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Abstract 

There is a growing class of engineering applications for which long-term managed evolution and/or 
managed sustainability is the primary development objective. The underlying tenet of our work is that 
neither of these trends will become fully mature without: (1) An understanding for how and why system 
entities are connected together, and (2) Formal procedures for assessing the correctness of system 
operations, estimating system performance, and understanding trade spaces involving competing design 
criteria. To address these concerns, during the past few years we have developed methodologies and tools 
for ontology-enabled traceability; that is, traceability mechanisms where requirements are connected to 
models of engineering entities by threading the traceability connection through one or more ontologies. In 
our proof-of-concept work the engineering entities were restricted to elements of system structure. But, of 
course, real engineering systems also have behaviors. This paper will report on research to understand the 
role that software patterns (e.g., model-view-controller) and mixtures of graph and tree visualization can 
play in the implementation of traceability mechanisms from requirements to elements of finite-state 
machine behavior (e.g., actions, states, transitions and guard conditions). We will present a simple lamp 
example. 
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1. Introduction 

One way in which modern model-based system engineering (MBSE) procedures deal with the wide 
range of design concerns in system development is through the use of multiple types of models (e.g., for 
requirements, system structure and system behavior) and multiple visual formalisms (e.g., diagram types 
in SysML). This, by itself, is not enough for systems engineers to take full advantage of MBSE. They also 
need: (1) An understanding for how and why various how and why system entities are connected 
together, and (2) Formal procedures for assessing the correctness of system operations, estimating system 
performance, and understanding trade spaces involving competing design criteria. In a first step toward 
providing this capability, during the past few years we have developed methodologies and tools for 
ontology-enabled traceability; that is, traceability mechanisms where requirements are connected to 
models of engineering entities by threading the traceability connection through one or more ontology. In 
our proof-of-concept work [1,2], engineering entities were restricted to elements of system structure in a 
rail transportation system (e.g., tracks, lines and stations). But, of course, real engineering systems also 
have behavior (e.g., the trains). This paper reports on research to understand the role that software 
patterns (e.g., model-view-controller, mediator, observer, adapter) and mixtures of graph and tree 
visualization can play in the implementation of traceability mechanisms from requirements to elements of 
finite-state machine behavior (e.g., actions, states, transitions and guard conditions). 

2. Ontology-Enabled Traceability 

2.1 Basic Model for Multiple Viewpoint Design Model 
 
        In state-of-the-art traceability mechanisms design requirements are connected directly to design 
solutions (i.e., engineering objects). An alternative, and potentially better, approach is to satisfy a 
requirement by asking the basic question: What design concept (or group of design concepts) should I 
apply to satisfy a requirement? Design solutions are the instantiation/implementation of these concepts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Ontology-Enabled Traceability support for Multiple Viewpoint Design 

Figure 1 shows the essential features of ontology-enabled traceability implemented in a setting for 
multiple viewpoint design. Ontologies carry with them a conceptual representation and understanding of a 
particular domain. By explicitly connecting requirements to engineering system representations through 
ontologies we are indicating “how and why” requirements satisfaction is taking place. From an efficiency 



216  Parastoo Delgoshaei and Mark Austin / Procedia Computer Science 8 (2012) 214 – 219

  

standpoint, the use of ontologies within traceability relationships helps engineers deal with issues of 
system complexity by raising the level of abstraction within which systems may be represented and 
reasoned with. Furthermore, because ontologies represent concepts for a problem domain, the ontologies 
are inherently reusable. From a validation and verification viewpoint, the key advantage of the proposed 
model is that software for ``design rule checking'' can be embedded inside the design concepts module. 
Thus, rather than waiting until the design has been fully specified, this model has the potential for 
detecting rule violations at the earliest possible moment. This is where design errors are easiest and 
cheapest to fix. Moreover, if mechanisms can be created to dynamically load design concept modules into 
computer-based design environments, then rule checking can proceed even if the designer is not an expert 
in a particular domain. For an operational system that is being monitored, real-time evaluation rules can 
also contribute to system management. 

3. Design Patterns for Requirements to Finite State Machine Behavior Traceability 

       Our prototype implementation of requirements to finite-state machine behavior traceability makes 
extensive use of the model-view-controller, mediator, and observer design patterns.  
 
3.1 Definition and Benefits 
 
        Experienced designers know that instead of always returning to first principles, routine design 
problems are best solved by adapting solutions to designs that have worked well for them in the past. A 
design pattern is simply: (1) A description of a problem that occurs over and over again, and (2) A 
description of a core solution to that problem stated in such a way that it can be reused many times. In 
other words, a design pattern prescribes a [ problem, solution ] pair. The design pattern identifies the 
participating subsystems and parts, their roles and collaborations, and distribution of responsibilities. For 
a wide range of domains, this approach to problem solving is popular because it encodes many years of 
professional experience in the how and why of design, and is time efficient. Design patterns crop up in 
many avenues of day-to-day life. For example, that layout of streets in planned communities follows 
familiar patterns [3]. Gamma and co-workers [4] point out that patterns facilitate reuse -- one person’s 
pattern can be another person’s fundamental building block. Software design patterns are particularly 
beneficial in the development of architectures for distributed systems [5].  
 
3.2 Mediator, Observer and Model-View-Controller Design Patterns 
 
       The mediator pattern defines an object that controls how a set of objects will interact. Loose coupling 
between colleague objects is achieved by having colleagues communicate with the mediator, rather than 
with one another. This strategy of development simplifies communication between models and views 
because they do not need to implement the specific details of communication with each other. Moreover, 
this pattern provides maximum flexibility for expansion, because the logic for the communication is 
contained within the mediator.  The observer pattern is applicable to problems where a message sender 
needs to broadcast a message to one or more receivers (or observers), but is not interested in a response or 
feedback from the observers.  
        The model-view-controller (MVC) design pattern divides a subsystem into three logical parts – the 
model, view and controller – and offers a systematic approach for modifying each part. In the most 
common implementation of this pattern (see, for example, the Java patterns in [6]), views register for their 
intent to be notified when changes to a model occur.  Controllers register their interest in being notified of 
changes to a view. When a change occurs in the view, the view (graphical user interface) will query the 
model state and call the controller if the model needs to be modified. The controller then makes the 

Mark Austin / ProcediaComputer Science 00 (2012) 000–000 



217Parastoo Delgoshaei and Mark Austin / Procedia Computer Science 8 (2012) 214 – 219

modification. Finally the model notifies the view that an update is required, based on a change in the 
model.  
 
3.3 System Architecture 
 
      Figure 2 shows the system architecture currently being implemented as a pyramid (i.e., two-level 
graph) of model-view-controllers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Software architecture for the implementation of ontology-enabled traceability. 
 
The fully developed system will consist of a requirements phase, an ontology phase, an engineering 
development phase. The systems relationship hub (SRH) will be responsible for defining high-level 
system development entities and their initial connections, and then systematically assembling the graph 
infrastructure to mimic the graph structure shown in Fig. 1. Each block will employ a combination of the 
mediator and model-view-controller design patterns. The requirements block is expanded to show the 
details of model, view and controller interaction  

4. Finite State Machine Behavior and Requirements-to-Behavior Traceability 

       Our objective is to develop a software infrastructure that will allow for the modeling of system 
behaviors as networks of communicating finite state machines. To allow for scalability and the possibility 
of concurrent processes operating within a single system, finite state machine behavior models are built 
from an abstract model-view-controller assembly, plus extensions for statechart behaviors [8]. See Figure 
3. Appropriate interfaces and abstract class definitions are added for the assembly of traceability models. 
Metadata is used to recognize the runtime-specific data used by the statechart  (i.e., to keep a list of states, 
currently active states, transitions and guard conditions). The Metadata class fires propertychange events 
when the statechart enters a new state or starts a transition. Changes in state can also occur when events 
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are fired in the statechart model. Support for traceability includes state and transition classes, both of 
which fire propertychange events when their activity status is updated. Guard conditions are interfaces 
that verify the availability of a transition through the evaluation of evaluate boolean expressions in the 
statechart. Guard interfaces notify the controller when their status is evaluated to either true or false. 

 

 

 

 

 

 

Fig. 3. Abstract models, controllers, and views supporting statechart behavior modeling. 

5. Software Prototype: Behavior of a Simple Lamp 

        Computational support for requirements-to-behaviour traceability is being implemented within the 
framework of Figures 1 and 2, and through the systematic implementation of progressively complicated 
applications. Our first application is behaviour of a simple lamp having an on/off switch and a clock.  Table 1 
summarizes the system requirements and expected behaviour. 

Table 1. Lamp requirements and expected behavior. 

Figure 4 is a schematic of the partially complete lamp prototype augmented by workspaces for the 
engineering, ontology and requirements models. Within each workspace, the model, view and controller 
classes are extensions of their abstract counterparts (e.g., AbstractModel). The engineering model has a 
system structure (i.e., defined by attributes for lamp geometry, color, style) plus a model for system 
behaviour implemented as small network of controller behaviours. Basic behaviour is handled by a lamp 
controller, which in turn, links to a statechart controller (not shown). A barebones clock would provide a 
switch for the lamp to be turned on/off, subject to the lamp being connected to a power supply (i.e., any 
transition to an On state will only occur when a guard check on power evaluates to true). However, in 
order to make the behaviour a bit more interesting, we add a clock and time model so that requirements 1 
and 2 in Table 1 may be satisfied. The observer design pattern regulates communication among the 
controllers, both locally within a workspace, and globally throughout the traceability network. A user can 
interact with the engineering view by clicking the switch (displayed as a small black box) on and off. 

System Requirements Expected Behaviour  
1- The lamp shall be switched to on 
when time is 8:00 pm. 

When the time is 8 pm, the statechart will transition to the On 
state if it is not already in that state. 

2- The lamp shall be switched to off 
when time is 7:00 am. 

When the time is 7 am, the statechart will transition to the Off 
state if it is not already in that state. 

3- The user shall be able to switch the 
lamp off at any given time. 

When the user clicks the switch button (small black box) in the 
lamp view, the lamp will turn off if it was on. 

4- The user shall be able to switch the 
lamp on at any given time. 

When the user clicks the switch button (small black box) in the 
lamp view, the lamp will turn on if it is off. 
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Changes in the lamp state are automatically propagated to the statechart view, and when the model is 
complete, also to a requirements table view and ontology graph view. 
 

 

Fig. 4. Schematic of the lamp behavior software prototype 

6. Conclusions and Future Work 

Our program of research to understand the role that software patterns and mixtures of graph and tree 
visualization can play in the implementation of ontology-enabled traceability mechanisms is still in its 
infancy. When the lamp application is complete we will move onto trains and build a simplified model of 
the Washington D.C. Metro System, with a focus on timetables, schedules and train behaviors. 
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