The case for \(P_{\lambda}^-\) is done similarly, and \(P_{\lambda}^\pm\) is constructed inductively.

5. GREEN FUNCTIONS

5.1. Let \(X_\lambda(t)\) be the transition matrix \(M(p, P^\pm)\) between the power sum symmetric functions \(p_\alpha\) and the Hall–Littlewood \(P_{\lambda}^\pm\), i.e.,

\[
(5.1.1) \quad p_\alpha(x) = \sum_{\lambda} X^\lambda_{\alpha, \pm}(t) P_{\lambda}^\pm(x; t).
\]

(Here \(\alpha\) is the row-index and \(\lambda\) is the column-index.) Then by Theorem 4.4, \(X_{\alpha, \pm}^\lambda(t) \in \mathbb{C}(t)\) and is equal to zero unless \(|\alpha| = |\lambda|\). Moreover since \(P_{\lambda}^\pm(x; 0) = s_\alpha(x)\) with \(\lambda = \lambda(\alpha)\) by Theorem 4.4 (i), (b), we have

\[
(5.1.2) \quad X_{\beta, \pm}^\lambda(0) = \chi^\alpha(w_\beta)
\]

by (2.1.3). It follows that \(X_{\pm}(0) = M(p, s)\) is the character table of \(W\). In particular, \(X_{\pm}(0)\) is independent of the sign, and we denote it simply as \(X(0)\). By combining Corollary 4.6 with (2.5.2), we have

\[
\sum_{|\beta| = n} z_\beta(t)^{-1} p_\beta(x) \bar{p}_\beta(y) = \sum_{|\lambda| = |\lambda'| = n} b_{\lambda, \lambda'}(t) P_{\lambda}^+(x; t) P_{\lambda'}^-(y; t).
\]

We put \(D(t) = D_\pm = (b_{\lambda, \lambda}(t))\) and denote by \(Z(t)\) the diagonal matrix with entries \(z_\alpha(t)\). (Both are indexed by the set \(Z_n^\pm = Z_n^{0, 0}\).) Substituting \((5.1.1)\) into the above equation, we have

\[
(5.1.3) \quad X_+(t) Z(t)^{-1} \bar{X}_-(t) = D(t),
\]
where $\bar{X}(t)$ is the complex conjugate of the matrix $X(t)$. (Note that $P_\lambda^\pm(x; t) \in \mathcal{Q}(t)[x]$.) We put $\Lambda(t) = D(t)^{-1}$. Then the formula (5.1.3) is equivalent to

$$ (5.1.4) \quad \bar{X}(t) \Lambda(t)' X(t) = Z(t). $$

5.2. Let $K_{\pm}(t) = M(s, P^\pm)$ be the transition matrix between Schur functions and Hall–Littlewood functions, i.e.,

$$ s_\pi(x) = \sum_{\Lambda(\alpha)} K_{\beta, \alpha}^\pm(t) P_{\chi(\alpha)}^\pm(x; t). $$

Then by Theorem 4.4 (i), (b), $K_{\pm}(t)$ is a block lower triangular matrix with identity diagonal blocks, with entries $K_{\beta, \alpha}^\pm(t)$ in $\mathcal{Q}(t)$. Moreover, $K_{\pm}(0)$ is the identity matrix. However, contrary to the classical case, $K_{\pm}(1)$ is not necessarily equal to the Kostka matrix $M(s, m)$. Since $M(s, P^\pm) = M(p, s)^{-1}M(p, P^\pm)$, we have $K_{\pm}(t) = X(0)^{-1}X_{\pm}(t)$. Substituting this into (5.1.4), we have

$$ (5.2.1) \quad K_{\pm}(t) \Lambda(t)' K_{\pm}(t) = X(0)^{-1}Z(t)'X(0)^{-1}. $$

5.3. We now define Green functions $Q_{\beta, \alpha}^\Lambda(t) \in \mathcal{C}(t)$, with $\Lambda = \Lambda(\alpha)$, by

$$ Q_{\beta, \alpha}^\Lambda(t) = t^{\alpha(\Lambda)}X_{\beta, \alpha}^\Lambda(t^{-1}). $$

If we put $\tilde{K}_{\beta, \alpha}^\pm(t) = t^{\alpha(\Lambda)}K_{\beta, \alpha}^\pm(t^{-1})$, $Q_{\beta, \alpha}^\Lambda(t)$ can be written as

$$ Q_{\beta, \alpha}^\Lambda(t) = \sum_{\gamma} \chi'(w_{\beta}) \tilde{K}_{\gamma, \alpha}^\pm(t). $$

Let $\tilde{K}_{\pm}(t) = (\tilde{K}_{\beta, \alpha}^\pm(t))$. Then $	ilde{K}_{\pm}(t) = K_{\pm}(t^{-1})T$ for a diagonal matrix T with diagonal entries $t^{\alpha(\Lambda)}$. Hence (5.2.1) can be rewritten as

$$ (5.3.1) \quad \tilde{K}_{\pm}(t) \Lambda(t)' \tilde{K}_{\pm}(t) = X(0)^{-1}Z(t^{-1})'X(0)^{-1}, $$

where $\Lambda(t) = T^{-1}\Lambda(t^{-1})T$. Note that $\Lambda(t)$ is still a block diagonal matrix, and the \tilde{K}_{\pm} are block lower triangular matrices, where the diagonal blocks consist of scalar matrices $t^{\alpha(\Lambda)}$.

Put $G(t) = (t - 1)^{\nu} t^{\nu} P_w(t) \in \mathbb{Z}[t]$. If W is a Weyl group of type B_n, $G(q)$ is the order of $SO_{2n+1}(q)$ or $Sp_{2n}(q)$. Even in the case where $W = G(e, 1, n)$, $G(t)$ is regarded as an order of a formal group (see [BMM]). We put $	ilde{\Lambda}(t) = t^{-\nu} G(t) \Lambda(t)$. Recall that $\Omega' = (\omega'_a, \bar{p})$ is the matrix defined in (1.5.1). Then the following result gives a combinatorial description of the solution for Eq. (1.5.2).
THEOREM 5.4. We have
\[\tilde{K}_-(t) \tilde{\lambda}(t) \tilde{K}_+(t) = \Omega'. \]
Hence \(P' = \tilde{K}_-(t) \), \(P'' = \tilde{K}_+(t) \), and \(X = \tilde{\lambda}(t) \) gives a solution for Eq. (1.5.2).

Proof. Let \(M \) be the right hand side of (5.3.1). We shall compute \(M \). Let \(z_{\alpha} \) be as in 2.4, and \(H \) the diagonal matrix with diagonal entries \(z_{\alpha}^{-1} \). Since \(X(0) \) is the character table of \(W \), we have \(X(0) H \tilde{X}(0) = I \). It follows that
\[M = X(0) HZ(t^{-1}) H \tilde{X}(0). \]
Now it is easy to see that if \(\alpha = (\alpha_j^{(k)}) \in \mathcal{P}_{n, r} \) and \(w_{\alpha} \) is the corresponding element in \(W \), then we have
\[
\text{dev}_{\nu}(t \cdot \text{id}_\nu - w_{\alpha}) = \prod_{k=0}^{e-1} \prod_{j=1}^{j} \left(t^{\alpha_j^{(k)}} - \zeta^k \right).
\]
Hence by (2.4.2), \(z_{\alpha}(t^{-1}) = z_{\alpha} t^n \text{det}_{\nu}(t \cdot \text{id}_\nu - w_{\alpha})^{-1} \). In particular, the \(\alpha \beta \)-entry of \(M \) is equal to
\[
t^n |W|^{-1} \sum_{w \in W} \text{det}_{\nu}(t \cdot \text{id}_\nu - w) X^\alpha(w) \tilde{X}^\beta(w).
\]
Therefore \(\Omega' = t^{N^\nu - n}(t - 1)^n P_{\nu}(t) M \) and the theorem follows.

Concerning the Kostka functions, we can expect that

CONJECTURE 5.5. The Kostka function \(K_{\alpha, \beta}^\pm(t) \) is a polynomial in \(t \) with positive integral coefficients, with \(\deg K_{\alpha, \beta}^\pm(t) \leq a(\beta) - a(\alpha) \).

Remarks 5.6. (i) The conjecture implies that \(K_{\alpha, \beta}^\pm(t) \) is also a polynomial with positive integral coefficients. In particular, we see that \(p_{\alpha, \beta}(t), \lambda_{\alpha, \beta}(t) \in \mathbb{Z}[t] \) (cf. (1.4.2)). The conjecture also implies that \(P_{\lambda}^\pm \in \mathbb{Z}[x; t] \) and \(Q_{\lambda}^\pm \in \mathbb{Z}[x; t] \) also. In fact, from the discussion in 4.7, we see that \(\{q_{\alpha, \pm}(x; t)\} \) and \(\{m_{\alpha}(x)\} \), \(\{Q_{\alpha}^\pm(x; t)\} \) and \(\{P_{\lambda}^\pm(x; t)\} \) are dual bases of each other. Hence we have
\[M(Q^\pm, q^\pm) = M(P^\pm, m)^* = (K_{\pm}(t)^{-1} K)^* = 'K_{\pm}(t) K^*, \]
where \(K = M(s, m) \) is the Kostka matrix, and \(X^* \) denotes the transposed inverse of the matrix \(X \). Since \(K^* \) is a matrix with entries in \(\mathbb{Z} \), we see that \(K_{\pm}(t) \) is a matrix with entries in \(\mathbb{Z}[t] \) if and only if \(M(Q^\pm, q^\pm) \) is a matrix
with entries in \(\mathbb{Z}[t] \). It follows that \(P_\Lambda^x(x; t) \) lie in \(\mathbb{Z}[x; t] \) if and only if the coefficients \(d_{\alpha, \beta}(t) \) in Theorem 4.4 (ii), (a) lie in \(\mathbb{Z}[t] \) for any \(\alpha, \beta \in \mathbb{Z}_{0, 0}^n \).

(ii) The condition that Hall–Littlewood functions \(P_\Lambda^x(x; t) \) lie in \(\mathbb{Z}[t; x] \) is equivalent to that \(K_{\alpha, \beta}(t) \in \mathbb{Z}[t, t^{-1}] \) for any \(\alpha, \beta \in \mathbb{Z}_{0, 0}^n \). In fact, if \(K_{\alpha, \beta}(t) \in \mathbb{Z}[t, t^{-1}] \), then \(K_{\alpha, \beta}(t) \in \mathbb{Z}[t, t^{-1}] \) also. But by Theorem 4.4, the coefficients of \(M(P^x, s) \) lie in \(\mathcal{A} \) with \(\det M(P^x, s) = 1 \), hence the entries of the matrix \(M(s, P^x) \), i.e., the Kostka functions \(K_{\alpha, \beta}(t) \in \mathcal{A} \).

It follows that \(K_{\alpha, \beta}(t) \in \mathbb{Z}[t] \). Therefore the entries of \(M(P^x, s) \) lie in \(\mathbb{Z}[t] \), and we have \(P_\Lambda^x(x; t) \in \mathbb{Z}[x; t] \). The other implication is obvious.

It is known that Green functions of classical groups are polynomials in \(\mathbb{Z}[t] \). It follows that if \(e = 2, r = 2 \), then Kostka functions \(K_{\alpha, \beta}(t) = \bar{K}_{\alpha, \beta}(t) \) lie in \(\mathbb{Z}[t] \). Hence in this case, we see that \(P_\Lambda^x(x; t) \in \mathbb{Z}[x; t] \). Also, it is verified by Geck and Malle that for small \(n, e \) with \(r = 1 \) or \(2 \), Eq. (1.5.2) has a solution with coefficients in \(\mathbb{Z}[t] \). Thus in these cases, also we have \(P_\Lambda^x(x; t) \in \mathbb{Z}[x; t] \).

6. SOME SPECIAL CASES

6.1. In this section, we shall derive some explicit results for \(Q_\Lambda^x \) in the case where \(e = 2 \) and the symbols \(\Lambda \) satisfy a certain special condition. So, from now on, except 6.7, we assume that \(e = 2, r \geq 1 \), and that \(m_0 = m + 1, m_1 = m \) for some \(m > 0 \). Let \(\Lambda \in \mathbb{Z}_{e, s}^n \) be a symbol. We arrange the entries in \(\Lambda \) in decreasing order \(v_1 \geq v_2 \geq \cdots \geq v_M \), where \(M = 2m + 1 \). We say that \(\Lambda \) is very special if \(v_i \geq v_{i+1} + r \) for \(i = 1, 2, \ldots \). We show the following.

Proposition 6.2. Assume that \(e = 2 \) and that \(\Lambda = \Lambda(\alpha) \subset \mathbb{Z}_{e, s}^n \) is very special. Then \(Q_\Lambda^x \) coincides with \(R_\Lambda^x \). In particular, \(Q_\Lambda^x \) can be expressed as

\[
Q_\Lambda^x(x; t) = q_\alpha(x; t) + \sum_{\beta \in \mathbb{Z}_{0, 0}^n} d_{\alpha, \beta}(t) q_\beta(x; t),
\]

where \(d_{\alpha, \beta}(t) \in \mathbb{Z}[t] \) and \(d_{\alpha, \beta}(t) = 0 \) unless \(\beta \prec \alpha \) and \(\beta \sim \alpha \).

6.3. The proposition will be proved in 6.6 after some preliminaries. In view of Theorem 4.4 (ii), together with Propositions 3.12, 3.14, it is enough to show that \(R_\Lambda^x \) can be expressed as a linear combination of \(s_\beta(x) \) with \(\beta \in \mathbb{Z}_{0, 0}^n \) such that \(\beta \prec \alpha \) or \(\beta \sim \alpha \). Now we may assume that \(v_0 = (m_1, k) \) for some \(k \). Then \(R_\Lambda^x \) can be expressed as in (3.14.1) by using lowering operators, and so it is written as a linear combination of \(s_\alpha(x) \) with \(\alpha \in \mathbb{Z}_{0, 0}^n \). Since \(s_\alpha(x) \) with \(\alpha \in \mathbb{Z}_{0, 0}^n \) is rewritten as \(\pm s_{\alpha'} \) with \(\alpha' \in \mathbb{Z}_{0, 0}^n \).
In order to see the values $a(\alpha'')$ for $\alpha'' \in Z_n^{0,0}$ appearing in the expansion of R^γ_λ in terms of Schur functions, one needs to consider the symbol $\Lambda' = \Lambda(\alpha'')$. The process for obtaining Λ'' from $\Lambda = \Lambda(\alpha)$ is described as follows; for a partition $\alpha : \alpha_1 \geq \cdots \geq \alpha_m \geq 0$, let $\lambda : \lambda_1 > \cdots > \lambda_m \geq 0$ (resp. $\mu : \mu_1 > \cdots > \mu_m \geq 0$) be a sequence defined by $\lambda_i = \alpha_i + (m' - i)r + s'$ (resp. $\mu_i = \alpha_i + (m' - i)$), respectively. Let $\mu' = (\mu_1', \ldots, \mu_m')$ be a sequence obtained by applying R to μ. We assume that $\mu_i' \geq 0$. Let μ'' be a partition $\mu_1'' \geq \cdots \geq \mu_m'' \geq 0$ obtained from μ' by rearranging the entries in decreasing order. We define a partition $\lambda'' : \lambda_1'' \geq \cdots \geq \lambda_m'' \geq 0$ by $\lambda''' = \mu''_i + (m' - i)(r - 1) + s'$ and put $\lambda'' = \tilde{R}(\lambda)$. Now $\Lambda'' = (\Lambda_0'', \Lambda_1'')$ is obtained from $\Lambda = (\Lambda_0, \Lambda_1)$ by $\Lambda_k'' = \tilde{R} \Lambda_k$, where $s' = s$, $m' = m + 1$ (resp. $s' = 0$, $m' = m$) if $k = 0$ (resp. $k = 1$), respectively.

The procedure for obtaining Λ'' from Λ has an alternate description. Let $\Lambda = (\lambda_1, \ldots, \lambda_m)$ be a sequence of integers and assume that $\lambda_i < \lambda_{i+1} + (r - 1)$ for some i. We define $\Lambda' = R^\gamma_\lambda \Lambda = (\lambda_1', \ldots, \lambda_m')$ by

\[
\lambda_i' = \lambda_{i+1} + (r - 1),
\]

\[
\lambda_{i+1}' = \lambda_i - (r - 1),
\]

\[
\lambda_j' = \lambda_j \quad (j \neq i, i + 1).
\]
LEMMA 6.5. Let the notations be as above. Assume that \(p \geq q \). Then we have

\[
\sum_{i=1}^{u} v''_i \leq \sum_{i=1}^{p} v'_{2a_{i-1}} + \sum_{j=1}^{q} v'_{2b_{j}} + r \left(\sum_{i=1}^{p} (a_i - (q + 1)) + \sum_{j=1}^{q} b_j \right).
\]

Proof. Put \(X = \sum_{i=1}^{p} (a_i - (q + 1)) + \sum_{j=1}^{q} b_j \). First we show the formula

\[
(6.5.1) \quad \sum_{i=1}^{u} v''_i \leq \sum_{i=1}^{p} v'_{2a_{i-1}} + \sum_{j=1}^{q} v'_{2b_{j}} + (r - 1)X.
\]

We write \(\Lambda' = (\Lambda'_0, \Lambda'_1) \) (resp. \(\Lambda'' = (\Lambda''_0, \Lambda''_1) \)) as \(\Lambda'_0 = (\mu'_0) \), \(\Lambda'_1 = (\mu'_1) \) (resp. \(\Lambda''_0 = (\mu''_0) \), \(\Lambda''_1 = (\mu''_1) \)). Let \(\lambda'_{i_1} \) be the element which produces \(\lambda''_1 \) by the operations \(R_{i_1}^{\gamma} \) given in (6.3.1). Then we have \(\lambda'_{i_1} \leq \lambda''_1 + (r - 1)(i_1 - 1) \) since it is obtained by at most \((i_1 - 1)\) iterations of \(R_{i_1}^{\gamma} \). If \(\lambda'_{i_1} \) is the element which produces \(\lambda''_2 \), then we have \(\lambda''_2 \leq \lambda''_1 + (r - 1)(i_2 - 2) \). In fact, this is clear if \(i_1 < i_2 \). If \(i_1 > i_2 \), then \(\lambda'_{i_2} \) is modified to \(\lambda''_{i_2} = \lambda_{i_2} - (r - 1) \) under the process of obtaining \(\lambda''_1 \) from \(\lambda''_2 \) (cf. (6.3.1)). After that \(\lambda''_2 \) is obtained from \(\lambda''_1 \) by at most \((i_2 - 1)\) iterations of \(R_{i_2}^{\gamma} \), and we get the required formula. A similar argument implies that, in general, if \(\lambda'_{i_1} \) produces \(\lambda''_r \), then \(\lambda''_r \leq \lambda''_1 + (r - 1)(i_r - a) \). The same is true for \(\Lambda' \).

Applying this to our situation, we see that

\[
\sum_{i=1}^{u} v''_i \leq \sum_{i=1}^{p} v'_{2a_{i-1}} + \sum_{j=1}^{q} v'_{2b_{j}} + (r - 1)Y,
\]

where

\[
Y = \sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j - \frac{1}{2} p(p + 1) - \frac{1}{2} q(q + 1).
\]

But since \(p \geq q \), we have \(p(p + 1)/2 + q(q + 1)/2 \geq p(q + 1) \). Hence \(Y \leq X \), and (6.5.1) holds.

Next we show that

\[
(6.5.2) \quad \sum_{i=1}^{p} v'_{2a_{i-1}} + \sum_{j=1}^{q} v'_{2b_{j}} \leq \sum_{i=1}^{p} v_{2a_{i-1}} + \sum_{j=1}^{q} v_{2b_{j}} + X.
\]

For \(i = 1, \ldots, q + 1 \), let us define a subset \(I_i \) of \(\{1, 2, \ldots, p\} \) by

\[
I_i = \{ j \mid b_{i-1} < a_j \leq b_i \}.
\]
where by convention, \(b_0 = 0, b_{q+1} = \infty \). Now take \(\nu_{2a_i-1} \) for \(i \in I_1 \). Then by the effect of the lowering operator, we have \(\nu_{2a_i-1}' \leq \nu_{2a_i-1} + (a_i - 1) \).

(Note that \(\nu_{2a_i-1} > \nu_{2a_j} \) by our assumption.) A similar argument may work also for \(\nu_{2b_i}' \). But in this case, if the pair \((\nu_{2a_i-1}' , \nu_{2b_i}) \) with \(a_i \in I_1 \) occurs in the expression of lowering operator \(R = \prod R_{\nu', \nu} \), \(\nu_{2a_i-1} \) must be replaced by \(\nu_{2a_i-1} - 1 \). Hence, we have

\[
\sum_{i \in I_1} \nu_{2a_i-1}' + \nu_{2b_i}' \leq \sum_{i \in I_1} \nu_{2a_i-1} + \nu_{2b_i} + \sum_{i \in I_1} (a_i - 1) + (b_i - |I_1|).
\]

Extending this argument to the general situation, we see that

\[
\sum_{i=1}^{p} \nu_{2a_i-1}' + \sum_{j=1}^{q} \nu_{2b_j}' \leq \sum_{i=1}^{p} \nu_{2a_i-1} + \sum_{j=1}^{q} \nu_{2b_j} + Z,
\]

where

\[
Z = \sum_{i \in I_1} (a_i - 1) + \sum_{i \in I_2} (a_i - 2) + \cdots + \sum_{i \in I_{q+1}} (a_i - (q + 1)) + (b_1 - |I_1|) + (b_2 - (|I_1| + |I_2|)) + \cdots + (b_q - (|I_1| + \cdots + |I_q|)).
\]

But then

\[
Z = \sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j - \sum_{i=1}^{q} i|I_i| - \sum_{j=1}^{q} (q - j + 1)|I_j|
\]

\[
= \sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j - (q + 1) \sum_{i=1}^{q} |I_i|
\]

\[
= \sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j - (q + 1) p.
\]

Hence we have \(Z = X \), and (6.5.2) holds. Now the lemma follows immediately from (6.5.1) and (6.5.2).

6.6. We now prove the proposition. In order to prove it, it is enough to show the following. For \(u = 1, \ldots, M \), we have

\[(6.6.1) \quad \nu_1'' + \nu_2'' + \cdots + \nu_a'' \leq \nu_1 + \nu_2 + \cdots + \nu_a.
\]

In fact, (6.6.1) implies that \(a(\Lambda'') \geq a(\Lambda) \), and that \(\Lambda'' \sim \Lambda \) if \(a(\Lambda'') = a(\Lambda) \). It follows that \(\alpha'' < \alpha \) or \(\alpha'' \sim \alpha \).

Let \(p \) and \(q \) be as in 6.4. We prove (6.6.1) under the assumption that \(p \geq q \). The case where \(p < q \) is done in a similar way, by using an
appropriate modification of Lemma 6.5. Let \(l \) be the largest integer such that \(a_i \leq q \). Then since \(\Lambda \) is very special, we see that

\[
(6.6.2) \quad \nu_{2a_i - 1} + r\left(a - (q + 1)\right) \leq \nu_{a_i + q}
\]

for \(i > l \). Moreover in this case, \(a_i + q \geq 2q + 1 \). Next, let \(k \) be the largest integer such that \(a_k \leq q \) and that \(2a_k - k \leq q \). Since \(a_1 < a_2 < \ldots \), the sequence \(\{2a_i - i\} \) increases along \(i \). Then we have

\[
A = \sum_{j=1}^{q} \nu_{2b_j} + r \sum_{j=1}^{q} b_j
\]

\[
\leq \sum_{j_1=1}^{2a_1 - 2} \nu_{b_{j_1}} + \sum_{j_2=2a_1-1}^{2a_2-3} \nu_{b_{j_2}} + \cdots + \sum_{j_{k+1}=2a_k-k}^{q} \nu_{b_{j_{k+1}+k}},
\]

since \(b_{j_1} \geq j_2 \geq 1, \ldots, b_{j_{k+1}} \geq j_{k+1} = 2a_k - k \geq k \). Hence

\[
A \leq \sum_{j_1=1}^{2a_1 - 2} \nu_{j_1} + \sum_{j_2=2a_1+1}^{2a_2-3} \nu_{j_2+1} + \cdots + \sum_{j_{k+1}=2a_k-k}^{q} \nu_{j_{k+1}+k}.
\]

It follows that

\[
(6.6.3) \quad A + \sum_{i=1}^{k} \nu_{2a_i-1} \leq \sum_{j=1}^{q+k} \nu_j.
\]

Suppose that \(k < i \leq l \). Then \(2a_i - i > q \), and so \(2a_i - 1 \geq q + i \). It follows that \(\nu_{2a_i-1} - r((q+1) - a_i) \leq \nu_{2a_i-1} \leq \nu_{q+i} \). By substituting this into (6.6.3), we have

\[
A + \sum_{i=1}^{l} \nu_{2a_i-1} - r \sum_{i=1}^{l} ((q + 1) - a_i) \leq \sum_{j=1}^{q+l} \nu_j.
\]

Now combining the last formula with (6.6.2), we have

\[
\sum_{i=1}^{p} \nu_{2a_i-1} + \sum_{j=1}^{q} \nu_{2b_j} + rX \leq \sum_{j=1}^{q+l} \nu_j + \sum_{i=1}^{p} \nu_{a_i+q} \leq \sum_{i=1}^{w} \nu_i.
\]

This formula implies (6.6.1) in view of Lemma 6.5. Hence Proposition 6.2 is proved.

6.7. In this subsection, we assume that \(e \) is arbitrary and deduce some formula for the Kostka matrix \(K = M(s, m) \) and \(K^* \). For each \(\alpha = (\alpha^{(0)}, \ldots, \alpha^{(e-1)}) \in \mathbb{Z}_n^{0,0} \), we define a function \(h_\alpha(x) \) by

\[
h_\alpha(x) = \prod_{k=0}^{e-1} h_{\alpha^{(k)}}(x^{(k)}),
\]
where $h_{\alpha}(x^{(k)})$ denotes the complete symmetric function associated to a partition $\alpha^{(k)}$. As discussed in Remark 4.9, we have

$$
(6.7.1) \quad \Omega(x, y; 0) = \prod_{k=0}^{e-1} \prod_{i,j} \left(1 - x^{(k)}_{i,j}\right)^{-1} = \sum_{\alpha} \frac{1}{z_{\alpha}^2} p_{\alpha}(x) \bar{p}_{\alpha}(y).
$$

Moreover, by a similar argument as in [M, I, 4], we have

$$
(6.7.2) \quad \Omega(x, y; 0) = \sum_{\alpha} h_{\alpha}(x)m_{\alpha}(y) = \sum_{\alpha} m_{\alpha}(x)h_{\alpha}(y),
$$

Now one can define a scalar product $\langle \cdot, \cdot \rangle$ on Ξ, by requiring that

$$
\langle h_{\alpha}, m_\beta \rangle = \delta_{\alpha, \beta}.
$$

Then, by (6.7.2), we have

$$
\langle s_{\alpha}, s_\beta \rangle = \delta_{\alpha, \beta}.
$$

In particular, the scalar product is symmetric. It can be extended to a hermitian form on $\mathbb{C} \otimes \Xi$, which satisfies the property, by (6.7.1), that

$$
\langle p_{\alpha}, p_\beta \rangle = \frac{1}{z_{\alpha}} \delta_{\alpha, \beta}.
$$

It follows from this that K^* coincides with the transition matrix $M(s, h)$ between Schur functions $\{s_{\alpha}(x)\}$ and complete symmetric functions $\{h_{\alpha}(x)\}$. Then in view of [M, I, 3.4'], we have the following.

$$
(6.7.3) \quad K^* \text{ coincides with the matrix of the operator } \prod_{\nu < \nu'} \prod_{h^{(k)}(\nu') = h^{(k)}(\nu)} (1 - R_{\nu, \nu'}). \quad \text{(6.8.1)}
$$

As a corollary to Proposition 6.2, we have the following result for certain types of Kostka functions and Green functions. (Since $e = 2$, the sign \pm is ignored in the subsequent discussion.)

Corollary 6.8. Assume that $e = 2$ and that $\Lambda = \Lambda(\alpha)$ is very special. Then for any $\beta \in \mathbb{Z}_n^s$, we have $K_{\beta, \alpha}^\pm(t) \in \mathbb{Z}[t]$ with $\deg K_{\beta, \alpha}^\pm \leq a(\alpha) - a(\beta)$. (The equality holds only when $\Lambda(\beta)$ is a special symbol.) In particular, $K_{\beta, \alpha}^\pm(t)$ is a polynomial in $\mathbb{Z}[t]$.

Proof. Since K is a matrix with entries in \mathbb{Z}, it follows from the formula (5.5.1), combined with Proposition 6.2 and Proposition 3.12, that $K_{\beta, \alpha}^\pm(t) \in \mathbb{Z}[t]$. Hence it is enough to estimate the degree of the polynomial $K_{\beta, \alpha}^\pm(t)$. A similar argument as in [M, III, (6.3)] implies, by making use of (3.7.1) and (6.7.3), the following statement.

$$
(6.8.1) \quad K_{\beta, \alpha}^\pm(t) \text{ is the coefficient of } q_{\beta, \mp} \text{ in } \prod_{\nu < \nu'} \prod_{h^{(k)}(\nu') = h^{(k)}(\nu)} (1 - tR_{\nu, \nu'})^{\pm 1} q_{\alpha, \mp}.
$$
We now estimate the degree of \(K_{\mathbf{p},a}(t) \) following the idea in [M, III, 6, Ex. 4]. Let \(e_1, \ldots, e_M \) be the standard basis of \(\mathbb{Z}^M \). We denote by \(R^* \) the set of positive roots of type \(A_{M-1} \), i.e., \(R^* = \{e_i - e_j \mid 1 \leq i < j \leq M\} \). For any \(\xi = (\xi_1, \ldots, \xi_M) \in \mathbb{Z}^M \) such that \(\sum \xi_i = 0 \), we define a polynomial \(P(\xi; t) \) in \(t \) by

\[
P(\xi; t) = \sum_{(m_\gamma)} t^{\sum m_\gamma},
\]

where \((m_\gamma) \) runs over all the choices such that \(\xi = \sum_{\gamma} m_\gamma \gamma \) with \(m_\gamma \in \mathbb{Z}_{\geq 0} \). We also define \(P^*(\xi; t) \) by a similar formula as \(P(\xi; t) \), but this time, \((m_\gamma) \) runs over only the expression such that \(\xi = \sum m_\gamma \gamma \) and that \(\gamma = e_i - e_j \) corresponds to the raising operator \(R_{e_i,e_j} \) occurring in the expression in (6.8.1). Then \(P(\xi; t) \) is non-zero only when \(\xi = \sum \eta(e_i - e_{i+1}) \) with \(\eta_i \geq 0 \), and in that case, \(P(\xi; t) \) is a monic of degree \(\sum \eta_i = \langle \xi, \delta \rangle \). (See loc. cit. Here \(\delta = (M, \ldots, 1, 0) \in \mathbb{Z}^M \) and \(\langle \cdot, \cdot \rangle \) denotes the standard inner product in \(\mathbb{Z}^M \).) Clearly \(\deg P^*(\xi; t) \leq \deg P(\xi; t) \). By our assumption that \(\Lambda \) is very special, the choice \((m_\gamma) = (\eta) \) is allowed in the expression of \(P^*(\xi; t) \). Hence \(P^*(\xi; t) \) is also a monic of degree \(\langle \xi, \delta \rangle \).

Now it follows from (6.8.1) that \(K_{\mathbf{p},a}(t) \) is also expressed as the coefficient of \(s_{\mathbf{p}} \) in

\[
\prod_{\nu < \nu' : \beta(\nu') = \beta(\nu)} (1 - tR_{\nu, \nu'})^{-1} s_{\alpha}
= \prod_{\nu < \nu' : \beta(\nu') = \beta(\nu)} \prod_{b(\nu') = b(\nu) \leq 1} (1 + tR_{\nu, \nu'} + t^2R_{\nu, \nu'} + \cdots) s_{\alpha}.
\]

Hence, by a similar argument as in loc. cit., we see that the degree of \(K_{\mathbf{p},a}(t) \) is equal to the degree of

\[
\sum_{w \in \mathbb{Z}_m} e(w) P^*(w^{-1}(\beta + \delta) - (\alpha + \delta); t),
\]

where \(\alpha, \beta \) are regarded as elements in \(\mathbb{Z}^M \) in an obvious way. Furthermore, if we put \(\Lambda = \Lambda(\alpha), \Lambda' = \Lambda(\beta) \), we have

\[
\langle w^{-1}(\beta + \delta) - (\alpha + \delta), \delta \rangle = \langle \beta + \delta, w(\delta) \rangle - \langle \alpha + \delta, \delta \rangle
\leq \langle \beta + \delta, \delta \rangle - \langle \alpha + \delta, \delta \rangle
= \langle \Lambda', \delta \rangle - \langle \Lambda, \delta \rangle,
\]

since \(\Lambda = \alpha + \delta', \Lambda' = \beta + \delta' \) with \(\delta' = (mr, (m-1)r + s, (m-1)r, \ldots) \) as elements in \(\mathbb{Z}^M \). The equality holds only when \(w = 1 \). Now let \(\Lambda_1' \) be the elements in \(\mathbb{Z}^M \) obtained from \(\Lambda' \) by rearrang-
ing the entries in decreasing order. Then we have $\langle \Lambda', \delta \rangle \leq \langle \Lambda_1', \delta \rangle$ and so
\[
\langle \Lambda', \delta \rangle - \langle \Lambda, \delta \rangle = n(\Lambda) - n(\Lambda') = a(\Lambda) - a(\Lambda').
\]
Thus we see that $\deg K_{P, \alpha} \leq a(\alpha) - a(\beta)$. The equality holds only when $\Lambda' = \Lambda_1'$; i.e., Λ' is a special symbol. This proves the corollary. \hfill \Box

7. EXAMPLES

7.1. In this section, we give some examples of Green functions, i.e., the matrix $P = K_{iv}(t)$ for the case where e and n are small. But before this, we shall discuss some general results on the similarity class having the maximum a-value.

We assume that $m = (m_0, \ldots, m_{e-1})$ is such that $m_0 = m + 1, m_1 = \cdots = m_{e-1} = m$ for some $m > 0$. For $i = 0, \ldots, e-1$, put $\beta_i = (\beta_0, \ldots, \beta^{(e-1)})$ with $\beta^{(i)} = (1^n)$ and $\beta^{(j)} = (-)$ for $j \neq i$. Note that $\chi_{\beta_i} = (\det v)^i$ for $i = 1, \ldots, e - 1$. In particular, $\chi_{\beta_1} = \det v$ and $\chi_{\beta^{(e-1)}} = \overline{\det v}$. Also we put $\Lambda_i = \Lambda(\beta_i)$. Then it is clear that $\Lambda_1, \ldots, \Lambda_{e-1}$ fall in the same class. More precisely, it is easy to see that $\Lambda_0 \sim \Lambda_1$ if $r = s$ and $\Lambda_0 \sim \Lambda_1$ if $r > s$. (The latter follows from the fact that the maximal entry in Λ_0 is equal to $mr + 1$, while that in Λ_1 is $\leq mr$ and we have $a(\Lambda_0) < a(\Lambda_1)$.)

By using a similar argument as in Lemma 4.2, one can show that $\alpha \in Z_n^{0,0}$ such that $a(\alpha)$ is maximum coincides with one of β_i. Hence the class \mathcal{F} having the maximum a-value is given as
\[
\mathcal{F} = \begin{cases}
\{ \Lambda_1, \ldots, \Lambda_{e-1} \} & \text{if } r > s, \\
\{ \Lambda_0, \Lambda_1, \ldots, \Lambda_{e-1} \} & \text{if } r = s.
\end{cases}
\]

We identify the class \mathcal{F} also as the subset of $Z_n^{0,0}$ by the natural bijection $\alpha \to \Lambda(\alpha)$.

In the case of Green polynomials of classical groups (i.e., $e = 2, r = 2, s = 1$), the family of the maximum a-value corresponds to the identity unipotent class under the Springer correspondence, hence consists of one element $\{ \Lambda_1 \}$, where β_1 corresponds to the sign character of W. Let $P = K_{iv}(t)$ be the matrix as given in 1.4. Then it is known that the first column $(p_{\alpha, \beta})$ of P gives rise to the fake degrees $\{ R(\chi^\alpha) \}$ of χ^α.

The following result, which is due to Malle [Ma2], is the counterpart of the above result to the general setting.
LEMMA 7.2. Let the notations be as above. Put \(b = a(\mathcal{B}_1) \). Then we have

\[
(7.2.1) \quad \sum_{\beta_i \in \mathcal{F}} t^{-b} R(\chi^{\beta_i}) p_{\alpha, \beta_i} = R(\chi^\alpha).
\]

Moreover \(R(\chi^{\beta_i}) = t^{n(n-1)/2 + jn} \) for \(j = 0, \ldots, e - 1 \).

Proof. Let us consider the equation \(P \Lambda^T P = \Omega \) in (1.4.2). We write the matrices \(P, \Lambda, \Omega \) in a block matrix form, where the first block corresponds to the family \(\mathcal{F} \).

\[
P = \begin{pmatrix} t^b I & 0 \\ P_1 & P_2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}, \quad \Omega = \begin{pmatrix} \Omega_1 & \Omega_2 \\ \Omega_2 & \Omega_3 \end{pmatrix}.
\]

Then we have \(D_1 = t^{-2b} \Omega_1 \) and \(P_1 = t^b \Omega_2 \Omega_1^{-1} \). Let us denote the entries of \(\Omega_1^{-1} \) by \((\tilde{w}_{jk}) \) with \(j, k \) such that \(\beta_j, \beta_k \in \mathcal{F} \). Then we have

\[
p_{\alpha, \beta_i} = t^b \sum_{\beta_j \in \mathcal{F}} \omega_{\alpha, \beta_j} \tilde{w}_{kj},
\]

and so

\[
\sum_{\beta_i \in \mathcal{F}} t^{-b} R(\chi^{\beta_i}) p_{\alpha, \beta_i} = \sum_{\beta_j \in \mathcal{F}} \omega_{\alpha, \beta_j} \sum_{\beta_i \in \mathcal{F}} R(\chi^{\beta_i}) \tilde{w}_{kj}
= \sum_{\beta_j \in \mathcal{F}} \omega_{\alpha, \beta_j} \sum_{\beta_i \in \mathcal{F}} t^{-N^*} \tilde{w}_{kj} \omega_{\beta_j, \beta_i},
\]

since \(R(\chi^{\beta_i}) = R(\chi^{\beta_j} \otimes \chi^{\beta_i}) \otimes \det t \). Now the last formula is equal to

\[
t^{-N^*} \sum_{\beta_j \in \mathcal{F}} \omega_{\alpha, \beta_j} \tilde{w}_{kj} = t^{-N^*} \omega_{\alpha, \beta_1} = R(\chi^\alpha).
\]

This proves (7.2.1). The last assertion follows easily from the property of coinvariant algebra \(R \) of \(W \) since \(\deg \chi^{\beta_i} = 1 \).

7.3. In the remainder of this section, we shall give explicit examples of the matrices \(P \) and \(\Lambda \) associated to various \(W = G(e, 1, n) \). These examples support the conjecture 5.5. It would be worthwhile to point out that the entries \(\lambda_{\alpha, \beta}(t) \) of \(\Lambda \) always factorize the polynomial \(G(t) \).

In the following examples, \(Z_n^{0,0} = Z_n^{0,0}(m) \) are written as \(\alpha_1, \ldots, \alpha_h \), and the corresponding symbols in \(Z_n^{0,1} \) are written as \(\lambda_1 = \lambda(\alpha_1) \), with \(m \) as in 7.1. In the matrix \(P \) of Green functions, the rows and columns are arranged along the order \(\alpha_1, \alpha_2, \ldots \). The matrix \(\Lambda \) is given by the
collection of $\Lambda(\mathcal{F})$, where $\Lambda(\mathcal{F})$ denotes the diagonal block in Λ corresponding to the class \mathcal{F}.

First we consider the case where $W = G(2, 1, 2)$; i.e., W is the Weyl group of type B_2 for the sake of reference. Then $Z_{n,0}^{0,0}$ is given as

$$\alpha_1 = (-; 1^2), \quad \alpha_2 = (1^2; -), \quad \alpha_3 = (1; 1),$$
$$\alpha_4 = (-; 2), \quad \alpha_5 = (2; -).$$

Assume that $r = 2$ and $s = 1$. Then the corresponding symbols and similarity classes are

$$\mathcal{F}_1 = \{ \Lambda_1 = (420; 42) \}, \quad \mathcal{F}_2 = \{ \Lambda_2 = (31; 1) \},$$
$$\mathcal{F}_3 = \{ \Lambda_3 = (30; 2), \Lambda_4 = (20; 3) \}, \quad \mathcal{F}_4 = \{ \Lambda_5 = (2; -) \}.$$

The matrices $(\Lambda(\mathcal{F}_i))$ are given as

$$\Lambda(\mathcal{F}_1) = (1), \quad \Lambda(\mathcal{F}_2) = ((q^4 - 1)),$$
$$\Lambda(\mathcal{F}_3) = (q^4 - 1) \begin{pmatrix} q^2 & q \\ q & q^2 \end{pmatrix}, \quad \Lambda(\mathcal{F}_4) = (q^2(q^2 - 1)(q^4 - 1)).$$

The matrix P of Green functions is given in Table I.

7.4. Assume that $W = G(3, 1, 2)$. Then $Z_{n,0}^{0,0}$ is given as

$$\alpha_1 = (-; 1^2; -), \quad \alpha_2 = (-; -; 1^2), \quad \alpha_3 = (1^2; -; -),$$
$$\alpha_4 = (-; 1; 1), \quad \alpha_5 = (1; 1; -), \quad \alpha_6 = (1; -; 1),$$
$$\alpha_7 = (-; 2; -), \quad \alpha_8 = (-; -; 2), \quad \alpha_9 = (2; -; -).$$

<table>
<thead>
<tr>
<th>$(-; 1^2)$</th>
<th>t^4</th>
<th>t^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1^2; -)$</td>
<td>t^2</td>
<td>t</td>
</tr>
<tr>
<td>$(1; 1)$</td>
<td>$t^1 + t$</td>
<td>t</td>
</tr>
<tr>
<td>$(-; 2)$</td>
<td>t^2</td>
<td>t</td>
</tr>
<tr>
<td>$(2; -)$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Assume that $r = 2$, $s = 1$. Then the corresponding symbols and similarity classes are given as

$$
\mathcal{F}_1 = \{ \Lambda_1 = (420; 42; 31), \Lambda_2 = (420; 31; 42) \},
$$

$$
\mathcal{F}_2 = \{ \Lambda_3 = (31; 1; 1) \}, \quad \mathcal{F}_3 = \{ \Lambda_4 = (20; 2; 2) \},
$$

$$
\mathcal{F}_4 = \{ \Lambda_5 = (30; 2; 1), \Lambda_6 = (30; 1; 2), \Lambda_7 = (20; 3; 1), \Lambda_8 = (20; 1; 3) \},
$$

$$
\mathcal{F}_5 = \{ \Lambda_9 = (2; -; -) \}.
$$

The matrices $(\Lambda(\mathcal{F}))$ are given as

$$
\Lambda(\mathcal{F}_1) = \begin{pmatrix} \frac{t^2}{2} & t^4 \\ t^4 & 1 \end{pmatrix}, \quad \Lambda(\mathcal{F}_2) = (t^2(t^6 - 1)),
$$

$$
\Lambda(\mathcal{F}_3) = (t^2(t^6 - 1)),
$$

$$
\Lambda(\mathcal{F}_4) = (t^3 - 1)(t^6 - 1) \begin{pmatrix} t^2 & t^3 & 0 & t^2 \\ t^3 & 0 & 0 & 0 \\ 0 & 0 & 0 & t^3 \\ t^2 & 0 & t^3 & 0 \end{pmatrix},
$$

$$
\Lambda(\mathcal{F}_5) = (t^3(t^3 - 1)(t^6 - 1)).
$$

The matrix P of Green functions is given in Table II.

<table>
<thead>
<tr>
<th>$G(3,1,2)$ ($r = 2, s = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-; 1^2; -)$</td>
</tr>
<tr>
<td>$(-; 1; 1^2)$</td>
</tr>
<tr>
<td>$(1; 1; -)$</td>
</tr>
<tr>
<td>$(-; 1; 1)$</td>
</tr>
<tr>
<td>$(1; 1; -)$</td>
</tr>
<tr>
<td>$(1; -; 1)$</td>
</tr>
<tr>
<td>$(1; -; -)$</td>
</tr>
<tr>
<td>$(2; -; -)$</td>
</tr>
</tbody>
</table>
7.5. Assume that $W = G(4, 1, 2)$. Then Z^0_0 is given as

$$
\alpha_1 = (-; 1^2; -; -), \quad \alpha_2 = (-; -; 1^2; -; -), \quad \alpha_3 = (-; -; -; 1^2),
$$

$$
\alpha_4 = (1^2; -; -; -), \quad \alpha_5 = (-; 1; 1; -), \quad \alpha_6 = (-; 1; -; 1),
$$

$$
\alpha_7 = (-; -; 1; 1), \quad \alpha_8 = (1; 1; -; -), \quad \alpha_9 = (1; -; 1; -),
$$

$$
\alpha_{10} = (-; 2; -; -), \quad \alpha_{11} = (1; -; -; 1), \quad \alpha_{12} = (-; -; 2; -),
$$

$$
\alpha_{13} = (-; -; -; 2), \quad \alpha_{14} = (2; -; -; -).
$$

Assume that $r = 2$ and $s = 1$. Then the corresponding symbols and similarity classes are given as

$$
\mathcal{F}_1 = \{ \mathbf{A}_1 = (420; 42; 31; 31), \, \mathbf{A}_2 = (420; 31; 42; 31), \, \mathbf{A}_3 = (420; 31; 31; 42) \},
$$

$$
\mathcal{F}_2 = \{ \mathbf{A}_4 = (31; 1; 1; 1) \},
$$

$$
\mathcal{F}_3 = \{ \mathbf{A}_5 = (20; 2; 2; 1), \, \mathbf{A}_6 = (20; 2; 1; 2), \, \mathbf{A}_7 = (20; 1; 2; 2) \},
$$

$$
\mathcal{F}_4 = \{ \mathbf{A}_8 = (30; 2; 1; 1), \, \mathbf{A}_9 = (30; 1; 2; 1), \, \mathbf{A}_{10} = (20; 3; 1; 1), \, \mathbf{A}_{11} = (30; 1; 1; 2), \, \mathbf{A}_{12} = (20; 1; 3; 1), \, \mathbf{A}_{13} = (20; 1; 1; 3) \}
$$

$$
\mathcal{F}_5 = \{ \mathbf{A}_{14} = (2; -; -; -) \}.
$$

The matrices $\Lambda(\mathcal{F}_i)$ are given as

$$
\Lambda(\mathcal{F}_1) = \begin{pmatrix}
 t^4 & t^6 & t^8 \\
 t^6 & t^8 & t^2 \\
 t^8 & t^2 & t^4
\end{pmatrix},
$$

$$
\Lambda(\mathcal{F}_2) = (t^4(t^8 - 1)),
$$

$$
\Lambda(\mathcal{F}_3) = (t^8 - 1) \begin{pmatrix}
 t^4 & t^5 & t^6 \\
 t^5 & t^6 & t^3 \\
 t^6 & t^3 & t^4
\end{pmatrix},
$$

$$
\Lambda(\mathcal{F}_4) = (t^4 - 1)(t^8 - 1) \begin{pmatrix}
 t^4 & t^5 & 0 & t^6 & 0 & t^5 \\
 t^5 & t^6 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & t^6 & 0 \\
 0 & 0 & 0 & t^5 & 0 & t^6 \\
 t^5 & 0 & t^6 & 0 & 0 & 0
\end{pmatrix},
$$

$$
\Lambda(\mathcal{F}_5) = (t^8(t^4 - 1)(t^8 - 1)).
$$

The matrix P of Green functions is given in Table III.
TABLE III
\[G(4,1,2) \ (r = 2, s = 1) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1; 1^3; -)</td>
<td>(t^6)</td>
</tr>
<tr>
<td>(-1; 1^2; 1)</td>
<td>(t^6)</td>
</tr>
<tr>
<td>(-1; 1; -)</td>
<td>(t^4)</td>
</tr>
<tr>
<td>(-1; 1; 1)</td>
<td>(t^4)</td>
</tr>
<tr>
<td>(1; -1; -)</td>
<td>(t^4 + t)</td>
</tr>
<tr>
<td>(1; -1; 1)</td>
<td>(t^4)</td>
</tr>
<tr>
<td>(-1; 2; -)</td>
<td>(t^2)</td>
</tr>
<tr>
<td>(-1; 2; 1)</td>
<td>(t^2)</td>
</tr>
<tr>
<td>(2; -1; -)</td>
<td>(t^2)</td>
</tr>
<tr>
<td>(2; -1; 1)</td>
<td>(t^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1; 1^3; -), (\alpha_2 = (-1; 1^3)), (\alpha_3 = (1^3; -; -)), (\alpha_4 = (-1; 1^2; 1)), (\alpha_5 = (-1; 1^2)), (\alpha_6 = (1; 1^2; -)), (\alpha_7 = (-21; -)), (\alpha_8 = (1; -1^2)), (\alpha_9 = (-21; -)), (\alpha_{10} = (1; 1^2; -)), (\alpha_{11} = (1^2; -1)), (\alpha_{12} = (21; -0)), (\alpha_{13} = (1; 1; 1)), (\alpha_{14} = (-2; 1)), (\alpha_{15} = (-1; 2)), (\alpha_{16} = (1; 2; -)), (\alpha_{17} = (1; -2)), (\alpha_{18} = (21; -)), (\alpha_{19} = (2; -1)), (\alpha_{20} = (-3; -)), (\alpha_{21} = (-3; -)), (\alpha_{22} = (3; -)).</td>
<td></td>
</tr>
</tbody>
</table>

Assume that \(r = 2 \) and \(s = 1 \). Then the corresponding symbols and similarity classes are given as

\[\mathcal{F}_1 = \{ \lambda_1 = (6420; 642; 531), \lambda_2 = (6420; 531; 642) \}, \]
\[\mathcal{F}_2 = \{ \lambda_3 = (531; 31; 31) \}, \]
\[\mathcal{F}_3 = \{ \lambda_4 = (420; 42; 41), \lambda_5 = (420; 41; 42) \}, \]
\[\mathcal{F}_4 = \{ \lambda_6 = (520; 42; 31), \lambda_7 = (420; 52; 31), \lambda_8 = (520; 31; 42), \lambda_9 = (420; 31; 52) \}. \]
The matrices \(\mathbf{A}(\mathcal{F}) \) are given as

\[
\begin{align*}
\mathbf{A}(\mathcal{F}_1) &= \begin{pmatrix} t^3 & t^6 \\ t^6 & 1 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_2) &= (t^3(t^9 - 1)), \\
\mathbf{A}(\mathcal{F}_3) &= (t^3 + 1)(t^9 - 1) \begin{pmatrix} t^3 & t^4 \\ t^4 & t^2 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_4) &= (t^6 - 1)(t^9 - 1) \begin{pmatrix} t^3 & 0 & t^5 & t^4 \\ 0 & 0 & 0 & t^5 \\ t^5 & 0 & 0 & 0 \\ t^4 & t^5 & 0 & 0 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_5) &= (t^6 - 1)(t^9 - 1) \begin{pmatrix} t^6 & t^7 \\ t^7 & t^5 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_6) &= (t^3(t^6 - 1)(t^9 - 1)), \\
\mathbf{A}(\mathcal{F}_7) &= (t^6 - 1)(t^9 - 1) \begin{pmatrix} t^9 & t^7 & t^8 \\ t^7 & t^9 & t^7 \\ t^8 & t^9 & t^7 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_8) &= (t^3 - 1)(t^6 - 1)(t^9 - 1) \begin{pmatrix} 0 & t^8 \\ t^8 & 0 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_9) &= (t^3 - 1)(t^6 - 1)(t^9 - 1) \begin{pmatrix} t^9 & t^{10} & 0 & 0 \\ t^{10} & 0 & 0 & 0 \\ 0 & 0 & 0 & t^{10} \\ 0 & 0 & t^{10} & 0 \end{pmatrix}, \\
\mathbf{A}(\mathcal{F}_{10}) &= (t^{12}(t^3 - 1)(t^6 - 1)(t^9 - 1)).
\end{align*}
\]

The matrix \(P \) of Green functions is given in Table IV.
\(P'_1: -; -\)	\(t^{12}\)	\(t^{12}\)	\(t^9\)	\(t^9\)
\(P'_1: -; -\)	\(t^{10} + t^7\)	\(t^{10}\)	\(t^7\)	\(t^7\)
\(-; 1; 1\)	\(t^{11} + t^8\)	\(t^{11} + t^8\)	\(t^5\)	\(t^5\)
\(1; P'_1: -\)	\(t^9 + t^6\)	\(t^9 + t^6\)	\(t^5\)	\(t^5\)
\(-; 21; -\)	\(t^{10} + t^7\)	\(t^{10} + t^7\)	\(t^6\)	\(t^6\)
\(-; -; 21\)	\(t^9 + t^6\)	\(t^9 + t^6\)	\(t^5\)	\(t^5\)
\(1; -; -\)	\(t^{11} + t^8 + t^5\)	\(t^{11} + t^8 + t^5\)	\(t^3\)	\(t^3\)
\(1; -; -\)	\(t^{10} + t^7 + t^4\)	\(t^{10} + t^7 + t^4\)	\(t^4\)	\(t^4\)
\(21; -; -\)	\(t^{10} + t^7 + t^4\)	\(t^{10} + t^7 + t^4\)	\(t^3\)	\(t^3\)
\(1; 1; 1\)	\(t^9 + 2t^6 + t^3\)	\(t^9 + 2t^6 + t^3\)	\(t^3\)	\(t^3\)
\(-; 2; 1\)	\(t^8 + t^5\)	\(t^8 + t^5\)	\(t^3\)	\(t^3\)
\(-; -; 21\)	\(t^{10} + t^7 + t^4\)	\(t^{10} + t^7 + t^4\)	\(t^3\)	\(t^3\)
\(1; -; -\)	\(t^9 + t^6 + t^3\)	\(t^9 + t^6 + t^3\)	\(t^3\)	\(t^3\)
\(1; -; -\)	\(t^8 + t^5\)	\(t^8 + t^5\)	\(t^3\)	\(t^3\)
\(2; -; -\)	\(t^8 + t^5\)	\(t^8 + t^5\)	\(t^3\)	\(t^3\)
\(2; -; -\)	\(t^9 + t^6 + t^3\)	\(t^9 + t^6 + t^3\)	\(t^3\)	\(t^3\)
\(-; -; -\)	\(t^{11} + t^8 + t^5\)	\(t^{11} + t^8 + t^5\)	\(t^3\)	\(t^3\)
\(-; -; -\)	\(t^{10} + t^7 + t^4\)	\(t^{10} + t^7 + t^4\)	\(t^3\)	\(t^3\)
\(3; -; -\)	\(t^9\)	\(t^9\)	\(t^3\)	\(t^3\)

Table IV

\(G(3, 1, 3)\) \(r = 2, s = 1\)
REFERENCES

