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Abstract

A differential form in a formal moment generating function is given by the decomposition of powers
in terms of the Hermite polynomials. This paper shows that this differential form for calculating the
expectation of normal and χ2 distributions has the benefit of avoiding divergence for Edgeworth type
approximations from the viewpoint of a formal power series ring. A symbolic computational algorithm
is also discussed, within the distribution theory of statistics.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Attempts to obtain asymptotic expansions for the distributions of random variables involve
algebraically complicated calculation. A computer algebra system (CA system) is useful for
avoiding the complication. A brief survey of techniques without the help of CA systems can be
found in Barndorff-Nielsen and Cox (1989) and Chapter 6 of Stuart and Ord (1994). On studies
with CA systems in the distribution theory of multivariate analysis, Niki and Konishi (1984) have
derived higher order asymptotic expansions for the distribution of Fisher’s transformation of the
sample correlation coefficient. Nakagawa and Niki (1992) and Nakagawa et al. (1998) have given
computer algorithms for obtaining moments of multivariate statistics with a symmetric property.
Their key technique is using a change of bases of the module of symmetric polynomials.
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In this paper, the decomposition of powers in terms of the Hermite polynomials, by using a
differential operator, is adopted to calculate formal generating functions of statistics. A similar
method without a CA system has been given by Iwashita (1997). He has derived a differential
formula for getting asymptotic distributions for the expectation of a function of a sample mean
and a sample covariance matrix under the elliptical distribution. This differential formula is
partially implemented in the Mathematica package by Inoue et al. (2005). Before realizing such a
formula for multivariate cases like Inoue et al. (2005), the univariate case needs to be summarized
in detail.

2. Hermite inversion formula

Let Hn(x) denote the Hermite polynomial of degree n (n ≥ 0) defined by

Hn(x) = (−1)ne
1
2 x2 dn

dxn e−
1
2 x2

= (−1)ne
1
2 x2

Dn
x e−

1
2 x2

(1)

where Dx =
d

dx and D0
x = 1. The set of Hermite polynomials constitutes an orthogonal basis;

therefore the power xn can be expressed as a linear combination of the Hermite polynomials.
The explicit expression is described in Ex 13.1.8 on Page 733 in Arfken and Weber (1995). This
linear combination for xn can also be rewritten using the above differentiation rule (1) as follows:

x2ne−
1
2 x2

=

n∑
j=0

[
2n
2 j

]
D2 j

x e−
1
2 x2
, x2n+1e−

1
2 x2

= −

n∑
j=0

[
2n + 1
2 j + 1

]
D2 j+1

x e−
1
2 x2
. (2)

Here n!! denotes the double factorial of n and[
j
k

]
=

(
j
k

)
( j − k − 1)!!. (3)

3. Calculation of the formal moment generating function

Let C[[x]] be the power series ring in x and Q(x) denote a family of functions

Q(x) =

{
p(x) e−

1
2 x2

∣∣∣∣ p(x) ∈ C[[x]]

}
. (4)

Consider a distribution whose probability density function (p.d.f.), cumulative distribution
function (c.d.f.) and characteristic function (c.f.) are f (x), F(x) and ψ(t), respectively. And we
suppose the case where (i) only ψ(t) is known and (ii) ψ(t) ∈ Q(t). The Edgeworth expansion
is a typical example for the assumption (ii).

The moment generating function (m.g.f.) η(s) of a random variable T (X) having a Taylor
expansion in x from the population F(x) may be obtained by:

(1) Inverting the c.f. to obtain the p.d.f.:

f (x) =
1

2π

∫
∞

−∞

e−it xψ(t)dt, (5)

(2) Taking the expectation of esT (X) to give the m.g.f.:

η(s) =

∫
∞

−∞

esT (x) f (x)dx . (6)
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In most cases, however, it is not easy to get the two definite integrals (5) and (6). On the other
hand, the following lemma is clearly obtained from the Eq. (2) and bears Algorithm 2 for getting
the symbolic computation of E

[
esT (X)

]
.

Lemma 1. There uniquely exists p̃(Dx ) e−
1
2 x2

for any p(x) e−
1
2 x2

∈ Q(x).

Algorithm 2 (Calculation of the Formal Moment Generating Function). (1) The c.f. ψ(t) =

p(t) e−
1
2 t2

∈ Q(t) can be rewritten, by using Lemma 1, in the form

ψ(t) = p̃(Dt ) e−
1
2 t2
. (7)

(2) The identity equation

Dn
t e−

1
2 t2
∣∣∣
t=−i t

= in Dn
t e

1
2 t2

(n = 0, 1, 2, . . .) (8)

gives the m.g.f. m(t) of F(x) as

m(t) = ψ(−i t) = p̃(i Dt ) e
1
2 t2
. (9)

(3) The m.g.f. η(s) is obtained from

η(s) = E
[
esT (X)

]
= esT (Dt ) p̃(i Dt ) e

1
2 t2
∣∣∣
t=0

. (10)

(4) Finally, the expansion of esT (Dt ) p̃(i Dt ) into a series p̂(s, Dt ) ∈ R[[s, Dt ]] gives

η(s) = p̂(s, Dt ) e
1
2 t2
∣∣∣
t=0

. (11)

The fact that e
1
2 t2

is the m.g.f. of the standard normal distribution; that is, for any non-negative
integer n,

D2n
t e

1
2 t2
∣∣∣
t=0

= (2n − 1)!!, D2n+1
t e

1
2 t2
∣∣∣
t=0

= 0; (12)

may suffice to complete the task concerned.

4. Application to computational statistics

Assume that F(x) has a known parameter N and tends to the standard normal distribution as
the parameter N tends to infinity. The most common form of the c.f.’s in such a case is

ψ(t) =

{
1 +

1
√

N
k1(t)+

1
N

k2(t)+ · · ·

}
e−

1
2 t2
, k j (t) ∈ C[t] ( j = 1, 2, . . .) (13)

and, from Lemma 1, the corresponding m(t) = ψ(−i t) can be supposed to be

m(t) =

{
1 +

1
√

N
h1(Dt )+

1
N

h2(Dt )+ · · ·

}
e

1
2 t2
, (14)

where h j (Dt ) ∈ R[Dt ] ( j = 1, 2, . . .). The discussion of the function T (x) concerns the
following two cases:

(1) the expansion of T (x) is of order x :

T (x) = x +
1

√
N

u1(x)+
1
N

u2(x)+ · · · ; (15)
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(2) the expansion of T (x) is of order x2:

T (x) = x2
+

1
√

N
u1(x)+

1
N

u2(x)+ · · · ; (16)

where u j (x) ∈ R[x] ( j = 1, 2, . . .). When T (x) is seen as a series in 1
√

N
, unfortunately the

convolution exp(sT (x)) does not converge in the series of 1
√

N
from the viewpoint of the theory

of the power series ring, because T (x) includes the constant term x or x2. Lemmas 3 and 5 below
are required for obtaining fruitful results for avoiding the divergence.

Lemma 3. For any g(s, x) ∈ R[[s, x]], it holds formally that

es Dt g(s, Dt ) e
1
2 t2
∣∣∣
t=0

= e
1
2 s2

g(s, s + Dt ) e
1
2 t2
∣∣∣
t=0

. (17)

Eq. (17) means that the exponential function es Dt acts on g(s, Dt ) as the shift operator.

Proof. By formal operations, it holds that

es Dt g(s, Dt )e
1
2 t2
∣∣∣
t=0

=

∫
∞

−∞

esx g(s, x)
1

√
2π

e−
1
2 x2

dx

=

∫
∞

−∞

g(s, x)
1

√
2π

exp
{
−

1
2
(x − s)2 +

1
2

s2
}

dx

=

∫
∞

−∞

g(s, x + s)
1

√
2π

exp
{
−

1
2

x2
+

1
2

s2
}

dx

= e
1
2 s2
∫

∞

−∞

g(s, x + s)
1

√
2π

e−
1
2 x2

dx

= e
1
2 s2

g(s, s + Dt )e
1
2 t2
∣∣∣
t=0

,

which proves the lemma. �

Let V j be the set of partitions of degree j , that is,

V j =

{
(1m1 2m2 . . . jm j )

∣∣∣∣∣
j∑

k=1

k mk = j, mk ≥ 0

}
. (18)

Theorem 4. Let X be a random variable with m.g.f. m(t) defined by (14) and let T (x) be the
function of x defined by (15). Then the m.g.f. η(s) of T (X) is obtained as

η(s) = E
[
esT (X)

]
= e

1
2 s2
{

1 +
1

√
N
v̄1(s)+

1
N
v̄2(s)+ · · ·

}
, (19)

where

v̄ j (s) = v̂ j (s, s + Dt ) e
1
2 t2
∣∣∣
t=0

∈ R[s], j = (1, 2, . . .), (20)

v̂ j (s, x) =

∑
k≥0, l≥0,
k+l= j

qk(s, x) hl(x) ∈ R[s][x], (21)
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q j (s, x) =

∑
(1m1 2m2 ... jm j )∈V j

j∏
k=1

uk(x)mk

mk !
smk ∈ R[s][x], (22)

providing q0(s, x) = h0(x) = 1.

Proof.

η(s) = E
[
esT (X)

]
= exp

(
s Dt +

∞∑
k=1

suk(Dt )

N
k
2

)(
∞∑

k=0

hk(Dt )

N
k
2

)
e

1
2 t2

∣∣∣∣∣
t=0

= es Dt

{
∞∑

k=0

qk(s, Dt )

N
k
2

}(
∞∑

k=0

hk(Dt )

N
k
2

)
e

1
2 t2

∣∣∣∣∣
t=0

= es Dt

{
1 +

1
√

N
v̂1(s, Dt )+

1
N
v̂2(s, Dt )+ · · ·

}
e

1
2 t2
∣∣∣∣
t=0

= e
1
2 s2
{

1 +
1

√
N
v̂1(s, s + Dt )+

1
N
v̂2(s, s + Dt )+ · · ·

}
e

1
2 t2
∣∣∣∣
t=0

= e
1
2 s2
{

1 +
1

√
N
v̄1(s)+

1
N
v̄2(s)+ · · ·

}
. �

Lemma 5. For any g(s, x) ∈ R[[s, x]], it holds formally that

es D2
t g(s, Dt ) e

1
2 t2
∣∣∣
t=0

=
1

√
1 − 2s

g

(
s,

Dt
√

1 − 2s

)
e

1
2 t2
∣∣∣∣
t=0

. (23)

Proof. Like in the proof for Lemma 3, by formal operations, it holds that

es D2
t g(s, Dt )e

1
2 t2
∣∣∣
t=0

=

∫
∞

−∞

esx2
g(s, x)

1
√

2π
e−

1
2 x2

dx

=

∫
∞

−∞

g(s, x)
1

√
2π

exp
{
−

1
2
(1 − 2s)x2

}
dx

=
1

√
1 − 2s

∫
∞

−∞

g

(
s,

x
√

1 − 2s

)
1

√
2π

e−
1
2 x2

dx

=
1

√
1 − 2s

g

(
s,

Dt
√

1 − 2s

)
e

1
2 t2
∣∣∣∣
t=0

,

which proves the lemma. �

Theorem 6. Let X be a random variable with m.g.f. m(t) defined by (14) and let T (x) be the
function of x defined by (16). Then the m.g.f. η(s) of T (X) is obtained as

η(s) =
1

√
1 − 2s

{
1 +

1
√

N
w̄1(s)+

1
N
w̄2(s)+ · · ·

}
, (24)

where v̂ j (s, x) and q j (s, x) are given by (21) and (22), respectively, and

w̄ j (s) = v̂ j

(
s,

Dt
√

1 − 2s

)
e

1
2 t2
∣∣∣∣
t=0

∈ R
[[

1
√

1 − 2s

]]
( j = 1, 2, . . .).

Eq. (24) indicates that the limiting distribution of T (X) is the χ2 distribution with 1 degree of
freedom.
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5. Simple example

A set of term-rewriting rules written in Mathematica language is designed as a help
to algebraic computation in our proposed methods. The following calculations including
expansions, substitutions, differentiations, and the Hermite inversion formula are conducted in
the Mathematica system.

A simple case may be a statistic as a function of the sample mean. Let X1, X2, . . . , X N be
mutually independent and identically distributed random variables, with cumulants κ1 = 0, κ2 =

1, κ3, κ4 and

X̄ = N−1
N∑

i=1

X i , X =
√

N X̄ and T (X) =
√

N g(X̄),

where g may be supposed to a continuous and differentiable function at the origin, providing
g(0) = 0, g′(0) = 1 without loss of generality. The c.f. of X is in the form

ψ(t) =

{
1 +

κ3

6
√

N
(i t)3 +

κ4

24 N
(i t)4 +

κ2
3

72 N
(i t)6 + O(N−

3
2 )

}
e−

1
2 t2
,

and the m.g.f. is in the formally differential form

m(t) =

{
1 +

1
√

N
h1(Dt )+

1
N

h2(Dt )+ O(N−
3
2 )

}
e

1
2 t2

by Eq. (2), where

h1(Dt ) =
κ3 D3

t

6
−
κ3 Dt

2
,

h2(Dt ) = −
5 κ2

3

24
+

5 κ2
3 D2

t

8
−

5 κ2
3 D4

t

24
+
κ2

3 D6
t

72
+
κ4

8
−
κ4 D2

t

4
+
κ4 D4

t

24
Taylor expansion gives

T (X) = X +
c2

2
√

N
X2

+
c3

6 N
X3

+ O(N−
3
2 )

where ci = g(i)(0). Then

E[sT (X)] = E

[
exp(s X) exp

(
s c2

2
√

N
X2

+
s c3

6 N
X3

+ O(N−
3
2 )

)]
= es Dt

{
1 +

s c2

2
√

N
(Dt )

2
+

s c3

6 N
(Dt )

3
+

s2 c2
2

8 N
(Dt )

4
+ O(N−

3
2 )

}

×

{
1 +

1
√

N
h1(Dt )+

1
N

h2(Dt )+ O(N−
3
2 )

}
e

1
2 t2
∣∣∣∣
t=0

= e
1
2 s2

{
1 +

s c2

2
√

N
(s + Dt )

2
+

s c3

6 N
(s + Dt )

3
+

s2 c2
2

4 N
(s + Dt )

4
+ O(N−

3
2 )

}

×

{
1 +

1
√

N
h1(s + Dt )+

1
N

h2(s + Dt )+ O(N−
3
2 )

}
e

1
2 t2
∣∣∣∣
t=0

∼ e
1
2 s2
(

1 + a1s +
a2

2
s2

+
a3

6
s3

+
a4

24
s4
)
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which yields the i th moment ai (i = 1 . . . , 4) of T (X) as follows:

a1 =
c2

2
√

N
+ O(N−

3
2 ), a2 = 1 +

3 c2
2

4 N
+

c3

N
+

c2 κ3

N
+ O(N−

3
2 ),

a3 =
9 c2

2
√

N
+

κ3
√

N
+ O(N−

3
2 ), a4 = 3 +

45 c2
2

2 N
+

10c3

N
+

20 c2 κ3

N
+
κ4

N
+ O(N−

3
2 ).

These results a1, . . . , a4 are well known and can check the correctness of Algorithm 2.
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