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1. Introduction 

Microfluidics is an important research field that relies on the use of micro-scale devices for the manipulation of 
very small volumes of fluids; typically on nano- to femto-litres. An attractive feature of this technology is the control 
and sorting of nano-particles, with the analysis of DNA in fluid streams proving of great interest for high throughput 
chemical and biological analysis. The need for small fluid channels is compatible with certain types of 
microstructure optical fibers. These fibers have a central waveguide surrounded by a series of air holes that run 
parallel to the optical axis and ensure low loss light propagation. In this case the guided light can interact with a fluid 
in the region of the air-hole structure1,2,3. Microstructure fibers have shown great potential as microfluidic devices, 
given the minute sample volumes that are required. Their use as optofluidic sensors is compatible with applications 
in chemical and biological sensing. Given the development of new types of microstructure fibers with cross sections 
containing circular or elliptical holes, or more complex cross sectional geometries, it is important to be able to model 
the fluid transport capabilities of these fiber types. Moreover, complex cross sectional geometries can affect the 
transfer of heat into the fiber, creating local changes in the behavior of the fluid system. In this paper these 
aforementioned effects are studied using a numerical application of a system of partial differential equations 
consisting of the time-dependent Navier-Stokes equations and the convection-diffusion equation. We examine the 
effects of flow rates, fluid viscosity and the channel shape. The role of heat flux is considered in relation to the fluid 
characteristics, but also with regard to the material properties of the microstructure fiber. 

It is necessary to consider the behavior of microstructure fibers as microfluidic channels, as their dimensions are 
typically on the same scale as transitional micro channels; this is typically a factor of 10 smaller than conventional 
micro-fluidic channels. The features of a flow and any potential heat transfer are governed by the length scales and 
material properties, which in turn are governed by the Reynolds number and the convection heat transfer coefficient. 

Although there have been many studies on micro-fluidic flows, one can mention as an indicative case related to 
the present study, Yanhg and collaborators’ investigation of the fluid dynamics of microfluidic devices with multiple 
channels having trapezoidal and triangular cross sections4. Moreover Colin and Tancogne studied the stability of jets 
in micro-channels and computed the length on which a jet is stable for a given configuration with respect to the flow 
rates, viscosities, diameter of the channel and surface tension5, whereas Sahu and collaborators studied the stability 
of a co-flow composed of a Newtonian and non-Newtonian fluid6. Lien and Vollmer detected minimum flow rates 
based on integrated optical fiber cantilevers7. Regarding heat transfer related to microfluidics the literature is not so 
extensive and includes the work of Beskok and Karniadakis, Chen and Wu, Damean and collaborators and Plouffe 
and collaborators8.9,10,11. 

In section 2 the mathematical model for the flow along a microchannel is formulated in conjunction with heat 
transfer. Numerical results for certain flow and heat configurations based on the Finite Element Method (FEM).are 
presented in section 3. Finally section 4 is devoted to a discussion for further numerical and experimental 
applications. 

2. Flow along a microchannel 

The general form of the Navier-Stokes equations (momentum equation) governing a three-dimensional motion of 
an incompressible fluid is given by (in summation-convention notation) 

,i
j

i
j

i f
x
u

u
t

u     (1) 

where  is the density of the fluid (in kg m–3), ui the velocity component of the fluid in the i-direction (in m s–1) and 
fi the total force per volume (in kg m–2 s–1) acting on the fluid consisting of pressure gradient, friction forces and 
body forces. The continuity equation is given by 
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For small Knudsen numbers and in the absence of body forces and following the microfluidics simplifications 
(according to which gravity may be neglected and as the influence of convection is small, there is no convecting 
momentum transport) the governing equations may be written as follows. 

2
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p

t
u   (3) 

with an extra equation for p, the fluid pressure (in Pa), arising by simply applying the divergence operator to the 
Navier-Stokes equation, and where  is the dynamic viscosity of the fluid (in kg m–1 s–1).  

It is common place to re-write the system of equations above in dimensionless form (not done here for practical 
reasons). In such case the dimensionless Reynolds number is given by 

Lu0Re   (4) 

This describes the balance between inertial forces and viscosity, where u0 is a fixed mean velocity relative to the 
fluid and L some fixed characteristic linear dimension. It is typical that viscous forces are dominant for flows in 
microchannels, corresponding to low Reynolds numbers. In general, microfluidic flows can be classified, according 
to their Reynolds number, as 

(i) Creeping/Stokes (laminar) flows with no lateral convection (Re < 1), 
(ii) Intermediate (still laminar) flows with lateral convection becoming increasingly important (1 < Re < 2300) 

(where time dependence becomes more important), 
(iii) Turbulent flows, where there is a curling of field lines, perturbations are amplified and the development of 

field of velocity vectors over time is unpredictable (Re > 2300). 
When interested in the energy transport into the material region, the energy equation in the fluid region is given 

by the convection-diffusion equation 
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Here h is the convection heat transfer coefficient (in W m–2 K–1) multiplied by an appropriate coefficient depending 
on the cross-section configuration12,  the thermal fluid conductivity (in W m–1 K–1), cp the fluid specific heat 
capacity (in J kg–1 K–1), and Tfluid and Tint are respectively the temperature of the fluid and the temperature at the wall 
of the channel. Coupling equation (4) to set of equations (2) will yield the full system describing the heat transfer in 
a flow domain. The particular model chosen here can indeed be considered as a first simplified case of a more 
complete mathematical model that could include the effects of electromagnetism (owing to the choice of the method 
of heating relating to the set-up of the microfluidics device) (see for example Plouffe and collaborators work on 
microfluidic magnetophoresis11. 

3. Numerical Results 

The pressure-driven flow along a microchannel is considered, where a single circular or elliptical micro-capillary 
running along the length of the fiber axis is surrounded by a ring filled with gas. For appropriate boundary 
conditions, the coupled differential equations (3) and (5) are solved numerically, by application of the Finite 
Element Method (FEM). Considering the laminar character of the flow, we present here a constant velocity flow. 
The FlexPDE software package is chosen as the numerical solving tool that uses an Adaptive Mesh Refinement 
method. The FEM mesh is shown in Fig. 1 for both cases, along with a third configuration of a three-hole 
microstructure fiber, also surrounded by a gas-ring. The fiber length is taken to be 3 cm with a relatively thick 
diameter of d = 125 m, while the ring has an internal diameter of 60 m and an external one of 70 m. For all cases 
presented here the fiber material is silica (SiO2) and the gas in the ring is air (see Table 1 for thermal properties). 
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