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ABSTRACT

Let (A, w) be a finite dimensional Bernstein algebra and N the kernel of w. We
study the algebras where dim N2 is 1. The algebras fall into two general classes. For the
first of these classes we give the multiplication tables for the complete set of nonisomor-
phic algebras. For the second of these classes we give the multiplication tables for what
we call “complete algebras.” We show that any algebra of the second class can be
embedded in a complete algebra. The multiplication in the complete algebras is easy to
describe. The Bernstein algebras of the second class are then characterized as subalge-
bras of the complete algebras. For Jordan Bernstein algebras satisfying dim N2 = 1 we
give the complete classification.

1. INTRODUCTION

A Bernstein algebra is a pair (A, w) consisting of a commutative nonasso-
ciative algebra A over a field K and a nonzero homomorphism of algebras

*This paper was written while the second-named author held a grant from CNPq of
Brazil and was visiting Iowa State University of a grant of FAPESP,
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w: A— K such that
x2x2 = w(x)2x2 (forall xeA). (1)

if (A ;) and (A, wy) are both Bernstein algebras, then w; = w, (see [3,
Lemma iJ), so the homomorphism w is uniquely determined. These algebras
were introduced by Holgate [4] in connection with the problem, proposed by
Bernstein, of classifying populations that achieve equilibrium at the second
generation (see Lyubich [2}).

Let N denote the kernel of w. In [7] Costa studied the problem of
classifying finite dimensional Bernstein algebras such that N2 is one dimen-
sional. In this case, N2 = Kc and the multiplication in N is given by xy =
b(x, y)c, where b is a symmetric bilinear form. When the Witt index of b is
zero a complete classification has been obtained.

In this paper we show that the classification of these algebras splits into
two parts according as N2 € Z or N2 € U. The first is completely classified.
The second is partially classified by giving the basis multiplication for com-
plete algebras and proving every such algebra is a subalgebra of a complete
algebra. Furthermore, we completely classify the algebras that have the
additional property of being Jordan.

The following algebra with parameters s,d,k,t (0<s, 0<d, 0<k,
0<tk+t<s)and element c is called a complete algebra on the parame-
ters s, d, k, t, and c.

Take a vector space V of dimension 2s + d + 1 over a field K. Pick a
basis of V: e, u;, z; (1 i< s+ d, 1 <j < s). Pick ¢ in the subspace spanned
by the u,. The nonzero products of V are

e®=e¢, euw,=3u (1<i<s+d),

2_1}¢, 1€i<k,
% {—c, k<i<k+t. (2)

The vector space V with this product becomes a Bernstein algebra of type
(s+d+1,s). f U is the span of the u; and Z is the span of the z;, then
Ke ® U @ Z gives the idempotent decomposition of the algebra relative to the
idempotent e. Notice that N2 = Kc € U.

For the definition and elementary structure theorems, K may be any field
of characteristic # 2. Because our proofs require orthogonally diagonalizing
symmetric matrices over the field K, in our theorems we restrict K to be the
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real numbers and indicate this by calling the field R. We will consider only
finite dimensional Bernstein algebras. We will reserve the letter N to repre-
sent the kerrel of the homomorphism . N is an ideal of A.

2. CHARACTERIZATION

Let (A w) be a Bernstein algebra If yeA and o(y)#0, let x =
[@(y)] " 'y. Now w(x) =1, so x2# 0, and by the identity {1} x is an
idempotent. We choose some idempotent ¢ and write A as a vector space
direct sum A = Ke ® N. If R, denotes right multiplication by e acting on N,
we have 2RZ = R,. This gives the decomposition A = Ke ® U @ Z, where U
is the kernel of 2R, — I and Z the kernel of R,. The subspaces U and Z
satisfy

vZzcuU, z:cU, U*cZ (3)

All these facts are obtained from the linearized form of the identity (1). The

above decomposition depends on the choice of the idempotent. However, it is

known that the dimension of U and consequently the dimension of Z are

invariants of A. The pair (dim U + 1,dim Z) is called the type of A. See [5].
We now assume that N2 = Kc. From (3) it follows that

UZCUNKe, Z:CUNKe, U2cZnNKc

There are two possibilities. If U2 # 0, then UZ = Z2 = 0 and the multiplica-
tion table is known when the products u,u; = bj;c are specified for a basis
Uys...,u, of U. In this case ceZ. If U2 =0, then the multiplication table
requires the products z,u; = p;;c and z;z; = Jc for some basis u,,...,u, of
Uand 2,,..., 2, of Z. In this case ce U and ¢

TueoreM 1. Let A= [Re ® U@ Z be a real Bernstein algebra of type
(r + 1, s) such that N® = Rc. Then one of the following assertions holds:

(i) A has a basis e,u;, 2; (1 <i < r, 1 <j<s), and the nonzero products
are

e=e, ew=1u, (1<igr),
uz--lc (1<i<k), (forsome k20, t=0 k+i<r)
- E] ’ =
: ~¢ (k<igk+t) ~
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(i) A is a subalgebra of a complete (Bernstein) algebra with parameters s, d,
k, t, and c.

Proof. If U2 # 0 then UZ = Z2 = 0. Let u,,..., 4, be a basis of U, and
u,u; = by;c. The multiplication table is given by the matrix B = (b;;). This
matrix represents a symmetric bilinear form on U, and by a change of basis it
can be reduced to

Ly 1

—Itxt ]’
lel

where k + t + | = r. The integers k, ¢, ! are unique by Theorem 5 of [1, p.
296j. This is the multiplication table given in (4).

Now assume U2 =0. Pick basis U= {u,,...,u,} of U and Z =
{21,..., 254 of Z. We can give the multiplication table for this algebra by
glvmg the matrix [P | Q] with submatrices P and Q. P is s X r, Qis sXs,

= p;¢ and z;z; = q;c. {f we change the basis of U by U = RU’ and
change the basis of Z by Z = SZ', the multiplication table changes to
[S'PR | 5'QS). Suppose that P is invertible. Choosing S in such a way that
S!QS = J, where

Ikxk
J= ~ 1L (k+t+1=35),
O1xi

and setting R = (S'P)~, we obtain the multiplication table [I,,., | J]. This is
the multiplication table for a complete algebra with parameters s, d, k, t and
element c. The parameter d is zero. If P is not invertible, then we proceed in
two steps:

1. We augment P with enough columns until we obtain a matrix P*

with rank s. Now [P* | Q] gives the multiplication of a complete algebra
which has A as a subalgebra.

2. Since P* has rank s, we can change the basis as in the previous case
to obtain

[sP*R| s'08] = [Lxs Oua 1J].

This is the multiplication table for a complete algebra with parameters
s, d, k, t and element c.
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The multiplication of the complete algebra is determined by the integers
s,d, k, t and the element c. These parameters are determined by U and Z. The
value of s is the dimension of Z; k+ ¢ and k — ¢ are the rank and the
signature of the symmetric bilinear form which gives the multiplication for Z.
The subspace {u € U: uZ = 0} depends only on N, and its dimension is d. The
equality N2 = Rc determines the element ¢ up to a scalar multiple. Positive
multiples leads to exactly the same values of k and ¢, while negative multiples
lead to complete algebras with k and ¢ intexrchanged. To specify one multiple
over another, we could ask that ¢ be chosen to maximize the signature.

The complete algebra is determined by K¢ @ U @ Z. However, complete
algebras defined by different multiplication tables can still be isomorphic. The
algebras given by the following two tables_are isomorphic:

Uy Ug Iy 29

. Zite Olc O _
A: 22[0 clo C] C'—ul"‘uz,
u} us z} zp
zile! Ofc 0 ’
’, "= V2u,.
A zé[o c'lo —c’] ¢ Uz

The matrix for an isomorphism from N’ to N relative to {u}, u3, 2], 23} and
{u), us, 2, 2o} is

11 0 -1
1111 o -1
2l oo 1 1}
00 -1 1

The idempotent ¢’ is mapped to the idempotent e + 1(u; + u,).

Our proof shows how to embed the algebra into a complete algebra by
simply enlarging the space U. If we start with a complete algebra Ke @ U* @ Z
and let U be any subspace of U#* containing c, then the subspace Ke @ U & Z
will also be a subalgebra. The set of all Bernstein algebras satisfying N2 = Rc
with ceU can be generated in this way. The further question of which
subspaces of U* lead to isomorphic algebras seems to be a very difficult one
and is related to the classical problems of bilinear and quadratic forms.
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3. THE JORDAN PROPERTY

A Jordan algebra is a commutative nonassociative algebra that satisfies the

identity
(x%y)x = 22(yx).

As shown in [8], a Bernstein algebra A = Ke ® U & Z is a Jordan algebra if
and only if

Z2=0, (uz)z=0 forany ueU, z€Z.

Now assume that N2 = Kc. When U2 =& 0 the algebya is always Jordan. In the
case when U? = 0, the algebra is Jordun if and only if Z2 = 0 and ¢N = 0.

THEOREM 2. 'Let A be a real Bernstein algebra of type (r + 1, 5) such that
N2 =Rc. Then A is a Jordan algebra if and only if one of the following
statements is true: '

(i) A is the algebra given in part (i) of Theorem 1.
(ii) A has a basis e,u;,z; (1 <i<r, 1<j<s, with u,=c), and the
nonzero products are

uz;=u,=c (1<i<k forsomek<randk<s). (5)

Proof. The algebras given in (i) and (ii) are clearly Bernstein Jordan
algebras. Conversely, assume that A is Jordan. As in Theorem 1, we have two
cases. If U® # 0, then A is necessarily the algebra given in part (i) of Theorem
1. Now assume that U2 = 0. We know that ce U, ¢cN = 0, and Z% = 0. The
only products left to specify are ZU. Let U = {u,,...,u,} be abasis of U with
u,=c, and Z = {z,..., z,} be a basis of Z. The multiplication is given by
z,u; = p;c. If we change the basis U = RU’ and Z = SZ’, the new table is
given by the matrix P’ = S’PR where P = (p,;). Then rank P = rank P’ = k,
and we can choose S and R such that

Pr=[1k><f O]'
o o

This is the table for the algebra in (5).
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