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a b s t r a c t

How does the brain control its sensory plasticity using performance feedback? We examined this ques-
tion using various types of fake feedback in perceptual learning paradigm. We demonstrated that fake
feedback indicating a larger performance improvement facilitated learning compared with genuine
feedback. Variance of the fake feedback modulated learning as well, suggesting that feedback uncertainty
can be internally evaluated. These results were explained by a computational model which controlled the
learning rate of the visual system based on Bayesian estimation of performance gradient incorporating an
optimistic bias. Our findings suggest that sensory plasticity might be controlled by high-level cognitive
processes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction 2006). These findings suggest that high-level cognitive processes
Sensitivity in various modalities, such as vision, improves after
extensive training (Fahle, 2005; Gilbert, 1994; Karmarkar & Dan,
2006; Seitz & Dinse, 2007). This ‘perceptual learning’ enables us
to adapt to new sensory environments. Psychophysical studies of
perceptual learning in vision have shown that improvements are
often specific to stimulus attributes used in training (e.g., orienta-
tion, spatial frequency, and motion direction; Karni & Sagi, 1993;
Watanabe et al., 2002). This finding suggests that the neural locus
of perceptual learning may lie in the early stages of the visual pro-
cessing (i.e., the visual cortex). Indeed, neuroimaging studies have
provided evidence in support of this proposition (Mukai et al.,
2007; Schoups, Vogels, Qian, & Orban, 2001; Yotsumoto, Watanabe,
& Sasaki, 2008).

Although the neural locus of perceptual learning could be found
in the visual cortex, it has been reported that the learning can be
modulated by some cognitive factors. These factors include selec-
tive attention (Karni & Sagi, 1993; Li, Piech, & Gilbert, 2004), suc-
cessful recognition of a concurrent task target (Seitz, Lefebvre,
Watanabe, & Jolicoeur, 2005), and performance feedback (Herzog
& Fahle, 1997; Seitz, Nanez, Holloway, Tsushima, & Watanabe,
ll rights reserved.
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as well as low-level sensory inputs can impact on perceptual learn-
ing (Seitz & Watanabe, 2005; Yotsumoto & Watanabe, 2008).

1.1. Role of performance feedback in perceptual learning

We constantly adapt to new environments, and an appropriate
learning strategy (e.g., controlling learning rate) can facilitate sen-
sory adaptation. Utilizing performance feedback is one way of eval-
uating whether a current learning strategy is appropriate. Herzog
and Fahle proposed a computational model that describes how
the performance feedback guides perceptual learning (Herzog &
Fahle, 1997; Herzog & Fahle, 1998). In their model, the perfor-
mance feedback is utilized as a signal to control unsupervised
learning in the visual system, not as a direct teaching signal for a
task. A similar idea has been proposed in theoretical studies of
learning using neural networks (Bishop, 1995; Vogl, Mangis, Rigler,
Zink, & Alkon, 1988). According to this theory, the speed of weight
update (learning rate) is proportional to the recent performance
gradient. That is, the learning rate is set large while performance
keeps improving. Information regarding the performance gradient
is particularly useful for the efficient control of learning rates in
new environments (Bishop, 1995).

Although using performance gradient might be an efficient way
to control sensory plasticity, the question of how it is obtained re-
mains unanswered. Performance feedback inherently contains
uncertainty because performance fluctuates over time, and perfor-
mance is measured over a limited number of trials. Thus, the
overall performance gradient cannot be precisely calculated by
observing performance feedback alone. Rather, performance feed-
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ig. 1. Experimental design. (a) Same/different task for two gratings. Subjects were
sked to report whether two gratings were the same or different. (b) Time-course of
ean accuracy across 12 subjects in genuine-feedback condition (black) with a

egression line (red) (gray shade reflects s.e.). (c) Time-courses of mean feedback
cross 12 subjects used in fake-feedback conditions (colored shades reflect s.e.).
ach color represents each different condition.
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back can only be used to estimate the performance gradient. To
deal with the uncertainty inherent in performance feedback, it is
necessary to extend existing models in a probabilistic manner.

1.2. Cognitive bias on performance feedback

Performance feedback acts as a teaching signal for a task and
can also affect the learner’s emotional status (O’ Leary & O’ Leary,
1977). Giving accurate feedback is not always the most effective
way to maximize a person’s learning. Very complex interactions
exist between performance feedback and learners’ psychological
states (Kluger & DeNishi, 1996; Schunk, Pintrich, & Meece, 2008).
Studies in educational psychology have demonstrated that people
exhibit cognitive biases in response to performance feedback. For
example, people tend to undervalue performance feedback if it is
worse than they expected, showing an optimistic ‘self-serving bias’
(Alloy & Abramson, 1979; Sedikides & Campbell, 1998). In addition,
a neuroimaging study showed that cortical responses to positive
and negative performance feedback are different even if the infor-
mation contained in the feedback is identical (van Duijvenvoorde,
Zanolie, Rombouts, Raijmakers, & Crone, 2008). This cognitive bias
in response to performance feedback might affect perceptual learn-
ing processes.

1.3. Objectives

To investigate the role of performance feedback in perceptual
learning and the mechanisms underlying it, we generated fake
feedback and tested whether its manipulation could modulate per-
ceptual learning. Several previous studies found no effect of fake
feedback in perceptual learning (Herzog, Ewald, Hermens, & Fahle,
2006; Herzog & Fahle, 1997, 1999). However, in these studies, the
gradient of the fake performance feedback was not manipulated. If
the brain controls sensory plasticity based on a recent performance
gradient estimated from observed performance feedback, it is pos-
sible that manipulating the gradient of the predefined fake feed-
back could affect perceptual learning. In addition, we developed
a computational model of feedback effects on perceptual learning.
Simulation results were compared with behavioral results to verify
the model.

In this study, we show that the fake performance feedback actu-
ally modulates perceptual learning with a same/different task
using two complex gratings. In psychophysical experiments, the
fake feedback indicating a larger performance improvement facili-
tated learning compared with genuine feedback. Modulating the
variance of the fake feedback also affected learning. On the other
hand, the fake feedback generated based on smaller performance
gradient had no effect on learning compared with the genuine
feedback. All subjects reported that they were not aware of the
fake feedback. This implies that the learning was implicitly con-
trolled by the fake feedback. A computational model that we pro-
posed successfully supported this idea. The model controls a
learning rate of a visual system based on two processes: Bayesian
estimation of performance gradient and optimistic bias against
worse feedback compared to expectation. Our findings suggest that
top–down control signals may modulate sensory plasticity in the
brain, and that perceptual learning can be improved by manipulat-
ing performance feedback.

2. Psychophysical experiment

2.1. Methods

2.1.1. Subjects
One hundred and seventeen naive subjects, aged 18–29 years,

participated in the experiment, which was approved by the ATR
Human Subjects Review Committee. All subjects gave informed
consent and had normal or corrected-to-normal visual acuity. Each
subject was randomly assigned to one of nine conditions: genuine-
feedback, no-feedback, self-rating, and six fake-feedback condi-
tions. The data sets of nine subjects were omitted from subsequent
analysis because their mean accuracy was not significantly better
than chance (0.5; one-sample t-test, P > 0.05). In consequence, 12
subjects participated in each condition.

2.1.2. Stimulus and procedure
We used a same/different task using complex gratings devel-

oped by Fiorentini and Berardi (1980) and Fiorentini and Berardi
(1981) (Fig. 1a). Previous studies using these stimuli have shown
that performance improvements were specific to the orientation
and spatial location of the stimuli (Fiorentini & Berardi, 1980,
1981), and that neural modulations can be observed in early visual
cortex during learning (Mukai et al., 2007). Subjects maintained
central fixation (a white point [20 cd m�2] on a 1� diameter black
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circle [0.2 cd m�2]) throughout each block of trials. The back-
ground color was gray and luminance was 10 cd m�2. After the
presentation of two gratings, subjects were asked to report
whether the gratings were the same or different.

Two types of complex gratings were used. They consisted of the
sum of two sinusoids of spatial frequency f and 3f, and contrast c1

and c2. Two grating types differed only in the contrast c2. The con-
trast pattern of the grating s at each retinal position (x,y) was cal-
culated by

sðx; yÞ ¼ c1 sinðfx cos hþ fy sin hÞ þ c2 sinð3fx cos hþ 3fy sin hÞ;

where f represents spatial frequency (0.5 cycles/deg), and h repre-
sents spatial orientation. The contrast c1 was always 0.4 while c2

was randomly chosen from 0.13 or 0.20 for each trial. These con-
trasts were kept constant across trials/subjects and were predeter-
mined using subjects who did not participate in the main
experiments to yield an accuracy score of approximately 0.65 with-
out learning. Horizontal gratings (h = 0) were presented to half of
the subjects, and vertical gratings (h = p/2) were presented to the
other half. The stimuli were generated using VSG2/5 graphics board
(Cambridge Research Systems, Rochester, UK).

Before the experiment, each subject received detailed instruc-
tions about the task procedure and a few tens of practice trials.
To ensure the practice did not affect learning in the subsequent
main experiment, gratings that consisted of only one sine wave
were used for the practices. It has previously been shown that
exposure to this type of grating for this number of trials did not
lead to learning (Fiorentini & Berardi, 1981), so no learning transfer
to the main experiment would be expected. The main experiment
comprised 30 blocks of trials and each block contained 40 trials.
The experiment lasted roughly 1 h including an intermission (at
least 15 s) between blocks. After each block, performance feedback
informing subjects about the accuracy of the previous 40 trials was
presented on a computer display.

2.1.3. Defining a basic learning tendency
In the genuine-feedback condition, subjects received genuine

feedback (actual accuracy) after each block of trials. We defined a
basic learning regression line for the time-course of the mean accu-
racy across subjects in this condition as a basic learning tendency.
A basic learning regression line was obtained with a gradient
a = 0.0067 and an intercept b = 0.64 (Fig. 1b). Fake feedback for
the other group of subjects was generated on the basis of this
regression line.

2.1.4. Fake-feedback conditions
Fake feedback was generated by manipulating the basic learn-

ing regression line obtained in the genuine-feedback condition,
to produce five fake feedback conditions that were defined by three
levels of gradient (same, larger, and smaller) and two levels of
noise variance (same and smaller; Fig. 1c). Performance improve-
ment in the same/different task was measured under each condi-
tion. Note that the same-gradient condition was tested with only
the same noise variance. The fake feedback was generated with a
gradient depending on the condition and the intercept b (0.64)
with additional Gaussian noise with variance r2. For the same-gra-
dient condition, the gradient was the same (a = 0.0067, Fig. 1c; a
green line) as the basic learning regression line. For the larger-gra-
dient conditions, the gradient was set larger (a = 0.0097, Fig. 1c;
reddish lines), and for the smaller-gradient conditions, the gradient
was set smaller (a = 0.0037, Fig. 1c; bluish lines) compared with
the basic learning regression line. We also manipulated the noise
variance (uncertainty). For the same-variance conditions, the noise
variance was equalized to the mean squared error between indi-
vidual accuracy time-course and its regression line across sub-
jects/blocks in the genuine-feedback condition (r2 = 0.0065). For
the smaller-variance conditions, the noise variance was halved
(r2 = 0.0065/2). Across blocks, no significant autocorrelation was
observed in the time-course of the squared error. To verify a pro-
posed computational model, we also conducted a negative-gradi-
ent with same-variance condition (a = �0.0067, b = 0.84,
r2 = 0.0065). Thus, with the addition of this negative-gradient con-
dition, there were six fake-feedback conditions in total in the psy-
chophysical experiments. In each fake-feedback condition, subjects
received the predefined fake feedback regardless of their actual
task performance (accuracies).

2.1.5. No-feedback conditions
In the no-feedback condition, subjects did not receive any feed-

back after each block. In the self-rating condition, subjects did not
receive any feedback and were asked to guess their accuracies after
each block using two buttons to adjust a number (ranging from 0%
to 100%, step by 2.5%) presented at the center of a display.

2.1.6. Calculating sensitivity in the same/different task
In the same/different task, accuracy could vary based on sub-

jects’ perceptual sensitivity d0 and a decision criterion k. Because
perceptual learning is regarded as a change in perceptual sensitiv-
ity rather than a change in the decision criterion (Karmarkar & Dan,
2006; Seitz & Dinse, 2007), we examined statistics of d0 within and
between the experimental conditions.

Signal detection theory (SDT) enables us to calculate the percep-
tual sensitivity d0 and the decision criterion k separately when sub-
jects attempt to detect a signal in a noisy environment (Wickens,
2001). SDT assumes that the strength of sensory and cognitive in-
puts is a continuous variable, and generates an internal distribution
of sensory responses. For the simplest case (e.g., a detection task),
there are two distributions: one for noise and one for signal with
noise. The hypothetical internal response distributions could follow
a Gaussian distribution with means of 0 (noise) and d0 (signal with
noise), and equal variances. A subject could set the solution to di-
vide the strength axis into two regions (e.g., ‘‘yes” vs. ‘‘no” detected)
with a criterion k. Errors arise when these two distributions overlap.
This process corresponds to a log posterior ratio test when all stim-
uli are presented in equal probability.

In the case of the current same/different task, an sensory re-
sponse could be replaced with a difference between two sensory
responses evoked by two observations according to the ‘differenc-
ing model’ (Noreen, 1981). Underlying distributions in this model
are three Gaussian distributions; the same distribution for <g1

g1> and <g2 g2>, and the different distributions for <g1 g2> and
<g2 g1> (g1 is grating 1 and g2 is grating 2) with means of 0, � d0,
and d0, respectively (supplementary Fig. 1a). The decision rule is
to respond ‘‘different” whenever the observed difference is ex-
treme, with a criterion k, in either a positive or a negative direction.
Using this model, k is calculated by

k ¼ /�1ðpsameÞ;

where psame is the correct ratio for the ‘‘same” stimuli in one block
and / is a cumulative Gaussian distribution. d0 is calculated by

d0 ¼ k� /�1ðpdifferentÞ;

where pdifferent is the correct ratio for the ‘‘different” stimuli in one
block (supplementary Fig. 1b) (Macmillian & Creelman, 1991).

2.2. Results

2.2.1. Learning results
Here, the effects of blocks, experimental conditions, and inter-

actions between these factors on the mean d0 across subjects were
examined using statistical tests. In the genuine-feedback condition,
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the mean d0 across subjects significantly improved in block 30
compared with block 1 (Fig. 2d; two-sample paired t-test,
P = 0.001). Even when no feedback was given (no-feedback condi-
tion), the mean d0 across subjects significantly improved in block
30 compared with block 1 (Fig. 2d; two-sample paired t-test,
P = 0.0018). No significant difference was observed in the time-
course of the mean d0 across subjects between the genuine- and
no-feedback conditions (two-way factorial ANOVA, P = 0.0728).

In the two larger-gradient conditions, we found that fake per-
formance feedback has significant effects on learning. In the lar-
ger-gradient with same-variance condition, the time-course of
the mean d0 across subjects was significantly higher than that in
the genuine-feedback condition (Fig. 2e; two-way factorial ANOVA,
P < 0.00001). Further, the time-course of the mean d0 across sub-
jects improved in the larger-gradient with smaller-variance condi-
tion compared with the larger-gradient with same-variance
condition (Fig. 2e; two-way factorial ANOVA, P = 0.00005). Indeed,
the mean d0 across subjects in block 30 was significantly different
between the genuine-feedback, larger-gradient with same-vari-
ance, and larger-gradient with smaller-variance conditions
(Fig. 2e; one-way factorial ANOVA, P = 0.0318). No interaction be-
tween factors of the three conditions and blocks was observed
(two-way factorial ANOVA, P > 0.52).

In contrast, in the following three comparisons, we found no
significant effects of fake performance feedback on learning. In
the same-gradient with same-variance condition, the time-course
of the mean d0 across subjects was not significantly different from
that in the genuine-feedback condition (Fig. 2d; two-way factorial
ANOVA, P = 0.7581). This suggests that matching feedback to actual
accuracy for each individual block is not important for learning.
The gradient and noise variance of the feedback, however, did ap-
pear to have important effects on learning. Further, no significant
difference was observed between the smaller-gradient with
same-variance, the smaller-gradient with smaller-variance, and
the genuine-feedback conditions (Fig. 2f; two-way factorial ANO-
Fig. 2. Learning results in psychophysical experiments. Top panels show the accuracy res
12 subjects in genuine-feedback, no-feedback, and same-gradient with same-variance c
subjects in genuine-feedback, larger-gradient with same-variance and larger-gradient wit
accuracy across 12 subjects in genuine-feedback, smaller-gradient with same-variance,
(d–f) Time-course of mean d0 across 12 subjects in each condition (colored shades reflec
VA, P > 0.1898). No interaction between factors of the three condi-
tions and blocks was observed (two-way factorial ANOVA, P > 0.96)
(see supplementary Figs. 2–7 for individual data in each feedback
condition).

The mean d0 across subjects in block 1 did not differ across all
conditions (one-way factorial ANOVA, P = 0.1717). This confirms
that the obtained conditional differences in the psychophysical
experiments were not a result of initial differences in sensitivity
between conditions.

2.2.2. Correlation between actual accuracy and feedback
To examine the relationship between actual accuracy and feed-

back, we calculated correlation coefficients between actual accu-
racy and performance feedback (see Fig. 3 for typical subject data
and Table 1 for the group mean for each condition). In each panel
of Fig. 3, each circle represents actual accuracy/feedback values for
each block. For the five fake-feedback conditions, the mean corre-
lation coefficient was 0.3095 ± 0.0312 (mean ± s.e. for 60 subjects).
Note that if the fake feedback was similar to the real accuracy, the
correlation coefficients should be close to 1.0. The results show
that the fake feedback given to each subject was not closely related
to the actual accuracy for each block, confirming that the fake feed-
back did not provide subjects with information about their actual
accuracy.

2.2.3. Post-experiment interview
To determine whether subjects noticed the inaccuracy of the

fake feedback, after the experiment, we asked the subjects in the
conditions with the performance feedback the following questions:
(1) did you notice anything about the experiment? (yes/no), and, if
yes, (2) what did you notice? (free report). Seventeen out of 84
subjects answered ‘‘yes” to the first question. Further, 5 out of 17
subjects mentioned that they felt some discrepancies between
the observed feedback and expected accuracies. However, two of
these subjects were in the genuine-feedback condition, illustrating
ults, and bottom panels show results of d0 . (a) Time-courses of mean accuracy across
onditions (colored shades reflect s.e.). (b) Time-courses of mean accuracy across 12
h smaller-variance conditions (colored shades reflect s.e.). (c) Time-courses of mean
and smaller-gradient with smaller-variance conditions (colored shades reflect s.e.).
t s.e.).



Fig. 3. Correlation between actual accuracies and fake feedback given to subjects. (a–f) Scatter plot for actual accuracy and fake feedback. Each point represents each block,
and data are shown for 30 blocks for a representative subjects in each condition. Correlation coefficient (r) is presented in each panel.

Table 1
Correlation coefficient between actual accuracy and fake feedback in each condition.

Condition Mean ± s.e.

Genuine-feedback 1 ± 0
Same-gradient with same-variance 0.3379 ± 0.0573
Larger-gradient with same-variance 0.3824 ± 0.0764
Larger-gradient with smaller-variance 0.4316 ± 0.0747
Smaller-gradient with same-variance 0.2206 ± 0,0428
Smaller-gradient with smaller-variance 0.1749 ± 0.0723
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that a feeling of discrepancy was not specific to the subjects who
received the fake feedback. Three subjects reported that they did
not notice the fake feedback even after they were told that it was
fake. This suggests that all subjects received the fake feedback in
the same way as the real genuine feedback, and that the fake feed-
back affected learning implicitly rather than explicitly.

2.3. Summary and discussion

The psychophysical experiments revealed the following: first,
learning occurred even without performance feedback (Fig. 2d).
Second, the learning pattern in the genuine-feedback condition
did not differ from that in the no-feedback condition (Fig. 2d).
Third, when subjects received fake but larger-gradient feedback
after each block, their learning was facilitated compared with the
genuine-feedback condition (Fig. 2e). Fourth, even using the same
larger-gradient, reducing noise variance of the fake feedback led to
further improvement (Fig. 2e), suggesting that the feedback uncer-
tainty also affected learning. Fifth, there was no evidence that sub-
jects were aware of the inaccuracy of the fake feedback. Finally,
smaller-gradient fake feedback led to similar learning compared
with when genuine feedback was received (Fig. 2f).

One might argue that differences in subjects’ initial attentional
status or motivation between groups might lead to the differential
learning patterns obtained in this study. Previous studies have re-
ported cases in which subjects’ performance was affected by the
pre-existing expectations of the experimenters (Peters, 1971;
Rosenthal & Jacobson, 1992). However, in this study, all subjects
received the same instruction regardless of their conditions. In
addition, the mean d0 of the first block did not differ across condi-
tions. These factors suggest that there was no initial difference in
attentional status or motivation between groups. We believe that
our results cannot be explained by the initial differences of sub-
jects’ psychological state between groups; rather, the predefined
fake feedback for each experimental group implicitly led to differ-
ential learning patterns. We speculate that learning rate might be
updated from block to block, and it fluctuates over time. In the next
section, we constructed computational models to quantitatively
test this hypothesis.
3. Simulation experiment

3.1. Computational model

The psychophysical results provided important clues about
mechanisms underlying neural control of perceptual learning.
First, significant learning was observed even in the no-feedback
condition (Fig. 2d). One possible mechanism explaining this finding
is that unsupervised learning was taking place in the visual system
(Herzog & Fahle, 1998; Weiss, Edelman, & Fahle, 1993). Moreover,
these learning processes may be modulated by the various types of
fake feedback (Fig. 2d–f). If this is the case, it would be predicted
that changing feedback information might lead to different pat-
terns of learning. Therefore, in the current simulation experiments,
we assumed that unsupervised learning in the visual system is af-
fected by high-level cognitive processes (Herzog & Fahle, 1998;
Seitz & Watanabe, 2005).

Two key observations regarding processes of control in percep-
tual learning emerged from the psychophysical experiments. One
is that learning was dependent on both the gradient and the noise
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variance of the fake feedback. It has been proposed a computa-
tional model that describes how performance feedback guides per-
ceptual learning (Herzog & Fahle, 1998), and possible boosting
methods of learning with neural networks (Bishop, 1995; Vogl
et al., 1988). In these neural network models, the learning rate is
determined by the recent history of performance (performance
gradient). That is, improving performance leads to high learning
rates. This theoretical framework supports our psychophysical
finding that learning was affected by the gradient of the fake feed-
back. However, it cannot explain why learning was also modulated
by the noise variance of the fake feedback. In these neural network
models, it is assumed that learners are able to determine actual
performance gradients directly from the observed performance
feedback. Because learner’s performance fluctuates over time,
and performance is measured over a limited number of trials, this
cannot be the case. The performance feedback inherently contains
uncertainty, and the performance gradient is necessarily estimated
from the observed feedback, taking this uncertainty into account.

One simple and general model to embody this concept is the
Kalman filter (online Bayesian estimation; Kalman, 1960). The Kal-
man filter estimates a distribution of the performance gradients
(posterior) based on prediction of the performance gradient (prior)
and observable feedback gradient (likelihood) in a Bayesian man-
ner. When the noise variance of the observed performance feed-
back is small, the performance feedback becomes more dominant
in the estimation of the performance gradient; when the noise var-
iance is large, the prediction of the performance gradient becomes
more dominant.

The other key finding from the psychophysical experiments is
that there was no effect of the smaller-gradient feedback on learn-
Fig. 4. Computational model and simulation results. (a) Model architecture. Visual syste
Weights between basis functions and output unit are updated based on unsupervised lear
of visual system. Learning rate control system determines learning rate of visual system
course of mean estimated accuracy gradient across 12 runs in each condition using a mod
feedback gradient for larger-gradient (0.0097), same-gradient (0.0067), and smaller-grad
mean accuracy of decision system across 12 runs in each condition (colored shades reflect
(colored shades reflect s.e.).
ing. In the larger-gradient conditions, learning was facilitated com-
pared with in the genuine-feedback condition (Fig. 2e). Smaller-
gradient fake feedback, however, had no effect on learning
(Fig. 2f). This suggests that learning control process may respond
with an optimistic bias to the performance feedback, consistent
with several psychological studies (Alloy & Abramson, 1979; Sedik-
ides & Campbell, 1998). In general, these studies report that when
feedback is better than subjects expect, they tend to attribute the
discrepancy to their ability or effort. On the other hand, when feed-
back is worse than expected, they tend to blame the discrepancy
on other people or task settings, and try to minimize effects of
the feedback (self-serving bias). We contend that subjects in the
smaller-gradient feedback conditions may believe the observed
performance feedback was worse than expected and became
insensitive to it.

3.2. Methods

3.2.1. Visual system
Our computational model consisted of three systems: visual,

decision, and learning rate control systems (Fig. 4a). For the visual
system, we used a modified version of the hyper basis function net-
work (Weiss et al., 1993). The visual system has 16 basis functions,
and each of these has different tuning for spatial frequencies
(f = 0.5, 1.0, 1.5, and 2.0 cycles/deg) and orientations (h = 0�, 45�,
90�, and 135�). Neurons showing similar properties of these basis
functions have been reported in the lower visual cortices of mon-
keys (De Valois, Albrecht, & Thorell, 1982) and cats (Issa, Trepel,
& Stryker, 2000; Shapley & Lennie, 1985). The response of each ba-
sis function Hi was calculated by
m transforms visual stimuli (gratings) into sensory responses using basis functions.
ning rule. Decision system performs same/different task based on sensory responses
using performance feedback after each block (see text for more details). (b) Time-
el with Kalman filter and self-serving bias. Red, green, and blue arrows show actual

ient (0.0037) conditions, respectively (colored shades reflect s.e.). (c) Time-course of
s.e.). (d) Time-course of mean d0 of decision system across 12 runs in each condition
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Hi ¼
X
x;y

RFiðx; yÞIðx; yÞ; ð1Þ

where RFi represents the receptive field of ith basis function and I is
the spatial contrast pattern of a presented grating. RFi at each retinal
position (x, y) was given by

RFiðx; yÞ ¼ sinðfx cos hþ fx sin hÞ:

The output unit calculated a weighted sum of the responses of
the basis functions. Thus, sensory response R of the visual system
for one visual stimulus was calculated by

R ¼
X

i

fwiðHi þ eiÞg; ð2Þ

where wi represents the weight between the output unit and ith ba-
sis function. ei is sensory noise in the basis function, reflecting spon-
taneous activity of neurons, and obeys a Gaussian distribution with
a mean at zero and variance r2

s (Weiss et al., 1993). We confirmed
that similar simulation results were obtained when the sensory
noise obeyed a Poisson distribution (signal-dependent noise). The
weight wi was updated according to the response of the basis func-
tion (exposure-dependent learning; Weiss et al., 1993) by

wi ¼ wi þ awi if Hi þ ei > T; ð3Þ

where a is the learning rate of the visual system and T represents
the learning threshold for the response of the basis function; a
and T were common to all basis functions. Before learning, wi is sim-
ilar between all the basis functions. During learning, some of the ba-
sis functions tuned to the presented gratings generate strong
sensory responses, and therefore, win the large weights. As a conse-
quence, a limited number of the basis functions have larger weights
while the others have small weights. This bias reduces noise from
the basis function which is not tuned to the presented gratings,
and therefore, leads to a stable sensitivity improvement of the vi-
sual system (Dosher & Lu, 1998). We confirmed that other unsuper-
vised learning rules led to similar learning results. For example,
similar results were obtained from

wi ¼ wi þ awi if Hi þ ei > T; otherwise wi ¼ wi � awi:
3.2.2. Decision system
The decision system performed the same/different task for two

successive grating presentations. The system works on the differ-
ence Y between two sensory responses, R1 and R2, evoked by the
first and second grating presentations, respectively. Y was calcu-
lated by

Y ¼ R2 � R1 þ f; ð4Þ

where f represents noise in the decision system reflecting sponta-
neous activity of a neuron and obeys a Gaussian distribution with
a mean at zero and variance r2

decision (Weiss et al., 1993). The system
compares the decision criterion k and the absolute value of Y, and
responds ‘‘different” when the absolute value of Y is larger than k.
This process is the same as SDT described in the Section 2.1.6. Com-
bining Eqs. (1)–(4), perceptual sensitivity d0 of the decision system
was calculated by

d0 ¼
j
P

iwi
P

x;yRFiðI2 � I1Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

decision þ
P

iw
2
i r2

s

q :
3.2.3. Learning rate control system
The learning rate control system determined the learning rate of

the visual system based on the estimation of the performance gra-
dient. As mentioned earlier, the performance feedback in this study
inherently contains uncertainty. To deal with this uncertainty, we
used the Kalman filter (Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Kalman, 1960). Using the Kalman filter, we estimated the
performance gradient by considering mechanisms underlying
changes in the performance gradient over time (model for state
transition process) and how the performance feedback contains
the noise (model for observation process). We assumed that the
learning rate of the visual system is proportional to this estimated
performance gradient (Bishop, 1995). According to the current task
settings, the observation (accuracy feedback) was given after each
block of 40 trials. Thus, the learning rate of the visual system is up-
dated after each block. However, this system can update the learn-
ing rate at arbitrary times (e.g., after each trial) when performance
feedback is given.

In our Kalman filter model, the state transition process was de-
fined by

stþ1 ¼ st þ nt;

where st represents the prediction of accuracy gradient between
block t � 1 and t, and nt represents system noise obeying a Gaussian
distribution with a mean at zero and variance r2

d . The observation
process was defined by,

xt ¼ st þ gt

where xt represents the change in observed accuracy feedback be-
tween block t � 1 and t, and gt represents observation noise obeying
a Gaussian distribution with a mean at zero and variance r2

d . After
the accuracy feedback, estimated accuracy gradient l and its vari-
ance q2 were calculated by

lpost
t ¼ lpre

t þ Ktðxt � lpre
t Þ;

qpost2
t ¼ ð1� KtÞqpre2

t :

The heart of this procedure is an error-driven learning rule that
is the same as the temporal-difference or other delta-rule meth-
ods: the difference is the additional tracking of uncertainty q2,
which determines the time-dependent coefficient K (Kalman gain),
given by

Kt ¼
qpre2

t

qpre2
t þ r2

o

:

When the noise variance of the feedback r2
o is small, Kalman

gain gets close to one. The learning rate control system then
emphasizes the observed accuracy gradient in the estimation.
The prediction of l and q2 in the next block was given by

lpre
tþ1 ¼ lpost

t ;

qpre2
tþ1 ¼ qpost2

t þ r2
d :

To reproduce the psychophysical results in the two smaller-
gradient conditions (Fig. 2f), we assumed a lower bound j for
the estimated accuracy gradient (self-serving bias). The learning
rate basically increases linearly as a function of the estimated
accuracy gradient. However, when the estimated accuracy gradi-
ent lpost

t is smaller than j, the learning rate control system tempo-
rally regards the observation noise r2

o as large and replaces lpost
t

with the lower bound j. This bias weakens the effect of the smal-
ler-gradient fake feedback on the learning rate of the visual sys-
tem. Thus, the learning rate is constant when the estimated
accuracy gradient is smaller than the lower bound, and once the
estimated accuracy gradient exceeds the bound, the learning rate
increases linearly. The self-serving bias can also be defined in a
different fashion. Using the difference between the predicted
accuracy gradient and the observed accuracy gradient, taking pro-
portional decrease of the effect of performance feedback (Kt) is
one example. Even in this case, the basic arguments of the model
do not change.
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Learning rate a of the visual system in the next block was deter-
mined as proportional to the estimated accuracy gradient:

at ¼ clpre
t : ð5Þ
3.2.4. Simulation settings
Using the computational models outlined above, we ran simula-

tions with similar settings to our psychophysical experiments with
a total of 30 blocks. Each block comprised 40 trials. For each con-
dition, the simulation was repeated 12 times (30 blocks � 12 runs)
with different initial parameter settings. The fake feedback used in
the simulations was identical to that in the psychophysical
experiments.

A summary of the model parameters is shown in Table 2. The
following model parameters were determined based on the results
of the psychophysical experiment: the initial wi was generated by
adding Gaussian noise with a mean at one and variance 0.1 to
reproduce the mean (0.81) and variance (0.04) of d0 in block 1 of
the no-feedback condition. r2

o was equalized to the variance of
the feedback gradient in the fake-feedback conditions (0.0134 for
the same-variance conditions and 0.0067 for the smaller-variance
conditions). r2

d (0.00013) was determined to reproduce the time-
course of the mean d0 across subjects in the same-gradient with
same-variance condition (Fig. 2d). j (�0.006) was determined to
reproduce the time-course of the mean d0 across subjects in the
two smaller-gradient conditions (Fig. 2f). Initial l followed a
Gaussian distribution whose mean and variance were equalized
to the mean accuracy gradient (0.00517) and its variance
(0.0000188) in the no-feedback condition, assuming that initial
q2 was large enough. c (4.5), the coefficient of l in Eq. (5), was
determined to reproduce the time-course of the mean d0 across
subjects in the no-feedback condition. The decision criterion k of
the decision system was determined based on the time-course of
the mean k across subjects in the no-feedback condition. r2

s (50)
and r2

decision (150) were determined to reproduce the mean d0 in
block 1 of the no-feedback condition (0.81) with initial wi T was
a free parameter and set to 500. We confirmed that the simulation
results barely changed as T ranged from 200 to 600.

Although our model contains the 12 parameters, they were
determined using the subset of the psychophysical experiments:
namely, the no-feedback condition, same-gradient with same-var-
Table 2
Model parameters used in simulation experiments.

Parameter
name

Role

Visual system Mean of initial
wi

Initial weights between basis functions and ou

Variance of
initial wi

Initial weights between basis functions and ou

r2
s Variance of Gaussian noise of basis function

T Learning threshold of basis function
Decision system k Decision criterion in each block

r2
decision Variance of Gaussian noise of decision unit

Learning rate
control system

r2
o Variance of Gaussian noise in state transition

r2
o Variance of Gaussian noise of observation proc

j Lower bound of estimated accuracy gradient (
bias)

Mean of initial
l

Mean of initial estimated accuracy gradient

Variance of
initial l

Variance of initial estimated accuracy gradient

c Coefficient of estimated accuracy gradient to d
learning rate of visual system in next block
iance condition, and two smaller-gradient conditions. We did not
use the results of two larger-gradient conditions and the nega-
tive-gradient condition for the parameter fitting. Thus, in these
conditions, the simulation results were predicted rather than ex-
plained by the proposed computational model.

In the psychophysical experiments, in the genuine-feedback
condition, the time-course of the mean accuracy across subjects
over blocks 1–30 was well fitted by a linear regression (Fig. 1b;
coefficient of determination = 0.849). For this reason, we used a
simple linear equation for the state transition model of the Kalman
filter. It is also possible to introduce nonlinearity into the model by
considering ceiling effects of learning. This makes the shape of
learning curve in the simulation experiments more similar to that
in the psychophysical experiments. Even in this case, we can apply
the same logic as in case of linear models by making the observa-
tion process nonlinear. This would change the arguments of the
model only minimally.

3.3. Results

The simulation results showed that the time-course of the mean
d0 across simulation runs were significantly improved in the two
larger-gradient fake-feedback conditions than in the other three
conditions: same-gradient with same-variance, smaller-gradient
with same-variance, and smaller-gradient with smaller-variance
conditions (Fig. 4d; two-way factorial ANOVA, P < 0.00001). No sig-
nificant difference was found among the three other conditions
(Fig. 4d; P > 0.2606). Further, the mean d0 improvement in the
larger-gradient with smaller-variance condition was significantly
higher than that in the larger-gradient with same-variance
condition (Fig. 4d; P < 0.00001). Moreover, the results in the genu-
ine- and no-feedback conditions were not significantly different
because the genuine feedback, on average, did not affect the
estimated accuracy gradient (results not shown). These simulation
results showed close agreement with the psychophysical results
(compare Fig. 2d–f and Fig. 4d).

3.4. Testing alternative models

We assumed two computational processes in the learning rate
control system: the Kalman filter and the self-serving bias (see Sec-
Value How to determine

tput unit 1 Reproduce mean d0 in block 1 of no-feedback
condition

tput unit 0.1 Reproduce variance of d0 in block 1 of no-
feedback condition

50 Reproduce mean d0 in block 1 of no-feedback
condition under initial wi

500 Free parameter
Not shown
here

Time-course of mean decision criterion in no-
feedback condition

150 Reproduce mean d0 in block 1 of no-feedback
condition under initial wi

process 0.00013 Reproduce time-course of mean d0 in same-
gradient with same-variance condition

ess 0 0134 or
00067

Variance of Gaussian noise in same- or smaller-
variance conditions, respectively

self-serving �0.006 Reproduce two smaller-gradient conditions

0.00517 Mean accuracy gradient in no-feedback condition

0.0000133 Variance of accuracy gradient in no-feedback
condition

etermine 4.5 Reproduce time-course of mean d0 in no-feedback
condition
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tion 3.1 and 3.2.3). To evaluate the plausibility of these assump-
tions, we tested two further alternative models for the learning
rate control system: (1) with the Kalman filter and without the
self-serving bias, and (2) with neither the Kalman filter nor the
self-serving bias.

In the model with the Kalman filter and without the self-serving
bias, there was no lower bound of the estimated accuracy gradient
(j = �1). That is, the system did not reduce the effect of the fake
feedback even when the estimated accuracy gradient was smaller
than the expectation of the system. The simulation results showed
that, inconsistent with the psychophysical results, the mean d0

improvement in the two smaller-gradient conditions was signifi-
cantly lower than those in the same-gradient with same-variance
condition (Fig. 5c; two-way factorial ANOVA, P < 0.00001). This re-
sult was due to the estimated accuracy gradient (i.e., learning rate)
in the two smaller-gradient conditions being generally smaller
than in the same-gradient with same-variance condition (Fig. 5a).

For the model with neither the Kalman filter nor the self-serv-
ing bias, there are two alternative processes that may occur in-
stead. First, the learning rate could be constant and not
modulated by feedback. In this model, only the prediction of the
accuracy gradient affects the learning rate of the visual system.
Due to the significant d0 improvement in the no-feedback condi-
tion, the learning rate should be positive even without perfor-
mance feedback. This model is identical to the Kalman filter with
infinite r2

o . However, this model cannot explain the conditional dif-
ferences in the psychophysical results, because it ignores feedback.
Second, the learning rate could be determined only by the feed-
back. In this model, only the observed accuracy gradient informed
by the performance feedback determines the learning rate. Cru-
cially, the Kalman filter requires the prediction of the accuracy gra-
dient, but this model does not. This model is identical to the
Kalman filter with infinite r2

d . However, no significant difference
was observed in the results between the larger-gradient with
same-variance and with smaller-variance conditions (Fig. 5f;
Fig. 5. Simulation results using two alternative models of learning rate control system. To
bias, and bottom panels show results with a model that determines learning rate of vi
accuracy gradient across 12 runs in each condition. Data are shown for five conditions, a
(0.0097), same-gradient (0.0067), and smaller-gradient (0.0037) conditions, respectivel
system across 12 runs in each condition (colored shades reflect s.e.). (c and f) Time-cou
reflect s.e.).
two-way factorial ANOVA, P = 0.912), indicating that this model
cannot reproduce the dependency of learning on the noise variance
found in the psychophysical results.

These results support the following features of our proposed
model: first, the internal evaluation of the feedback uncertainty
is necessary to explain the effects of the noise variance on learning.
Second, the assumption of the optimistic bias (i.e., a self-serving
bias) is necessary to reproduce the lack of effect of the smaller-gra-
dient feedback.

3.5. Model verification

3.5.1. Self-rating condition
Assuming that subjects use a Bayesian strategy in learning, they

must have information about their accuracy (a prior distribution)
in order to estimate their accuracy gradients. To test this, we con-
ducted an additional psychophysical experiment involving a self-
rating condition. In this experiment, after each block of trials, no
feedback was given to the subjects, and they were asked to guess
their accuracy. Fig. 6 shows the self-rating scores against the actual
accuracy for six subjects. The mean correlation coefficient between
the self-rating score and the actual accuracy across all subjects
(n = 12) was significantly higher than zero (r = 0.2658 ± 0.0774,
one-sample t-test, P = 0.0056). In addition, when all data points
were combined (n = 360), a significant correlation was obtained
(r = 0.256, P < 0.0001). These results suggest that, at least at the
conscious level, subjects are able to predict their accuracy with
some degree of uncertainty. This ability may enable subjects to cal-
culate the prior distribution of their accuracy gradient.

3.5.2. Negative-gradient condition
To generalize our proposed model, we conducted additional

experiments using fake feedback that was not used in the main
experiments, namely negative-gradient fake feedback. The psycho-
physical results were compared with the model predictions with-
p panels show results with a model including Kalman filter and without self-serving
sual system only by accuracy feedback. (a and d) Time-course of mean estimated
nd red, green, and blue arrows indicate actual feedback gradient for larger-gradient
y (colored shades reflect s.e.). (b and e) Time-course of mean accuracy of decision
rse of mean d0 of decision system across 12 runs in each condition (colored shades



Fig. 6. Correlation between actual accuracies and self-rating scores. (a–f) A scatter plot for self-rating score and actual accuracy. Each point represents each block, and data
are shown for 30 blocks for six subjects in self-rating condition. Correlation coefficient (r) is shown in each panel.

Fig. 7. Comparison between model prediction and psychophysical results. (a) Time-
courses of mean estimated accuracy gradient across 12 runs in same-gradient with
same-variance (green) and negative-gradient with same-variance (brown) condi-
tions using the model with Kalman filter and self-serving bias (colored shades
reflect s.e.). Green and brown arrows show actual feedback gradient used in the
experiment for same-gradient with same-variance (0.0067) and negative-gradient
with same-variance (�0.0067) conditions, respectively. (b) Time-courses of mean
accuracy of decision system across 12 runs in the simulation (solid lines), and time-
course of mean accuracy obtained in the psychophysical experiments (broken lines)
for two conditions. (c) Time-course of mean d0 across 12 runs in the simulation
(solid lines), and time-course of mean d0 obtained in the psychophysical exper-
iments (broken lines) for two conditions.
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out any additional parameter fittings. The self-serving bias weak-
ens the effect of the smaller-gradient feedback, and therefore, no
feedback effect on learning was found in the smaller-gradient con-
ditions. On the other hand, the model predicts a significant effect of
the performance feedback if the gradient is set to negative because
although the self-serving bias weakens the effect, it does not ignore
it entirely.

We applied the gradually decreasing feedback (negative-gradi-
ent with same-variance condition) to the model with the Kalman fil-
ter and the self-serving bias. The simulation results showed that the
time-course of the mean d0 across simulation runs was significantly
lower than in the same-gradient with same-variance condition
(Fig. 7c, solid lines; two-way factorial ANOVA, P < 0.00001). The esti-
mated accuracy gradient (i.e., the learning rate) was positive in sev-
eral initial blocks because the initial prediction of the accuracy
gradient was positive. However, the learning rate gradually de-
creased and finally became zero as a result of the negative-gradient
feedback (Fig. 7a; brown). Consistent with the model prediction, the
results of the psychophysical experiment showed that the time-
course of the mean d0 across subjects in the negative-gradient with
same-variance condition was significantly lower than that in the
same-gradient with same-variance condition (Fig. 7c, broken lines;
two-way factorial ANOVA, P < 0.001). In addition, no significant dif-
ference in the time-course of the mean d0 across subjects/runs was
observed between the model predictions and the psychophysical re-
sults (two-way factorial ANOVA, P = 0.1186). Moreover, these two
time-courses of mean d0 were quantitatively similar in the nega-
tive-gradient condition (Fig. 7c; coefficient of determina-
tion = 0.8341). This additional study shows our model’s capability
to make predictions in novel conditions, and that the predictions
of the model were in agreement with the psychophysical results.

4. General discussion

In this study, we reported four main findings. First, giving fake
performance feedback with a larger performance gradient facili-
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tated learning compared with giving genuine feedback. Second, the
variance of fake feedback also modulated learning. Third, fake
feedback with a smaller performance gradient did not modulate
learning. Forth, all subjects were not aware of the inaccuracy of
the fake feedback. We speculate that the fake feedback in the lar-
ger-gradient conditions might have acted as a form of praise that
implicitly facilitated visual perceptual learning. The importance
of variance found here implies that feedback uncertainty may be
evaluated and utilized in learning. Subjects might have discounted
feedback information in the smaller-gradient conditions because it
was worse than expected (i.e., a self-serving bias). Simulation re-
sults using a computational model supported these conclusions;
the results of the simulation and psychophysical experiments stud-
ies closely agreed. The current results suggest that perceptual
learning in the visual cortex might be controlled by internal eval-
uation of feedback uncertainty, and affected by an optimistic bias.

A theory of error-driven learning rules such as reinforcement
learning and supervised learning cannot account for the psycho-
physical results observed in this study. These learning theories
predict that fake feedback deteriorates learning regardless of
the type of fake feedback because this method updates the sys-
tem’s response to minimize an error or maximize a reward (i.e.,
performance feedback). These predictions are not supported by
our results, which found that larger-gradient fake feedback signif-
icantly facilitated learning compared with genuine feedback. We
proposed a model that uses the performance feedback as a signal
to control unsupervised learning in the visual system, not as a di-
rect error or reward signal to the decision system. This model
predicts learning facilitation by fake feedback observed in the
current psychophysical experiments, suggesting that unsuper-
vised learning mechanisms underlie perceptual learning (Barlow,
1989).

Previous studies in perceptual learning have found fake feed-
back to alter the decision criterion rather than affecting sensory
plasticity (Herzog & Fahle, 1997; Herzog et al., 2006). In their stud-
ies, however, the gradient of the fake feedback was not manipu-
lated. Instead, a constant gradient of zero was used for the fake
performance feedback. The computational model in our study pre-
dicts no effect of the fake feedback under these conditions. Thus,
our results are consistent with previous studies.

In accord with previous models (Herzog & Fahle, 1998; Seitz &
Watanabe, 2005), in our computational model, plasticity in the vi-
sual system is controlled by the cognitive process (i.e., learning rate
control system based on the estimated accuracy gradient). Which
brain areas are involved in these processes? One possibility is that
the locus of both learning and learning control processes is in the
visual cortex. A recent physiological study reported that V1 neu-
rons could predict reward timing after repetitive exposure to a
stimulus-reward paring (Shuler & Bear, 2006). This result suggests
the existence of a reinforcement learning system in the visual cor-
tex. This kind of error-driven learning system could enable neurons
in the visual cortex to learn optimal responses to sensory stimuli,
minimizing error and/or maximizing reward. However, as dis-
cussed before, error-driven learning rules including reinforcement
learning cannot explain the fact that the fake feedback facilitated
learning compared with the genuine feedback. Thus, a reinforce-
ment learning system in the visual cortex is not an adequate expla-
nation for the current results.

Another possibility is that a locus of learning is in the visual cor-
tex but is controlled by distant cortical areas such as the frontal
cortex and basal ganglia. Previous physiological studies have re-
ported that the frontal cortex is involved in a variety of cognitive
processes including the calculation of expectation error (Matsum-
oto, Matsumoto, Abe, & Tanaka, 2007), uncertainty evaluation
(Behrens, Woolrich, Walton, & Rushworth, 2007), and self-moni-
toring (Beer, 2007) including optimistic biases (Sharot, Riccardi,
Raio, & Phelps, 2007). In addition, it has been suggested that neu-
romodulatory projections from the basal ganglia and forebrain
influence plasticity in the sensory cortex (Fournier, Semba, & Ras-
musson, 2004; Seol et al., 2007). Taken together, these findings
suggest that estimation of the performance gradient may involve
the frontal cortex, and the basal ganglia and forebrain may subse-
quently use this information to control the learning rate of the vi-
sual cortex.

What is the advantage of manipulating the learning rate based
on the recent performance gradient? As mentioned earlier, previ-
ous theoretical studies using neural networks have proposed effi-
cient learning methods based on the performance gradient
(Bishop, 1995; Vogl et al., 1988). We extended this idea using a
probabilistic approach to deal with uncertainty in learner’s perfor-
mance and performance feedback. The learning rate of the visual
system, in our model, varies based on both the performance gradi-
ent and uncertainty of the performance feedback using Bayesian
estimation. Based on research into conditioning in animals, a mod-
el has previously been proposed in which the learning rate changes
based on the uncertainty of rewards (Dayan, Kakade, & Montague,
2000). This reinforcement learning model resembles our model in
many ways, indicating that the Bayesian learning rate control
might be a basic and efficient mechanism of both reinforcement
and perceptual learning (sensory plasticity) in the brain.

In our proposed model, we assumed that the learning rate con-
trol system uses an optimistic bias (i.e., a self-serving bias) to deal
with decreases in learning rate. Learning increases the adaptability
of neural systems to the environment (Doya, 1999), and Bayesian
learning rate control could provide an effective learning frame-
work. However, in a situation with a very low learning rate, Bayes-
ian estimation alone may not be the optimal solution for future
survival because it leads near-termination of learning. Therefore,
it is unsurprising that the learning rate control system incorporates
a self-serving bias in such a situation.

In our computational framework, it seems that a higher learning
rate always facilitates learning in the visual system. This raises a
question: why does not the learning control system set a maxi-
mum learning rate from the beginning of learning? One possible
reason is that a very high learning rate prevents the convergence
of learning. A second potential reason is that the system may
simultaneously control the learning rate of multiple learning sys-
tems in the brain. If this is the case, the effects of setting a maxi-
mum learning rate might not be optimal for other systems. For
these reasons, setting a maximum learning rate before observing
the performance gradient may not be an efficient strategy.

Our findings have important implications regarding the mecha-
nisms controlling sensory plasticity in the brain. Our results sug-
gest that an adaptive control mechanism based on performance
feedback might be involved. We propose that, using our computa-
tional framework, it may be possible to design or manipulate per-
formance feedback to maximize or boost perceptual learning. We
believe that the proposed model can be extended to other learning
frameworks such as motor and rule learning.
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