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Some Recent Developments on 

Complex Multivariate Distributions 

P. R. KRISHNAIAH 

Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base 

In this paper, the author gives a review of the literature on complex multi- 
variate distributions. Some new results on these distributions are also given. 
Finally, the author discusses the applications of the complex multivariate 
distributions in the area of the inference on multiple time series. 

1. INTRODUCTION 

In recent years, there has been considerable interest in the area of complex 
multivariate distributions, since these distributions play an important role in 
various areas. In nuclear physics, these distributions are useful (e.g., see Porter 
[49], Carmeli [6]) in studying such problems as the distributions of the spacings 
between energy levels of nuclei in high excitation. In the area of the multiple 
time series, these distributions are useful in studying such problems as the 
structures of the spectral density matrix, since certain suitably defined estimates 
of the spectral density matrix of the stationary Gaussian multiple time series 
are approximately distributed as a complex Wishart matrix. The problems of 
studying the structures of the above spectral density matrix arise in the analysis 
of the data in numerous areas like the vibrations of the airframe structures, 
meteorological forecasts, and signal detection. For some discussion about the 
usefulness of the complex multivariate distributions in the area of multiple 
time series, the reader is referred to Hannan [13], Liggett [40, 411, Priestley, 
Subba Rao, and Tong [50], and Brillinger [5]. 

Wooding [61] and Goodman [9] studied the complex multivariate normal 
distribution. The joint distributions of the roots of some complex random 
matrices were derived by James [17], W’g 1 ner [59], and Khatri [20] by following 
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2 P. R. KRISHNAIAH 

similar lines as in the analogous real cases. Some work has been done in the 
past on the distribution problems associated with certain test statistics based 
on the eigenvalues of the complex Wishart, multivariate beta, multivariate F, 
and other random matrices. Some of these distribution problems may be solved 
by following similar lines as in the analogous real cases, whereas some problems 
need techniques different from the real cases. The object of this paper is to 
review some of the developments on complex multivariate distributions and 
present some new results. This review is by no means exhaustive. Some of the 
results that are new on the distributions were presented by the author at the 
IS1 meeting held in 1973. 

In Section 2 of this paper, we discuss the evaluation of certain integrals 
that are useful in the computation of the probability integrals of some complex 
multivariate distributions. Section 3 is devoted to a review of the literature 
on the distributions of some complex random matrices as well as the joint 
densities of the eigenvalues of these random matrices. These random matrices 
include complex Wishart, multivariate beta, multivariate F, and Gaussian 
matrices. The marginal distributions of few roots are discussed in Section 4. 
In Section 5, the distributions of the traces of some complex random matrices 
are considered. The distributions of various ratios of the roots of complex 
Wishart and multivariate beta matrices are reviewed in Section 6, whereas the 
results on the distributions of the likelihood ratio statistics for testing the 
hypotheses on the covariance structures and mean vectors of complex multivariate 
normal populations are discussed in Section 7. Finally, we discuss the applications 
of the complex multivariate distributions in inference on multiple time series. 

2. EVALUATION OF SOME INTEGRALS 

In this section, we discuss the evaluation of some integrals that are needed 
in the sequel. 

Let $(x1 ,..., xp) = i(yij)] and $(x1 ,..., x,) = l(zii)l, where yii = &(x~) and 
zij = #I. Also, let 7(x1 ,..., xP) be a symmetric function of xi ,..., xp . Then, 
it is seen that 

s s 
. . . 7(x, ,..., x,)4(x, ,..., x,) #(xl ,..., xp) dxl ... d.r, 

b b 
(2.1) 

. . 

=s s r)(x, >..., x,) I(Uij)l dx, ... dx, 1 
a a 

where U,j = +i(xj) &(xj). Starting from Eq. (2.1), we obtain the following 
easily: 
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LEMMA 2.1. Let the symmetric function ‘)(x1 ,..., x,) be of the form 

7(x 1 ,.**, xp) = 1 c(m, ,..., m,) xyl ... x7, (2.2) 
m 

where c(m, ,..., m9) is a constant depending upon m, ,..., m, , and the summation 
is over the values of m, ,..., m,, . Then 

. . . 
1 1 

7(.x1 ,..., xn) +(x1 ,..., x,) #(x1 ,..., x,) dx, ... dx, 
a@,<. . .@$,<b 

= z c(ml ,..., m,) I B(m, ,..., m,)!, 
(2.3) 

where B(m, ,..., m,) = (b<j), and 

bij = 
s a<a<b xl”jG4 $44 &* 

When 17(x1 ,..., x,) = 1, the above lemma was proved in Andreief [2]. 
Next, let 7(x1 ,-.., x,) be any symmetric function of X, ,..., x, . Then, it is 

seen that 

f  s 
. 7@1 ,..., x,)&x1 ,..., xv) #(xl ,..., sB) dx, a-- dx, 

- DI (2.4) 
=-- 7! p’ 7! cl Xz (-l)c*i+=mi )-; j” 7)(x1 ,..., x,) I B, I I & I dx, ... dx, , 

where the domains D, , D, of integration are given by D, : a < x1 < ... < x, < 
x < x,,~ < ... < X, < b and D, : a < xi < x (i = l,..., I), x ,< xi < 6 
(j = r + I,..., p). In Eq. (2.4), 6, < *.. < S, is a subset of the integers 1, 2,..., p 
and vi < *.. < v2)-r is the subset complementary to 6, ,..., 6, and x1 denotes the 
summation over all (,“) possible choices of 6, < ... < S, . Similarly, a1 < ‘.. < my 
is a subset of the integers 1, 2,..., p and fil < ... < /3,-, is the subset comple- 
mentary to 01~ ,..., OLD, and Cz denotes the summation over cur < I.. < LYE . In 
addition, B, = (brph) and B, = (b.&, where 

But 

,..., NJ 1 B,’ 1 1 B?* 1 dx, ... dx, , 
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where G* = P&J, h* = (b&J, bFgh = &,W &,(xd, and b& = $vg(XT+h) x 
#Bh(~,.+h). Thus, we have the following: 

LEMMA 2.2. Let q(xl ,..., x,) = xm c(ml ,..., m,) xyl,..., x:9 be a symmetric 
function of xl ,..., x9. Then 

s J . . . 7(x1 ,..., x,) #(x1 ,..., x,) #(.x1 ,..., xJ d.yl ... dx, 
Dl 

= cl&C (-l)cBi+xwi cfm, ,..., m,) I B, 1 1 B, I, 
m 

(2.5) 

where B3 = (kd, B, = (bllJr and 

b Bgh = I L Y”%,(Y) A,(Y) 4’3 L, = j” Y~‘+“~,(Y) h,(r) dy. 
0. & 

When 7(x1 ,..., xP) = 1, an alternative expression was given in Khatri [23]. 

But, the expression given on the right side of Eq. (2.5) is better than that given 
in Khatri [23] from a computational point of view. 

Next, let us expand $(x1 ,..., xp) as follows: 

4(x1 v..., x,) = x3 Ca ( -l)d(7,S) V(x, ,..., xr ; a, ,..., a,) 

x V(x r+1 ,...7 *%+s , * 011 ,..., 4 (2.6) 

x V(x,+,.u ,..*9 ,223 ; Br+s+* >..a* &A 

where d(r, s) = (r(r + 1)/2) + (s(s + 1)/2) + Z ai -I- C ai and 

V(x, ,..., x, ; b, ,..., b,) = : 

‘+b,tXd *” +b,@$ ’ 

Here, (a, < ‘.. < a,) is a subset of (I,..., p), and (tr ,..., &.) is its comple- 
mentary set. Similarly, (01~ < ... < 01~) is a subset of (t*,..., tp-,) and (/3r+s+r,..., ,8,) 
is its complementary set. In addition, 1s denotes the summation over all possible 
(,“) choices of (a1 ,..., a,), and C4 denotes the summation over all (“;‘) possible 
choices of (011 < ... < 0i.J. Similarly, we can express #(x1 ,..., x,) as follows: 

#(x1 ,.*., x,) = C6z6 (-l)d*(r*s) l/*(x, ,..., x, ; a,* ,..., a,.“) 

x v*(x,+l ,...) x,+, ; q* ,..., a,*> (2.7) 

x v*(.G+s+l ,-.‘, XI, ; SL, ,*.-7 BP*), 
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where d*(r, s) = (r(r + 1)/Z) + (s(s + 1)/2) + C a,* + C ai*, and 

lclbl(X1) ... #bl(%J 
v*(s, ,..., x,;b, )...) b,)= i .‘. i . 

#b,(%) .‘. #b,(%) 

Also, (al” < ... < a,*) is a subset of (I,..., p) and (tl*,..., tc+.) is its comple- 
mentary set. Similarly, (cyr* < ... < CX,*) is a subset of (tr*,..., t;,) and 

@,*,,,I TV..> P,“) is its complementary set. In addition, x5 denotes the summation 
over all possible (,“) choices of (a,*,..., a,*) and & denotes the summation over 
all (“i’) possible choices of (c+* < ... < IX,*). Using Eqs. (2.6) and (2.7) and 
Lemma 2.1, we obtain the following: 

LEMMA 2.3. Let D, : a < x1 < ... < x, < x < x,+~ < ... < x,.+, < y  < 
x”,+,+~ < . < xD < b. Then 

j- ,’ J 4(x1 )... , x,) #(x1 )... , xp) dx, -. dx, 
3 (24 

= x3 c4 c5 x6 (-l)~ai+~a,*+‘ai+~ai* 1 B, 1 1 B, 1 I B, 1, 

where B5 = (kgh), B, = (b&, B, = (b,& and 

b 5sh = 
f 

co da,@) &z,+) d., g, h = 1, 2 ,..., r, 
(I 

b 6oh = s ’ Cc&> &&9 dz, g, h = Y + 1 ,..., Y + s, 
z 

b 7gh = 1 ,b &,(z) #o,(X) dz, 1 
g, h = Y + s + 1 ,..., p. 

LEMMA 2.4. Let D, : a ,< x1 < ... < x, < xrtl ,( x,+, < x,.+,+~ ,( ... < 
x1, < b. Then 

i r ... 4(x1 ,..., xp) #(xl ,..., x,,) dx, ... dx). dx,,,,, ..’ dx, 
- D4 . 

= Z:3ClsJC6 (F-1) 
&jf&iL7‘ni*+P_,i* 

I’( X r+l ,..‘, x).<.,, ; a1 ,..., a,J (2.9) 

‘A t’*(~,.+~ ,..., A-,.+~ ; aI* ,..., a,*) x j B, / / B, j, 
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where 4, = (4&, % = (bsgh), and 

s 

%+1 
b Snh = h&) ?ba,*(4 k g, h = 1, 2 ,..., r 

a 

b Wh = 
s 

b A&) A+,(4 dz> g, h = Y + s + 1 ,..., p. 
“rta 

3. DISTRIBUTIONS OF SOME COMPLEX RANDO~V MATRICES AND 

THEIR EIGENVALUES 

We need the following definitions (see James [17]) in the sequel. 
Let K = (k, ,..., k,) be a partition of k such that k, > ... > k, > 0 and 

k, + ... + k, = k. Also, let cK(A) denote the zonal polynomial of a Hermitian 
matrix A of order p x p. The hypergeometric functions with matrix arguments 
are as given below: 

r&(cl ,..., c, ; dl ,..., d, ; A) = f c (“), *” (“)+c ‘+iA) , 
kc,, K (d& .. . (d,), k ! 

(3.1) 

,&(c, ,..., c, ; dl ,..., d, ; G, H) = f C (& “’ (“), ‘+iG) cK(y) 
kao K (d& ... (d& f?&) k! 

(3.4 

where cr ,..., c, , dl ,... , d, are real or complex constants. Here, we note that 
,$,,(A) = etr A and ,flo(a; A) = j I - A I+. When A = 0, the right side of 
(3.1) is equal to 1. Also, the right side of (3.2) is equal to 1 when G = 0 or H = 0. 
Throughout this paper, etr B denotes the exponential of the trace of B, and 

(4 = fi (a - i + UKi 1 (a), = a(a + 1) ... (u + K - 1) 
i=l 

Qu) = ,P(P-I)/2 * *g (a - 2. + l)Ki * 

The zonal polynomials of the matrix variables were first considered by Hua 
[15] and later by James [ 161 independently. The general system of hyper- 
geometric functions with matrix arguments is due to Herz [ 141 who defined them 
in integral forms. Since the computation of the expressions involving zonal 
polynomials is complicated, it would be of interest to try to get approximations 
to the above hypergeometric functions by starting with the expressions of 
Herz [14]. 

We will now review the results on the joint distributions of the roots of some 
random matrices. 
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Let Z = X + iY, where X and Y are random matrices of order m x p. Also, 

let the rows of (X, Y) be distributed independently as 2p-variate normal with 
mean vector (t+‘, pa’) and covariance matrix E, where 

E= 
i 

E 

-i2 
-% 

1 El . 

Then, the rows of Z are known to be distributed as complex multivariate normal. 
Now, let A, = ZZ’, where 2’ is the transpose of the complex conjugate of Z. 
Then, the distribution of A, is known to be a central (noncentral) complex 
Wishart matrix with m degrees of freedom when M = 0 (M # 0), where 
E(Z) = M. Also, E(A,/m) = Z; = 2(E, - ~3,). Next, let A, : p x p be a central 
complex Wishart matrix with n degrees of freedom, and E(A,/n) = & . Then, 
F = A,A$ is known to be a central (noncentral) complex multivariate F matrix 
when M = 0 (M f  0). Similarly, B = A,(A, + A&r is said to be a central 
or noncentral complex multivariate beta matrix accordingly as M = 0 or M # 0. 

Next, let E, = 0, El = diag.(h, ,..., A,), B, = ((A - 2mE,)(2m)1/2) = B,+ iB, 
where B, = (bm) and B, = (bzii). When m --)I co, the random variables bIij and 
baii by central limit theorem, are distributed independently and normally with 
zero means and variances given by E(bfij) = XiXj (i #i), E(b$ = 2&a, and 
E(b&) = Xi& ; here, we note that bzii = 0. 

Now, let A = (u,~) = R + is, where A :p x p is a Hermitian random 
matrix, R = (rij) and S = (Q). Then sii = 0. Now, let the elements of R and 
the off-diagonal elements of S be distributed independently. We assume that 
the variances of the off-diagonal elements of R and S are equal to 1 and the 
variances of the diagonal elements R are equal to 2. Then, we refer to 
A = R + 25’ as the central or noncentral complex Gaussian matrix accordingly 
as E(A) = 0 or E(A) # 0. 

The complex multivariate normal distribution was derived by Wooding [61]. 
The density function of the complex multivariate normal is given by 

f(Z) = l nTTpm 1 z pn etr[-E-l(Z - M)(Z - a)‘]. (3.4) 

The distribution of the complex Wishart matrix is known (see Goodman [9]) 
to be 

f(4) = - l 
r,(m) I 27 llra 

etr( -(l/2) ZF’A,) 1 A, !+-P, 

where M = 0. When M # 0, the distribution of A, is known to be 

f(A,) = etr( -,?Y-lM&f’) o~l(m; 2YM~‘,Z-~A,) 

1 

’ ii,(m) ) 2 j)lL 
etr(-FlA,) / A, lm--8. (3.6) 
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Srivastava [54] gave a simplified derivation of the central complex Wishart 
distribution. 

Let wg > ... > wr be the latent roots of the complex Wishart matrix A,.?? 
with m degrees of freedom. The joint density of the roots wr ,..., wg is given by 

hl(Wl ,..., w,) = etr(-Q) aFI(m; 52; A,) 
(3.7) 

rrn(P-l) 

x f-%4 C(P) 
etr(--,4,) 1 8, InZ--I, fi (wi - ~~)a, 

i>i 

where Q is a diagonal matrix whose elements are the roots of Mii?f‘,E?. When 
M = 0, the joint density of the roots (aI < ... < a,) of A, is 

h,(U, ,..., u,) = 77p(pp1) 
f24 C(P) 

1 2 Iens etr(-Z-IA,) 

x / A, 1-p fi (Ui - Uj)2’ 
(3.8) 

i>j 

Next, let us assume that the rank of A, is q and let the nonzero roots of 

A,A$ befp > ... > fi . When m < p, and Z = Za the joint density of fi ,..., f, 
is given by 

JJ,(fl 7...> f,) = etr(-Q) rFr(m + n; p; 52, (I + F-l)-‘) 

e(nl-1) F&n + ?z) 
(3.9) 

; F P1 

where F = AlAi and Q = M’Z-IM. When m > p, the joint density off1 ,..., fa 
is given by Eq. (109) in James [17]. Also formulas (3.6), (3.7), and (3.9) were 
given in James [17]. 

Now, let a, > ... > a, be the latent roots of the Gaussian matrix A. Then, 
the joint density of a, ,..., a, is known (see Waikar, Chang, and Krishnaiah [58] 
to be 

Ma, ,..., u,) = C etr( -( 1/2)M2) 

C,(A) fi exp(-(1/4)Q) (3.10) 
i-l 

x $, (Ui - Uj)2, -cc < Ai < CD. 

Also, C z +‘(“-1)/F&,) ~(P’+P)P G2i2. When M = 0, the joint density of 

a, ,..., a, is known (see Wigner [59]) to be 

h(a1 ,'.., a,) = C fi exp(-(1/4)a,2) fi (ui - aj)a. (3.11) 
i=l i>j=l 
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Next, let the m rows of (2, i 2,) be distributed independently as (p + p) 
variate complex normal with zero means and covariance matrix 

and let p < 4. Also, let rP2 > ... > rr2 be the latent roots of R2 = (Zr&‘)-1(Z1~2’) 
(Z2z2’))l Z,&‘. Then, the joint density of rr2,..., rg2 is known to be 

h.,(r12,..., r,“) = I I - P2 lrn ,Fl(m, m; q; P2, R2) 

FD(m) CT~(~-~) 
(3.12) 

x am - 4) ml) C(P) 
/ R2 jq--l? 11 - R” lm-Q-l’ n (ri” _ rF)2, 

i>j 

where P2 = Z,;‘Z12L’;‘Z2, . The above formula was given in James [17]. 
When M = 0, we will refer to the distribution of A, as the central complex 

Wishart matrix or the central complex Wishart matrix with Zr # I accordingly 
as .Z = I or Z # I. Similarly, when M = 0, we will refer to the distribution of 
A,(A, + A,)-l as the central multivariate beta matrix (central multivariate beta 
matrix with 2 # Z2) when Z = Z2(Z # Z2). Goodman [9] expressed the 
densities of multiple coherence and partial coherence as infinite series while 
Kabe [I81 expressed them as finite series. 

Now, let 2’ be partitioned as 2’ = (Z,‘,..., Z,‘), where Zj is of order m x pj 

and the distribution of 2 is given by (3.4). In addition, let Si = ZjZi’Aj , where 
the elements of A,‘s are constants. Then, the joint characteristic function of 
S 1 >..‘, S, is given by 

NJ ,*.-> 0,) = E{etr i(B,S, + ... + 19,s~)) 
(3.13) 

= 1 I - A*2 1~~ etr{A*(I - ZA*)-1 Mm’}, 

where A* = diag.(A,* ,..., A,*), and Aih = ie,A,. I f  p, = ... = p, , the 
characteristic function of S, + ... + S, is obtained from the above equation by 
choosing 0, ,..., 0, to be equal. The joint characteristic function of yr ,..., ya , 

where yi = tr Sj (i = I,..., q), is given by 

1 I - B*z lpvh etr{B*(l - ZB*)-1 MM’), (3.14) 

where B* = diag.(B,* ,..., B,*), and B,* = itjAj. When m = 1 and q = 1, 
Turin [55] derived Eq. (3.14). 
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4. MARGINAL DISTRIBUTIONS OF FEW ROOTS 

Let Z1 ,..., Z, be the latent roots of a class of random matrices, and let the joint 
density of these roots be of the form 

W, ,..., ID) = c cl 4(b) i. ; C(K, Q) !(I:-? 
(4.1) 

x !($“““-i”)~, a < II ,( . .. < I, < b, 

where C is a constant, K = (kl ,..., k,) is a partition of k such that k, 2 ... > k, , 
I/(X) is a function of X, and C(K, Q) depends on K and the population parameter 
matrix Q. The joint densities of the eigenvalues of the random matrices con- 
sidered in the preceding section are special cases of Eq. (4.1). 

The probability integral of the joint distribution of the extreme roots Zr and 
I,, is given by 

where A = (Uij) and 

Equation (4.2) follows immediately by applying Lemma 2.1. The c.d.f. of the 
largest root 1, is obtained by putting c = a in Eq. (4.2). The c.d.f. of the smallest 
root II is given by 

P[Z, < c] = 1 - P[c < II < I, < b], (4.3) 

where the right side of Eq. (4.3) can be evaluated by applying Eq. (4.2). The 
c.d.f. of the intermediate root I, (2 < s < p - I) is given by 

P[Z,~c]-P[I,+,~c]+P[a~Z,~~~~~Z,~c~~,+,~~~~~~,~b], 

a</,< 1.. < I, < b. 
(4.4) 

But, applying Lemma 2.2, we obtain 

= C 2 CC1&(-l)Cai+SGi 1 B, I 1 B, 1, 
k=O K 

(4.5) 

where x1 , Ca , ai’s and Si’s were defined in Eq. (2.4), B, = (b& and B, = (bdgh). 
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Here 

b 3sh = 
s 

'V&~(Y) &,(Y) GYP bm = Jb ~JY) h,(r) ~YY 
a z 

and 

MY) = yi-l, &(y) = $qy)yhi+l+i-l, 

The joint density of ZF+l ,..., Zr+s follows immediately by applying Lemma 2.4. 

Similarly, one can derive the joint density of any few ordered roots that are 
not necessarily consecutive, but the resulting expressions are complicated. We 
will now discuss the joint probability integral associated with any pair of roots 

&,4(1 <~VSS$J). 
We know that 

+P[x <I- <I <z (1 <x2]. l--.rl~r\s~s+l-.. 

Each quantity on the right side of Eq. (4.6) can be evaluated using Lemma 2.3. 
Khatri [19] gave expressions for the extreme roots of the central complex 

Wishart and multivariate beta matrices whereas Al-Ani [l] derived the expres- 
sions for the intermediate roots of the above random matrices. Also, Khatri [22] 
derived the distributions of the individual roots of the central Wishart matrix 
A, with Z # I, noncentral multivariate beta matrix, central multivariate beta 
matrix with Z # Z2 , and noncentral canonical correlation matrix in the complex 
cases. The method used in the above papers for obtaining the distributions is 
different from the method used in the present paper. The expressions given in 
this paper for the distributions of the intermediate roots are better, from com- 
putational point of view, than the corresponding expressions given in Khatri 
[19,22] and Al-Ani [l]. Approximate percentage points of the largest root of the 
Wishart matrix and multivariate beta matrix were given by Pillai and Young 
[45] and Pillai and Jouris [48], respectively, in the central complex cases. 
Exact percentage points of the smallest root and intermediate roots of the central 
complex Wishart matrix were constructed by Schuurmann and Waikar [53] 
and Krishnaiah and Schuurmann [29]. Krishnaiah and Schuurmann [29] also 
constructed the exact percentage points of the distributions of the individual 
roots of the central complex multivariate beta matrix. Exact percentage points 
of the joint distribution of the extreme roots of the central complex Wishart 
matrix as well as that of the central complex multivariate beta matrix were given 
by Krishnaiah and Schuurmann [3 I]. 
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The joint densities of any few unordered roots of the complex Wishart, 

complex multivariate beta matrix, and complex Gaussian matrix were known 
(see Wigner [59] and Mehta [42]) in the literature for the central cases. Waikar, 
Chang, and Krishnaiah [58] derived the joint densities of any few unordered 
roots of the complex Gaussian ensemble matrix, complex Wishart matrix A, with 
z # I, complex multivariate beta matrix, and complex canonical correlation 
matrix in the noncentral cases. We now discuss the joint distribution of any 
few unordered roots of a class of random matrices. 

Let Zr ,..., 1, be the unordered roots of a class of random matrices and let their 
joint density be given by 

fiVl ,..., 4J = (C/P!) ir Wi) f 1 44 9 
i=l k=O K 

(4.7) 
x I( j(z;-l+kAJ-*+l)~, a < zi < b, i = 1 )...) p. 

Then, the joint density of ZI ,..., 2,. is given by 

f2Vl >*a., I,) = j-” e-e Ib f(1, ,..., I,) dl,,, .a. dl, . (4.8) 
n * 

The right side of Eq. (4.8) can be evaluated using the following lemma: 

LEMMA 4.1. Let +(x1 ,..., zc,) and #(x1 ,..., xe) be as deJined in Section 2. Then 

b s s ... b +(x1 ,..., xv) #(x1 ,..., x,) dx,+l ... dx, = ~l~&~)XG~+c~~ j B, j 1 B, j, 
a a 

where B, , Si’s, oli’s and the summations Cl and & are as defined in Eq. (2.4), and 
B; = (b&, where 

5. MOMENTS OF THE ELEMENTARY SYMMETRIC FUNCTIONS AND THE 

DISTRIBUTIONS OF THE TRACES 

Let the joint density of the roots Zr < ... < Z, of a random matrix be given 
by Eq. (4.1). Also, let 

5,(Zl ,‘..> L) = c k, .‘. zi, 9 q < P, 
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where the summation is over all possible values of ir < ... < i, . Then, 

where p * = (,“), s = ~~~, si , and vr ,..., qa depend upon s, ,..., s,* ; the sum- 
mation is over all possible values of sr ,..., s,* . Then, the sth moment of 
{,(Z1 ,..., I,) is given by 

-W,(b >..., 48” = s ... j- {5,(4 ,..., l,))“f(l, ,..., I,) 4 ... 4, 
a<Z1<...<.ln<b 

where f(ZI ,..., I,) is given by Eq. (4.1). N ow, applying Lemma 2.1, we get the 
following: 

LEMMA 5.1. The sth moment of qth order elementary symmetric function 

5,(4 7-.., I,) is given by 

where B = (bij) and 

bij = ~(x)xi+i+li,+k,,~i+l-2 dx. 
(5.2) 

When a = 0, b = 1, and #(x) = P( 1 - x)“, b,j in Eq. (5.2) reduces to 

bij=~(n+i+j+rlj+Jz,-i+l- 1, q + I). For a = 0, b = co, and #(x) = 
exp(--x)x7L,weobtainbij=/3(n+i+j+~j+k,-,+1- l,q+ l).Ifa=-m 
b = 00, and #(a-) = exp(--x2/4), then 

bfj = 0, if i+j+vj+kP--i+l-2isodd, 

= 4(i+j+~lifiP-‘+1-1)‘2 r((i + j  + 71j + h,.+l - 2)/2), 

if i + j -1 vj + k,-,+l - 2 is even. 

The Laplace transformation of the statistic T = zr=, Zi is given by 

yP(t; T) = s .‘. s exp(-tT)f(Zl ,..., 2,) dZ, ... dl, 
Wi<...<lp<b 

(5.3) -2 
= C 1 C(K, Q) / B* !, 
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where B* = (b:) and 

b;z b s exp( --tx)xi+‘+“y t+l-’ $(x) dx. (5.4) 
11 

We now derive the distribution of T when a = 0, b = 1, and P(x) = xn( 1 -x>“. 
In this special case, we get 

6; = go C-1)’ (;) (l+i+j+n- 1 +k,-,+l)! 
~l+i+j+n-l+k,-i+l 

[I - exp(--t)C$], (5.5) 

where the summation in the square bracket is over values of m from 0 to I + i + 

j + n - 1 + &-i+l ; here, we note that (y) = 0 when q is integer and is less 
than 1. The Laplace transformation is of the form 

(5.6) 

where the coefficients di , czi , and /& depend on n, q, p, and the elements of the 
partition K. Now, inverting the right side of Eq. (5.6), we obtain the following 
expression for the density of T: 

O<T<P, (5.7) 

where (x)+ is equal to x or 0 according as x > 0 or x < 0. 
We will now consider the distribution of Tl = xi (&/l - Zi). The Laplace 

transformation of Tl is given by 

=JW; Tl) = la exp(--T,)f(T,) dT, = C f  c C(K, Q) 1 D 1, (5.8) 
k=O x 

where D = (dij) and 

dij = f-” exp( --tx/l - .x)x~+‘+~~-~+~-~ 4(x) dx. 
- a 

Now, let a = 0, b = 1, and #(x) = ~“(1 - x)“. Then, 

m 
n+i+j+k,-+-2 

dfj zz 
s 0 

ew-4 (1 ; Z)n+g+i+jdk,_,z dz = -WC rlkj; ~1)~ (5.9) 

where 

7)(i, j; z) = z n+i+?+kp-t+l-2/( 1 + Z,n+u+i+j+kp-i+,e (5.10) 
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Thus, in this special case, we obtain 

T(t; Td = C f G C(K, Q) IC 31 P(t;17(il , is ; x)) .*. 9(t;q(i,-l ,i, ;z))(, 
k=O I( 

(5.11) 

where the summation inside the curly bracket is taken over all permutations 
(4 ,..., i,) of (I,..., p) with a plus sign if (il ,..., i,) is an even permutation and a 
minus sign if it is an odd permutation. Thus, the distribution of Tl is given by 

gl(Tl) = c i. F 4~ Q) /c f dil T i2 ; Tl> * .” * rl(kl , i, ; Td/, (5.12) 

where * in Eq. (5.12) denotes convolution. 
The distributions of the traces of the central complex bivariate beta matrix 

and the central complex bivariateF matrix were derived by Pillai and Jouris [46]. 
Using Eq. (5.7), exact percentage points of the distribution of the trace of 
the central complex multivariate beta matrix were computed by Krishnaiah and 
Schuurmann [27]; these authors [32] have also extended these tables by ap- 
proximating the above distribution with Pearson’s Type I distribution. The 
accuracy of this approximation is satisfactory for several practical situations. 
Krishnaiah and Schuurmann [32] also constructed tables for the distribution 
of the trace of the central complex multivariate F matrix by approximating this 
distribution with a suitable Pearson type distribution. Khatri [23] derived the 
moments of the traces of the complex multivariate beta matrix and the complex 
multivariate F matrix for some nonnull cases. 

6. DISTRIBUTIONS OF THE RATIOS OF THE ROOTS 

Let the joint density of the roots be given by Eq. (4.1) and let a 3 0. Making 
the transformations I, = I, and li = fi,l, for i = 1, 2 ,..., p - 1 in Eq. (4.1) and 
integrating out 2, , we obtain the following expression for the joint density of 
f 17J YxfD-1.P 

‘h(flIJ Y.. .Y fed = c 1 c C('G Q> i(f:,',I 

(6.1) 

i x IKfj, ‘+kp-r+l)l j-” fi #(l,fia)l~+l dl, . 
a i=l 

If we make the transformations fi = ii/z li for i = 1, 2,..., p - 1 and f, = x li 

683/6/r-2 
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in Eq. (4.1) and integrate out f, , we obtain the following expression for the 
joint density of fi ,..., fpel 

where f,* = 1 - Crii fi , and fi* = fi for i = 1, 2 ,..., p - I. Next, let us 
make the transformations fi,i+l = Zi+r/Zi for i = 1, 2,...,p - 1 and lr = 1, in 
Eq. (4.1) and integrate out II . Th en, we obtain the following expression for the 
joint density of fiz ,..., fnel,, 

Similarly, we can obtain the joint distributions of other ratios like fil ,..., fpl 
orfi ,..., f, . 

When I, 3 .(. > Zr are the roots of the central complex Wishart matrix, 
Krishnaiah and Schuurmann [28] derived the exact marginal distributions of the 
statistics 1,/Z, and Zi/x,“=r lj for i = I,..., p, and computed percentage points of 
these statistics. Krishnaiah and Schuurmann [30] also derived the exact distribu- 
tion of the ratio of the extreme roots of the central complex multivariate beta 
matrix and computed percentage points of this distribution. 

7. DISTRIBUTIONS OF THE LIKELIHOOD RATIO TEST STATISTICS FOR 

COMPLEX MULTIVARIATE NORMAL POPULATIONS 

Foliowing the same lines as in the real case, Goodman [lo] showed that 
the distribution of the determinant of the central complex Wishart matrix is 
the product of the distributions of the central chi-square variates. 

Giri [8] proved some optimum properties of the likelihood ratio tests for the 
hypothesis that the mean vector is equal to specified value and the hypothesis 
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of independence of one variable with a set of variables when the underlying 
distribution is complex multivariate normal. Wahba [57] and Pillai and 

Nagarsenker [47] considered the distribution of the likelihood ratio test statistic 
for sphericity of the complex multivariate normal population. Gupta [12] 
computed exact percentage points of the distribution of the determinant of the 
central complex multivariate beta matrix for some special cases. We will now 
briefly review the recent work of Krishnaiah, Lee, and Chang on the distributions 
of the likelihood ratio statistics for testing certain hypotheses. 

Let z’= (Zl’,..., Z,‘) be distributed as a complexmultivariate normal population 
with mean vector p’ = (vi’,..., pLn’) and covariance matrix z:, and let Zi be of 
orderp, x 1. Also, let E{(Z, - pi)(Zj - pi)‘} = ,Tij . In addition, let H1 , Ha, Ha, 
and Ha denote the following hypotheses: 

HI z Zcj = 0, (i #j = l,..., q), 

H, : .Z = oT,, , 

H3 : .L’ = ,Y,, , 

Ha : 2 = &, , k = ILO, 

where us is unknown, and p. and ,?Yo are known. If  we denote the likelihood ratio 
test statistics for HI , H2 , H3 , and H4 by X, , h, , h, , and X, , respectively, then 
it is known that 

A, = (e/n)s” / ACT1 In etr(--A&i) 

A4 = (e,/N)SN I A.Z;l IN etr[-.&l(A + N(Z. - po)(Z. 

where s = Cf=, pi , and n = N - 1. In the above equations, 

- 

(7-l) 

(7.2) 

(7.3) 

Po)‘H 9 (7.4) 

where A Im = ~j”=, (Zlj - Z,.)(Zmj - Z,.)‘, NZ,. = Cj”=lZ,j, and Zij denotes 
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jth independent observation on Zi . The moments of /\I , ha , Aa , and h, are also 
known to be 

ShS q7.l) ' r(n+h-j+l) 
mh) = qsn + sh) j=l I-I F(n -j+ 1) ' (7.6) 

E{A3*} = (e/h)s*fi I & Ink 11 + h& ,-Ml ikl 

x jj {T(n f  nh + 1 - i)/qz + 1 - i)}, 

(7.7) 

(7.8) 

Next, let us assume that p, = ... = p, = p and that zji = 0 (i + j = I,..., 4). 

Also, let H5 denote the following hypothesis: 

where qa* = 0, ql* = ql, qj* = xi=, qi and q** = q. We assume that Ni in- 

dependent observations are available on Zf . In addition, let NiZi, = x2, Zij and 

Afi = &, ff (Zfj - Z,.) (Zfj - Zi,)‘, 
' J=l 

for i = I,..., q. The likelihood ratio test statistic X, for H5 and the moments 
of h, are known to be as follows: 

(7.9) 

r(n, + hn, + 1 - i)) 

qn, + 1 - i) ( 

qnj* + 1 - q 
(7.10) 

x qnj* + hnj* + 1 -i) 1 ’ 
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where ni = Ni - I, and nj* = C:‘,* j-l+l i n . Next, consider the hypothesis 

Ho , where 

1 
‘xl1 = ... = z,, 

H, : v1 = ... = pLo 

t (under the assumption that p, = 1.. = p, = p and Zij = 0 for i #j). 

The likelihood ratio test statistic Aa for H, and the moments of A, are known to be 

(using the same notation as in A, , and n, = CI=, ni). 
The derivation of the likelihood ratio test statistics A1 , A, , A, , A, , A, , and /\a , 

and their moments follow easily by following the same lines as in the correspond- 
ing real cases. 

Box [4] derived an asymptotic expression for the distribution function of a 
class of statistics W (0 < W < 1) whose moments are of the form 

where K is a normalizing constant such that E{ W”> = 1 and XI=, xk = ziS1yj . 
Box gave the first few terms only in the asymptotic expression. In several 

situations, the first few terms do not give the desired degree of accuracy. Using 
Box’s method, Lee, Chang, and Krishnaiah [39] gave the terms up to the order 
of n-r5; these terms are linear combinations of the distribution functions of the 
central chi-square variates. The moments of A, , Aa , A,, and A, are of the form 
(7.11). However, the asymptotic expression of Box is complicated if we have to 
take several terms in the series to get the desired degree of accuracy. 

The distributions of certain powers of the statistics A, , A, , A, , A, , A, , and A, 
are approximated in Krishnaiah, Lee, and Chang [37], Lee, Krishnaiah, and 
Chang [38J, and Chang, Krishnaiah, and Lee [7] with Pearson’s Type I distribu- 
tion by using the first four moments of these distributions. Using these approxi- 
mations, they have also computed percentage points of the distributions of 
~,,~,,~,,~,,~,,and~,,where~i=-210gXifori=1,2 ,..., 6.Theaccuracy 
of these approximations is sufficient for practical purposes. Nagarsenker and 
Das [43] have also computed the percentage points of the distribution of A, for 
some values of the parameters by using a different method. 
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Khatri [21] derived the likelihood ratio test statistic1 for the reality of the 
covariance matrix of the complex multivariate normal population. We also can 
use other functions (like elementary symmetric functions, ratios) of the roots 
of AA;l for testing the hypothesis of the reality of the covariance matrix; here, 
A, denotes the real part of the sample SP matrix A. A certain power of the 
likelihood ratio statistic can be approximated with the Pearson’s Type I distribu- 
tion and the degree of accuracy of the approximation is sufficient for practical 
purposes. Khatri [20] also derived the moments of the likelihood ratio statistic 
for testing the hypothesis that the mean vector of a complex multivariate normal 
distribution is equal to a known vector. The distribution of this statistic is 
related to the distribution of X, when q = 2. 

8. APPLICATIONS 

Let X’(t) = (X;(t),..., X’(t)) (t = l,..., T) be a 1 x u random vector that 
is distributed as a stationary Gaussian multivariate time series with zero mean 
vector and covariance matrix R(v) = E{X(t) X’(t + v)}. Also, let the spectral 
density matrix F(w) = (l/27) C,“=-m exp( -inw) R(a) be partitioned as 

&l(W) h(w) ... fL&J) 
F,,(w) ~z“dw) ... J-P&J) F(w) = : . 

L 1 . 9 63.1) 

E&J) c&4 ... %i4 

where FiL(w) is of order pj x p, , and Xi(t) is of order pj x 1. A well-known 
estimate (e.g., see Parzen [44], Brillinger [SJ) ofF(w) is given byP(w) = (Ak(w)), 
where 

lj*(A) = zj(x) zk(x)7 (8.2) 

Z&i) = (1/(277T)l/a) i xi(t) exp(--it/\). 
t=1 

In the sequel, we assume that the weights w, are equal to 1/(2m + 1). 
It is known (see Goodman [9], Wahba [56], and Brillinger [5]) that (2m + 1) 

P(W) is approximately distributed as the central complex Wishart matrix with 
(2m + 1) degrees of freedom. 

1 A. K. Gupta (J. Statist. Camp. S&ml. 2 (1973), pp. 333-342) gave tables for the 
distribution of this statistic for a few special cases. 
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We will now discuss the problem of testing the hypothesis H,(w) where 

HI(W) : Fj,(W) = 0, (j f  k = I,..., q). 

Let si = min(p, , p, + ... + p,-r), and let cil < ... < ciSi be the eigenvalues 

of fiij , where 

The hypothesis H,(W) can be expressed as H,(w) = nkz Hrj(w), where HI,(w): 
(Fjl(w),..., Fj,j-,(w)) = 0. We can test the hypothesis H,(w) as follows using 
a conditional approach. We first test the hypothesis H,,(w). I f  H,,(w) is rejected, 
we conclude that H,(w) is rejected. If  H,,(w) is accepted, we test Hia(w) given 
H,,(W). If  Hia is rejected, we conclude that H,(w) is rejected; otherwise, we 
test H14(w) given Hrs(w). This procedure is continued until a decision is made 
about the acceptance or rejection of H,(W). Now, let Ti(cil ,..., tin.), denote a 
suitable function of cil ,..., ciSi . Then, the hypothesis Hrj given &zr HI, is 
accepted or rejected according as 

T(cjl p..-j cjs,> 5 dj , (8.4) 

forj = 2, 3,..., q, with the understanding that HI, given HI, is equivalent to H,, . 
In Eq. (8.4), the constants dj are chosen such that 

P[T(cjl >...J c,sl) < dj ; j = 2,..., q I HJ 
(8.5) 

= fi P[T(cj, )...) Cjs,) < dj I HI] = (1 - a). 
j=2 

It is known that (2m + l)p(w) is app roximately distributed as the complex 
Wishart matrix with (2m + 1) degrees of freedom and E@(U)) = (2m + l)F(w). 
Thus, when HI is true, the joint density of cjl ,..., cjs, is approximately of the 
same form as Eq. (3.12) after replacing p, nz, and q with sj , (2m + l), and 
max& , p, + ... + pi-r), respectively. When T(cj, ,..., cjS,) = cjai , the proce- 
dure discussed above is similar to the conditional approach used by Roy and 
Bargmann [52] for testing the multiple independence of several sets of variables 
when their joint distribution is real multivariate normal. The test statistics 
T(cj, ,..., cjS,) can be also chosen to be equal to JJiLr (1 - cji), cjSj/cjl, cj&~~i 
cji , elementary symmetric functions of the roots, or some other suitable functions 
When q = 2, analogous test statistics were used in the literature by various 
authors for testing the independence of two sets of variables when their joint 
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distribution is real multivariate normal. For example, test statistics analogous to 
ni:, (1 - cai) and xi:, csi were used by Wilks [60] and Bartlett [3], respectively, 
whereas test statistics analogous to czse/czI and ca&~J!r cai were considered by 
Krishnaiah and Waikar [25, 261. In (8.4), one can of course use different types 
of statistics Tj(cjl ,..., cjsl) to test Hij’s instead of using the same type of statistic 

T(cjl ,*‘.v ci,,) at each stage of conditioning. 
We will now consider the problem of testing the hypothesis H,(w) : F,,(W) = 

... = F&w), when2 &(v) = Q(a) (i #j = I,..., Q). Let Yr(t) = {Xi(t) + ...+ 
&(t)}/q, and Y,(t) = Xi(t) - Yi(t) for i = 2 ,..., 4. Then, Y’(t) = (Yr’(t) ,..., 
YQ’(t)) is a Gaussian stationary multiple time series with covariance matrix 
R*(v). The problem of testing the hypothesis H,(w) is equivalent to testing 
the hypothesis of F,*,(w) = 0, where 

is the spectral density matrix of the time series {Y(t)}, and F,*,(w) is the spectral 
density matrix of the time series {Y,(t)}. The hypothesis that F,*,(w) = 0 can 
be tested by using the method described before. The method described above for 
testing Ha(w) is analogous to the method used by Krishnaiah [36] for testing 
the equality of the diagonal blocks of the covariance matrix of the multivariate 
normal population when the off-diagonal blocks are equal. 

Next, consider the problem of testing the hypothesis Hs(w) : F(w) = Fe(w), 

where the matrix F,,(W) is completely known. Let C,(W) > ~1. > Q(W) be the 

latent roots of E(w)&‘(w), and let T(c,(w),..., c,(w)) be a suitable function of 
these roots. Also, let h,(w) 3 ... >, &(w) be the latent roots of fl(w)F;r(w). 
Then the hypothesis Ha(w) when tested against T(A,(w),..., A,(w)) > T(l,..., I) 
is accepted or rejected accordingly as 

W,(w),..., C,(W)) 5 dsu > 
where 

W(~W),..., c,(w)) G 4, I f&(w)1 = (1 - 4 @4 

We can similarly propose a test procedure against two sided alternatives. When 
E&(w) is true, E(w)Fil(~) is app roximately distributed as the central complex 
Wishart matrix with (2~2 + 1) degrees of freedom. Hence, the distributions 
of some of the statistics T(c,(w),..., C,(W)) can be evaluated by using the results 

discussed in this paper. Some possible choices of T(c,(w), . . ..c~(w)). are cp(w), 
Cj”=, Q(W), C,(W) - cl(w), max,(ci+, - cJ, cP - C%, ci/p, or a statistic analogous 
to A, in the preceding section. Another procedure for testing H&w) against the 
alternative that F(w) # F,,(W) is to accept Ha(w) if 

40 < cl(w) < c,(w) < dam 

* Here &(w) = E[X,(t)X,‘(t + v)]. 
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and reject it otherwise, where 

The hypothesis Ha(w) :.F(w) = a2(w)lD can be tested by using various ratios 
of the roots of E(w); for a review of these methods, the reader is referred to 
Krishnaiah and Schuurmann [28]. Of course, one can test H4(w) by using 

I &J) F~‘(w)l/(tr~(w)~l(w)/s)s as a test statistic. The distribution problems 

associated with this statistic were discussed in the preceding section. 
Now, let {Xi(t)},..., (X(t)} be q independently distributed stationary, Gaussian 

p-variate time series with spectral density matrices pi(w),..., F,(w). Also, let the 
record of ith time series be Ti . In addition, let the sample estimate pi(w) of 

Fi(w) be defined in the same way as Eq. (8.2) by taking the averages of (2m, + 1) 

periodograms. In addition, let cijp(w) > ... > cm(w) be the roots ofpi(w)fi;‘(w), 

and let hiiz, 3 ... > hjjl be the roots ofF,(w)F;r(w). 
Also, let #(hjil ,..., &,) be a suitable function of Xii1 ,..., Xijz, and $( l,..., 1) = d. 

We will now discuss procedures for testing the hypothesis H&(w) : F,(w) = **. = 
F,(W). The hypothesis H&(W) when tested against & [~,@~,~+i,r(w),..., 
hi,i+,,,(w)) > d] is accepted if 

for i = I,..., q - I, and rejected otherwise, where c, is chosen such that 

~[$@i*j+l,l(w),.*.~ Ci.i,l.&J)) -G ca ; i = l,..., P - 1 I f&(w)1 = (1 - a). (8.8) 

When H5(w) is true, $‘,(w)&‘(w) is distributed as the central complex multi- 
variateF matrix with E(fi,) = E(Ej(w)). Th us, we can use Bonferroni’s inequality 
to compute bounds on the values of 01 in Eq. (8.8). Similarly, we can propose 
procedures against the alternatives (JfIi [~,&~+i,i(w),..., &+,,,(w)) < d] and 

U::: [Wi.i+l.l(w),-., 4 i+l.&)) i 4 W e a so 1 
testing H5(w) against (j,“r: [I/(& ,... 

can propose procedures for 
, Ai,,) # d] (or one-sided alternatives) by 

using +(cipl ,..., cc,) (i = l,..., q - 1) 

U&j [#(xijl T**.Y 

as test statistics. I f  we test H5(w) against 
hijJ # d] (or one-sided alternatives), we use #(ciil ,..., cii,) 

(; <i = l,..., q) as test statistics. The hypothesis H&w) can be tested against 

Uzl: [F&J f &+&~>l, UfZ: [F&J) f F&)1, and UFcj [F&J) # F,(w)] by 
using procedures analogous to those considered by Krishnaiah [34] and 
Krishnaiah and Pathak [24] for testing the equality of the covariance matrices 
of real multivariate normal populations. Procedures analogous to those considered 
for testing H,(w) can be also used for testing the hypothesis F(w,) = ... = F(w%) 

against different alternatives when wr ,..., 
case, i+(w,),..., P( 

wlc are widely separated, since, in this 
wk are distributed independently. ) 

Next, consider the problem of testing the hypothesis 

&(w) : F(w) = G,(w) 0 Q,(w) + ... + G,(w) 0 Q,(w), 
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where Gr(w),..., G,(w) are known matrices, Q,(w),..., Q,(U) are unknown 
matrices, and @ denotes the Kronecker product. The hypothesis E&(W) can be 
tested by using the procedures analogous to those considered by Krishnaiah 
and Lee [33] for testing the linear structures of the covariance matrices of real 
multivariate normal populations. 

The techniques used above in the area of the inference on multiple time series 
are also useful in the area of the inference on the spectral density matrices of 
multivariate point processes. 

We will now discuss some procedures for testing the hypothesis on the 
adequacy of a given number of discriminators to discriminate between complex 
multivariate normal populations. 

Let the rows of Zi = (.Q,): mi x p (; = I,..., k) be distributed independently 
as complex multivariate normal with mean vector pi’ and covariance matrix Z. 
Also, we assume that 2, ,..., 2, are distributed independently. The between 
group sums of squares and cross-products (SP) matrix and the within group SP 
matrix are respectively given by S, = (slUV) and S, = (ssUV), where 

w%.u = X7:1 ziiU , mz.., = Cf=, Cyd, xiiU , and m = xt=, mi . We know that 
S, is distributed as the noncentral complex Wishart matrix with k - 1 d.f. 
and E(SJk - 1) = Z + (l/(k - 1)) YY’, where Y = (l.~r - l.~. ,..., pk - p.) and 
kp = & pj . Also, S, is distributed as the central complex Wishart matrix 
with m - k degrees of freedom. In the real case, likelihood ratio test for reducing 
the dimensionality was discussed in the literature (see Rao [51]). In the complex 
case, the analogous test was discussed in Young [62]. Alternative procedures for 
the reduction of dimensionality are discussed below. 

Let I, > ... > 1r denote the eigenvalues of S,S,l and let &, > ... 2 h, be 
the eigenvalues of Q = (1 /(k - 1)) VV’C-l. Let Hi : & = 0, and Ai : Xi > 0. 

Then, the nested hypotheses HI ,.. ., H, can be tested simultaneously as follows. 

We accept or reject Hi against Ai accordingly as 

li 5 ca , 
where 

P[Z, < c, / H,] = (1 - a). (8.9) 

The evaluation of the distribution of I, in the central and noncentral cases was 
discussed in Section 4. Sometimes, the experimenter knows in advance that 
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hj > 0 forj = i + I,..., p. Then, he has to test HI ,..., H, only. In this case, the 

critical value c, is chosen such that 

P[Z; < c, 1 Hi] = (1 - a). (8.10) 

But the distribution of li , under Hi , involves Xi+r ,..., h, as nuisance parameters. 
Thus, it would be of interest to obtain bounds (free from nuisance parameters) 
on the probability integral in Eq. (8.10). 

Next, let Hij : hi = Xi, Aii : hi > hj , and fij = li/li for i > j. Then, the 
hypotheses Hij (i > j) can be tested simultaneously against Aij as follows. 
We accept or reject H.ij accordingly as 

where 

Wp,<4IH,J =(I-4. (8.11) 

The evaluation of the distribution of fpl was discussed in Section 6. When 
H,, is true, the probability integral in (8.11) involves /\r as a nuisance parameter. 
Thus, it would be of interest to obtain a bound (free from nuisance parameters) 

on the probability integral in Eq. (8.11). When p > K - 1, then X, = ... = 
&+r = 0, and so the probability integral in (8.11) does not involve nuisance 
parameters. Also, in some practical situations, h, is not significantly different 
from zero and so it may be replaced with zero. 

The procedures discussed above are proposed in the same spirit as the 
procedures discussed in Krishnaiah and Waikar [25, 261 for the analogous real 
cases. 

Next, consider the problem of testing the hypotheses H,, ,..., Hue (t < q < p) 
simultaneously against the alternatives A,, ,..., A,, , where Hi, : hj < c zfcl Xi 
and Aj, : hj > c Cf=r Xi and c is a known constant. In this case, we accept or 
reject Hj, (j = t,..., q) accordingIy as 

where 

P 1,/c f  l,j < d, j H,, = (1 - CL). 
j=l 1 (8.12) 

Similarly, we can test the hypothesis that xi=, hi < c ~~=, Xi by using 
xf=, 1Jc CF=, li as a test statistic. The probability integrals, in both of the above 
cases, are not only complicated, but would involve nuisance parameters. Hence, 
it would be of interest to obtain bounds (free from nuisance parameters) for 
these probability integrals. Similar tests can be used for drawing the inference 
on the eigenvalues of the spectral density matrix. 
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When Z is known, we can use the above procedure after replacing S.J(m - k) 
with 2. 

Procedures similar to those discussed above for drawing inference on the 
eigenvalues of 62 may be used for drawing inference on the canonical correlations 
when the two sets of variables are jointly distributed as a complex multivariate 
normal. 

In the methods discussed above for drawing inference on the spectral density 
matrices of the multiple time series, we may, of course, use alternative estimates 
P(w) instead of using F(W) f  or estimating F(w). If  these estimates P(U) are 
approximately distributed as complex Wishart matrices, the distributions 
discussed in this paper are useful in computing the critical values. For a discus- 
sion of the alternative estimates of F(w), th e reader is referred to Hannan [13] 
and Brillinger [5]. 

Next, let us consider a matrix Z* and let S* be a suitable estimate of 2’“. 
For example, in the area of principal component analysis, we may treat Z* and S* 
as the population and sample covariance matrices, respectively. Similarly, in 
the area of canonical correlation analysis, we may treat .Z* and S* as the popu- 
lation canonical correlation matrix and sample canonical correlation matrix, 
respectively. Now, let 8, > ... > 0i be the eigenvalues of S*, whereas h, 2 
..* > h, denote the eigenvalues of .Z:*. In some situations, the experimenter 
knows in advance that the hi’s differ from each other. In these situations, he may 
be interested in simultaneous testing of the hypotheses Hij against Aij (; >i), 
where Hij : hi < dhj (d > 1) and Aij : hi > dhj . In this case, we accept or 
reject Hij accordingly as 

where 

P [Z& < dc,, ) h, < dX,] = (1 - a). (8.13) 

A bound on the critical value c, may be obtained by constructing a bound (free 
from nuisance parameters) on the left side of Eq. (8.13) and equating it to 
(I - a). One may similarly be interested in testing the hypotheses Hij : 
hi - hj < d, (d > 0) against the alternatives A, : Xi - Xj > d. In this case, we 
accept or reject H<j against Aij accordingly as 

where 

(Zi - Zj - d) 5 c, , 

P[Z, - c$ < d + c, / h, - X, < d] = (1 - a). (8.14) 

Here also, one may attempt to get a bound on c, by constructing a lower bound 
(free from nuisance parameters )on the left side of Eq. (8.14). 
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We will now give the definitions of some complex multivariate processes. 
Let (Xj(t)} (i = l,..., n) denote n independent and identically distributed 

stationary p-variate continuous parameter (--co < t < cc) complex Gaussian 
stochastic process. Also, let s(t) = X(t) X’(t), where X(t) = [X1(t),..., X,(t)]. 
The Hermitian matrix valued stochastic process s(t), -co < t < 00, obtained 
by varying t is known (see Goodmann and Dubman [1 11) to be as complex 
Wishart process. Now, let &(t) = X(t) AX’(t) and &(t) = X(t) X’(t)& where 
A : n ‘X n and B : p x p are symmetric matrices. The processes {s,(t)} and 
(S.Jt)), --co < t < co, obtained by varying the time t are generalizations of 
complex Wishart process. Next, let us consider a complex Wishart process 
{5’s(t)] (-cc < t < co) obtained by varying the time t. Then, it would be of 
interest to investigate the properties of the processes (s,(t) S;‘(t)), 

6%““(w&) &?‘“(t)l, {(So(t) + w-1’2w)(~o(~) + w>>-““I, {W)(~o(t) + 
s,(t))-l}, (--CO < t < co) obtained by varying the time t. Similarly, we can 
define the processes obtained by replacing Sr(t) with S2(t) in the above processes. 
It is also of interest to study the above processes for the discrete cases. 

9. COMMENTS'ON REAL MULTIVARIATE DISTRIBUTIONS 

The joint density of the eigenvalues 6, > ... > ~9, of a wide class of real 
random matrices in certain noncentral cases are of the form 

(9.1) 

where ~<0~<... < 8, < b, @ = diag.(0, ,..., 0,), yK(@) is a symmetric 
function of 0, ,..., Ba , and a(K) depends upon the population parameters and 
the partition K. The joint density of the eigenvalues of the analogous class of 
complex random matrices is given by (4.1). This joint density is a symmetric 
function of the roots, whereas the corresponding density in the real case given 
by Eq. (9.1) is not a symmetric function of the roots. Thus, the distribution 
problems associated with the individual roots or certain functions of the roots 
in the real cases are more complicated than the corresponding problems in the 
complex cases. Krishnaiah and Chattopadhyay [35] derived the marginal dis- 
tributions of the roots 8, ,..., 0, (I < Y < s < p), moments of the elementary 
symmetric functions of the above roots, and the Laplace transformation of 
C%y=r oi . They have also discussed the evaluation of the distribution of xi:, Bi 
when h(0) is of the form &(I - 0p (0 < 6 < 1) or @( 1 + 8)--(m+r+p+1) 
(0 < 0 < co). A review of the literature on real multivariate distributions will 
be given in a separate paper. 
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