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SUMMARY

Hippo signaling is a tumor-suppressor pathway
involved in organ size control and tumorigenesis
through the inhibition of YAP and TAZ. Here, we
show that energy stress induces YAP cytoplasmic
retention and S127 phosphorylation and inhibits
YAP transcriptional activity and YAP-dependent
transformation. These effects require the central
metabolic sensor AMP-activated protein kinase
(AMPK) and the upstream Hippo pathway compo-
nents Lats1/Lats2 and angiomotin-like 1 (AMOTL1).
Furthermore, we show that AMPK directly phosphor-
ylates S793 of AMOTL1. AMPK activation stabilizes
and increases AMOTL1 steady-state protein levels,
contributing to YAP inhibition. The phosphoryla-
tion-deficient S793Ala mutant of AMOTL1 showed a
shorter half-life and conferred resistance to energy-
stress-induced YAP inhibition. Our findings link en-
ergy sensing to the Hippo-YAP pathway and suggest
that YAP may integrate spatial (contact inhibition),
mechanical, and metabolic signals to control cellular
proliferation and survival.
INTRODUCTION

Hippo signaling has been implicated in organ size control by

restricting the transcriptional coactivators YAP/TAZ (Dong

et al., 2007; Harvey and Tapon, 2007; Harvey et al., 2013; Pan,

2007). The core components of the pathway construct a kinase

cascade, in which Mst1/Mst2 in complex with SAV1 phosphory-

late and activate Lats1/Lats2 kinases. Subsequently, Lats1/

Lats2 kinases in complex with Mob1 phosphorylate YAP/TAZ,

leading to their cytoplasmic retention and inhibition (Harvey

et al., 2003; Udan et al., 2003; Wu et al., 2003). Inhibition of

this kinase cascade leads to dephosphorylation of YAP/TAZ

and their accumulation in the nuclei. Nuclear YAP/TAZ bind to
C

TEA domain transcription factors (TEAD); promote the expres-

sion of target genes; and modulate diverse cellular functions,

including proliferation, apoptosis, migration, and differentiation

(Harvey et al., 2013; Hong and Guan, 2012). Consistently, loss-

of-function mutations of upstream Hippo pathway components,

or overexpression of YAP, lead to overgrowth and tumorigenesis

in many tissues (Pan, 2010; Schlegelmilch et al., 2011; Zhou

et al., 2009, 2011).

Previously, it has been shown that multiple upstream signals,

such as cell-cell contact (Zhao et al., 2007), mechanical forces

and cytoskeletal reorganization (Dupont et al., 2011; Zhao

et al., 2012), and serum lipids and their receptors (Miller et al.,

2012; Yu et al., 2012), could modulate YAP localization

and S127 phosphorylation through Hippo-pathway-kinases-

dependent or independent mechanisms. To identify modulators

of the Hippo-YAP pathway, we developed a high-content imag-

ing assay using human embryonic kidney 293A (HEK293A) cells

to directly visualize the nuclear localization of endogenous YAP.

YAP nuclear localization can be quantified by the Pearson’s cor-

relation coefficient with the nuclear staining, providing a sensi-

tive and robust cellular assay to study the regulation of YAP

(Figure S1A). Using such a system, we have discovered that en-

ergy stress and inhibition of glucose metabolism could inhibit

YAP, providing molecular mechanisms linking cellular meta-

bolism to tumorigenesis.

RESULTS

Energy Stress Induces YAP Cytoplasmic Retention
and S127 Phosphorylation and Inhibits Its
Transcriptional Activity
Previously, we and others havediscovered that serumdeprivation

significantly induces YAP cytoplasmic retention through serum

lipids (Miller et al., 2012; Yu et al., 2012). To further study whether

other nutrient and energy stress signals could modulate YAP,

we screened a set of small-molecule compounds known to

modulate nutrient and energy-sensing pathways, including inhib-

itors of glucose metabolism and ATP production, phosphatidyli-

nositol 3-kinase (PI3K)/AKT/mTOR signaling, and growth factor
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Figure 1. Energy Stress Inhibits YAP

(A) Confluent and serum-stimulated HEK293A cells

were treated with DMSO control, AICAR (1 mM),

metformin (10 mM), or phenformin (1 mM) with or

without compound C (10 mM) for 3 hr. YAP nuclear

localization is quantified by determining the Pear-

son’s correlation coefficient of nuclear staining.

Data are represented asmean, SD; n = 3. (*p < 0.03;

**p < 0.001.)

(B) Small-molecule energy stressors induce YAP

S127 and TAZ S89 phosphorylation in HaCaT cells.

HaCaT cells were treated with DMSO (control),

1 mM phenformin, 1 mMAICAR, or 25 mM 2-DG for

6 hr.

(C) Inhibition of YAP reporter activity. HEK293 YAP

reporter cells were treated with DMSO control,

2-DG (8.3 or 25 mM), AICAR (1 or 3 mM), or met-

formin (10 mM). Data are represented as mean, SD;

n = 3.

(D) Energy stressors suppress YAP target-gene

expression. HEK293A cells were treated with

DMSO (ctrl), 1 mM phenformin, or 1 mM AICAR for

16 hr. Relative mRNA levels are normalized to

DMSO (ctrl).

(E) MCF10A cells transduced with a vector control,

YAPwild-type or YAP S127Amutant were grown on

Matrigel without EGF. Cells were treated with met-

formin (2mMor 10mM) or DMSO control. The scale

bar represents 100 mm.

(F) The colony numbers per field are quantified by

Image J and shown in bar graph (data are repre-

sented as mean, SD; n = 4; *p < 0.05; **p < 0.0005

by comparing to the S127A mutant samples with

the same treatment). WT, wild-type.

(G) Metformin dose dependently inhibits the prolif-

eration of primary mouse hepatocellular carcinoma

(HCC) cell line JF001 (Mst1�/�Mst2�/�). JF001 cells

transduced with vector, wild-type YAP, or YAP

S127A mutant were treated as indicated. Data are

represented as mean, SD; n = 3; *p < 0.05; **p <

0.001 by comparing to the DMSO control.

See also Figure S1.
signaling, in the YAP translocation assay. In serum-stimulated,

confluent HEK293A cells, we observed that treatment of themito-

chondrial complex I inhibitormetformin (Glucophage) and itsmore

potent analog phenformin inhibits YAP nuclear localization within

3 hr (Figures 1A and S1B). Metformin and phenformin lower

cellular ATP levels, increase AMP to ATP ratio in the cell, and acti-

vate AMP-activated protein kinase (AMPK), a central cellular

metabolic sensor (Hardie, 2007; Mihaylova and Shaw, 2011).

Consistently, we also found that treatment with 5-aminoimida-

zole-4-carboxamide-1-b-riboside (AICAR), a precursor of ZMP

that acts as anAMPmimetic anddirect activator of AMPK (Shack-

elford and Shaw, 2009), has similar effects on YAP cytoplasmic

retention. AICAR also potently inhibits YAP nuclear localization

in cells culturedat lowdensity (FigureS1C). InHaCaTkeratinocyte

cells, treatment of phenformin (1 mM) and AICAR (1 mM) for 6 hr

also elevates phosphorylated YAP (p-YAP) (S127) and p-TAZ

(S89) levels (Figure 1B). Phosphorylation of a well-known AMPK

substrate, acetylcoenzyme A (CoA) carboxylase (ACC) indicates

the activation of AMPK. Similarly, treatment of HEK293 cells with
496 Cell Reports 9, 495–503, October 23, 2014 ª2014 The Authors
the specific AMPK activator A-769662 induces p-YAP (S127)

(Cool et al., 2006; Figure S1D). Furthermore, energy stressors

inhibit YAP-dependent transcription using a TEAD-binding-

element-driven luciferase reporter (MCAT-YAP-Luc) and the

expression of direct YAP target genes (ANKRD1, CTGF, and

CYR61) by quantitative RT-PCR (qRT-PCR) (Figures 1C and 1D).

In addition, deprivation of glucose from the culture media and

inhibition of glucose metabolism by 2-deoxy-D-glucose (2-DG)

elevated p-YAP (S127) and inhibited YAP-dependent reporter

activity (Figures 1B and 1C). Consistently, glucose deprivation

inhibits and adding back glucose largely rescued YAP reporter

activity (Figures S1E and S1F). Taken together, these data indi-

cate that energy stress and direct activation of AMPK could

inhibit YAP. Similar effects were observed in other cell types,

although less significantly in fibroblast cells such asNIH 3T3 (Fig-

ure S1G). These effects are independent from inhibition of cell

growth, asother antiproliferative compounds, including inhibitors

of PI3K, AKT, mTOR, and CDK4 (wortmannin, LY294002, rapa-

mycin, and roscovitine), have little effect on p-YAP induction



under similar conditions (Figures S1H and S1I). Taken together,

these results suggest that inhibition of YAP activity by energy

stress could be a conserved and direct signaling event.

Energy Stress Inhibits YAP-Dependent Transformation
and Cancer Cell Proliferation
Expression of YAP in MCF10A cells disrupts the normal acinar

structures and promotes epidermal growth factor (EGF)-inde-

pendent growth in Matrigel (Overholtzer et al., 2006; Zhang

et al., 2009). To evaluate whether energy stress could inhibit

YAP oncogenic activity, we tested metformin in MCF10A cells

transduced with YAP, constitutively active YAP S127A mutant,

and a vector control. Treatment with metformin (2 mM and

10 mM) showed a significant and dose-dependent reduction in

colony number in cells expressing wild-type YAP (Figures 1E

and 1F). Although the mean colony size is decreased upon met-

formin treatment, this effect was not statistically significant due

to high variation of the size measurement in 3D culture (Fig-

ure S1J). The significant colony number inhibition likely reflects

the inhibition of YAP-mediated cell survival rather than cell

growth. In contrast, metformin did not inhibit colony formation

in cells expressing YAP S127A mutant, suggesting that the ef-

fects of metformin are specifically through the inhibition of YAP

nuclear localization. Consistently, the expression of YAP target

genes (CTGF and CYR61) is inhibited by metformin in wild-type

YAP-expressing cells, whereas expression of YAP S127A con-

fers resistance (Figure S1K).

Mice lacking Mst1/Mst2 in the liver develop aggressive YAP-

dependent hepatocellular carcinoma (HCC). We tested whether

energy stress would block the proliferation of HCC cells isolated

from liver-specific Mst1�/�Mst2�/� mice (Zhou et al., 2009).

Mouse work was done with Institutional Animal Care and Use

Committee approval at Massachusetts General Hospital and in

strict accord with good animal practice as defined by the Office

of Laboratory Animal Welfare. Indeed, metformin dose depen-

dently inhibits the proliferation of an HCC cell line (JF001).

Expression of YAP S127Amutant confers resistance to the com-

pound treatment, confirming that metformin inhibits HCC prolif-

eration through the inhibition of YAP (Figure 1G). Taken together,

our results illustrate that energy stress can block YAP-depen-

dent transformation and cancer cell proliferation.

Energy Stress Inhibits YAP Involving AMPK, Lats1/Lats2
Kinases, and the Tight-Junction Protein AMOTL1
To further explore the mechanisms, we treated wild-type and

AMPK-null (AMPKa1�/�a2�/�) mouse embryonic fibroblasts

(MEFs) with 2-DG (25 mM) or phenformin (1 mM) for 12 hr.

2-DG and phenformin increased p-ACC, as well as p-YAP

(S127) in wild-type MEFs, albeit to a lesser extent than in epithe-

lial cells. In AMPK-null MEFs, p-YAP induced by phenformin and

2-DG was largely inhibited, suggesting that AMPK activity is

necessary for p-YAP induction (Figure 2A). AMPK-null MEFs

also have lower basal p-YAP levels compared to wild-type

MEFs, suggesting that loss of AMPK might lead to YAP activa-

tion. Moreover, we found that a small-molecule AMPK inhibi-

tor, compound C, blocks AICAR, metformin, and phenformin-

induced YAP cytoplasmic retention (Figures 1A, S1B, and

S1C). Because compound C might also inhibit other protein
C

kinases (Bain et al., 2007), we used small interfering RNAs

(siRNAs) targeting AMPKa1 and AMPKa2 to confirm the effects.

The siRNAs (�90% knockdown efficiency) decreased p-ACC

and greatly inhibited p-YAP induced by phenformin, suggesting

that AMPK is indeed required to mediate the regulation of YAP

(Figure 2B). Consistently, we also observed that siRNAs target-

ing AMPKa1 and AMPKa2 rescued the effects of metformin

and phenformin on YAP nuclear localization (Figures 2C and

S2A). Altogether, these data show that the cellular energy sensor

AMPK is required to mediate YAP regulation in response to

metabolic and energy stress.

To probe whether AMPK-mediated YAP inhibition requires

upstream core Hippo pathway kinases, we first tested the

effects in Mst1�/�Mst2�/� HCCs. Interestingly, metformin treat-

ment induces and cotreatment of compound C inhibits p-YAP

(S127) in these cells, suggesting that Mst1/Mst2 kinases are

dispensable to inhibit YAP (Figure 2D). This is also consistent

with our data that metformin blocks the proliferation of

Mst1�/�Mst2�/� HCCs (Figure 1H). We then used siRNAs to

silence Lats1 and Lats2 (�90% knockdown; Figure S2B), which

decreased the basal level of p-YAP and completely blocked

the effects of energy stressors (Figure 2E), suggesting that

energy-stress-mediated YAP phosphorylation requires Lats1/

Lats2 kinases.

Next, we examined the changes of known Hippo pathway reg-

ulators upon energy stress. We found that phenformin treatment

significantly increased the protein levels of angiomotin-like 1

(AMOTL1) by 7.3-fold. The protein levels of other motin family

proteins (AMOT and AMOTL2) also increased, although less

significantly (Figure 3A). In total, the levels of motin proteins

increased more than 12-fold upon phenformin treatment.

AMOT, AMOTL1, and AMOTL2 are tight junction proteins that

inhibit YAP through three mechanisms: (1) binding to and

sequestering YAP out of nuclei (Yi et al., 2011; Zhao et al.,

2011); (2) binding to and enhancing Lats1/Lats2 activation (Para-

masivam et al., 2011); and (3) reducing the stability of YAP by

promoting its ubiquitination (Adler et al., 2013a). This is consis-

tent with our observation that, upon metabolic stress, changes

in YAP translocation are more quickly detected than its S127

phosphorylation, suggesting that direct sequestration and

enhanced Lats1/Lats2 activity both play roles in the regulation.

Indeed, we observed moderate activation of Lats1 (p-Lats1

S909) by 2.2-fold with phenformin treatment. Other upstream

Hippo pathway components, such as NF2 and MST2, were not

significantly changed. We then evaluated the mRNA levels of

motin family members by qRT-PCR. We observed that phenfor-

min treatment did not significantly increase the mRNA levels of

AMOTL1 and AMOTL2 and AMOT mRNA levels increase by

�2-fold (Figure S3A). We chose to focus our studies on AMOTL1

in energy-stress-mediated YAP inhibition, as its changes are the

most significant.

To test whether metabolic stress could stabilize AMOTL1, we

treated cells with metformin or DMSO control, together the with

protein synthesis inhibitor cycloheximide, and analyzed the pro-

tein levels of endogenous AMOTL1 by western blotting at

different time points (Figure 3B). We observed that the half-life

of endogenous AMOTL1 increases from 15.4 to 56.2 min with

metformin treatment (Figure 3C). Therefore, energy stress might
ell Reports 9, 495–503, October 23, 2014 ª2014 The Authors 497
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Figure 2. Energy Stress Inhibits YAP

through AMPK and Lats1/Lats2

(A) AMPK is required for YAP inhibition. Wild-type

or AMPK�/� (AMPKa1a2 double knockout) MEFs

were treated with DMSO control, 2-DG (25 mM),

or phenformin (1 mM) for 12 hr. Cells were then

harvested for western blot analysis.

(B) HaCaT cells were transfected with siRNAs

targeting AMPKa1 and AMPKa2 and then treated

for 16 hr with DMSO or phenformin (1 mM).

(C) siRNAs targeting AMPKa1 and AMPKa2

blocks YAP cytoplasmic retention. Cells were

transfected with siRNAs targeting AMPK and then

treated for 16 hr with DMSO, metformin (10 mM),

or phenformin (1 mM). YAP nuclear localization is

quantified by determining the Pearson’s correla-

tion coefficient between YAP-positive areas with

the nuclear staining. Data are represented as

mean, SD; n = 3. *p < 0.05; **p < 0.001 by

comparing to the DMSO control.

(D) HCCs were isolated from tumors derived from

liver-specific Mst1�/�Mst2�/� mice. Cells are

treated with metformin (10 mM) or cotreated with

compound C (10 mM) for 8 hr. p-YAP levels were

evaluated by western blot.

(E) HEK293A cells were transfected with siRNA

control or siRNA targeting Lats1 and Lats2 (no.

5+8 or no. 5+10). Cells were treated with AICAR

(1 mM) or metformin (10 mM) for 8 hr, serum-free

media (SFM) (3 hr), or 2-DG (25 mM; 3 hr). Cells

were then harvested for western blot analysis of

p-YAP (S127).

See also Figure S2.
stabilize the AMOTL1 protein and thus increase its steady-state

protein levels, leading to YAP inhibition.

To confirm that motin proteins are required to mediate the ef-

fects, we transfected siRNAs targeting AMOT and AMOTL1 with

GFP into HEK293A cells and treated the cells with 1mMphenfor-

min or DMSO. The siRNAs effectively knock down AMOT and

AMOTL1 (Figure S3B). In siRNA-transfected cells (GFP+), we

observed that knocking down AMOT/AMOTL1 blocked phenfor-

min effects. In the nontransfected cells (GFP�), phenformin re-

mains effective, serving as a good internal control (Figures 3D

and S3C). In HaCaT cells, AMOTL1 small hairpin RNA (shRNA)

alone could sufficiently block phenformin-induced p-YAP (Fig-

ure 3E). In addition, when AMOTL1 is silenced by shRNA, inhibi-

tion of YAP target genes expression (CTGF, Cyr61, and ANKD1)

by phenformin could be significantly rescued (Figure S3D). Most

importantly, the growth inhibition of these cells by phenformin

and metformin could also be significantly rescued when

AMOTL1 is silenced (Figure 3F). Taken together, these results

suggest that the motin family proteins, particularly AMOTL1,

are involved in the regulation of YAP in response to energy

stress.
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AMPK Directly Phosphorylates
AMOTL1 at S793
We then set out to study how AMPK reg-

ulates AMOTL1. To test whether motin

proteins could be direct substrates of
AMPK, we carried out a bioinformatics search for conserved

AMPK substrate motifs (Dale et al., 1995; Gwinn et al., 2008;

Scott et al., 2002). We found that all motin proteins contain

AMPK substrate motifs (AMOTL1 S793, AMOT S787, and

AMOTL2 S667), all of which are evolutionarily conserved among

vertebrates (Figure 4A). We then performed coimmunoprecipita-

tion experiments and found that the AMPKa subunit directly

binds to AMOTL1 (Figure S4A). To confirm that AMOTL1 could

be phosphorylated upon AMPK activation in cells, we carried

out phosphoproteomic studies using FLAG-AMOTL1 isolated

from cells treated with DMSO control, metformin, or cotreated

with metformin and compound C. We detected nonphosphory-

lated peptides (peak A), peptides phosphorylated at an adjacent

site S805 (peak B), peptides phosphorylated at the predicted

AMPK site S793 (peak C), and peptides with double phospho-

rylation at S793 and S805 (peak D; Figure 4B) by liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS) methods

(Figure S4B). We then quantified their relative abundance by

calculating the area under the curve (AUC). Treatment with met-

formin increased the abundance of peptide fragments contain-

ing p-S793 (peaks C and D), and cotreatment with compound
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Figure 3. Endogenous AMOTL1 Is Stabilized

in Response to Energy Stress and Required

toMediate AMPK-InducedYAP-Cytoplasmic

Retention and S127 Phosphorylation

(A) HEK293A cells were treated with DMSO control

or phenformin (1 mM) for 16 hr. Protein levels of

Hippo pathway components (AMOTL1, AMOT,

AMOTL2, p-YAP, YAP, p-Lats1, Lats1, MST2, and

NF2) were analyzed by western blots.

(B) Cells were treated with metformin (10 mM) for

4 hr and with cycloheximide (CHX) with indicated

time. Protein levels of endogenous AMOTL1 were

analyzed by western blots.

(C) Protein levels from (B) were quantified by

densitometry of the bands. Projected degradation

curve of AMOTL1 was plotted and fitted using

Prism software.

(D) HEK293A cells were transfected with siRNAs

targeting AMOT and AMOTL1, with GFP to mark

transfected cells. Cells were treated with phen-

formin (1 mM) or DMSO. YAP nuclear localiza-

tion is quantified by determining the Pearson’s

correlation coefficient in GFP-positive (trans-

fected) or GFP-negative (nontransfected) cells.

Data are represented as mean, SD; n = 3. *p <

0.02; **p < 0.001 by comparing to the DMSO

controls.

(E) HaCaT cells were transfected with shRNA tar-

geting AMOTL1. Cells were treated with DMSO

control or phenformin (1 mM), and p-YAP level is

analyzed.

(F) Cells were transfected shRNA targeting

AMOTL1 and then treated with DMSO, metformin

(10 mM), or phenformin (1 mM) for 48 hr. The cell

proliferation is determined by measuring the cell

viability. Data are represented as mean, SD; n = 3

(*p < 0.01).

See also Figure S3.
C dramatically decreased p-S793 peptides abundance, sug-

gesting that activation of AMPK leads to increased phosphoryla-

tion of AMOTL1 at S793 in cells (Figure 4C). In addition, the

phosphorylation levels of the adjacent S805 site are independent

of AMPK activation and inhibition, serving as an ideal internal

control (Figure 4B).

To confirm that S793 is directly phosphorylated by AMPK,

we generated an AMOTL1 (S793A) mutant construct. Indeed,

purified AMPK kinase could phosphorylate AMOTL1 wild-type,

but not the S793A mutant in vitro (Figure 4D). In addition, we

quantified the radioactivity of the phosphorylated AMOTL1 in

this assay. We observed the phosphorylation stoichiometry of

0.78 mol of phosphate incorporation per mole of AMOTL1

(78% phosphorylated). These results suggest that S793 is

indeed an AMPK substrate site. Furthermore, we utilized a

Phos-tag gel to visualize phosphorylated and nonphospho-

rylated species of AMOTL1. In DMSO-treated cells, 12% of
Cell Reports 9, 495–503
the AMOTL1 protein is phosphorylated.

Upon treatment with A-769662 or phen-

formin, the percentage of phosphorylated

AMOTL1 increases to 37% and 73%,

respectively (Figure 4E). Thus, AMPK acti-
vation increases the amount of phosphorylated AMOTL1 in cells.

Next, we generated a phosphospecific antibody against p-S793

of AMOTL1. Although the antibody is too weak to reliably detect

endogenous AMOTL1 phosphorylation, it showed good speci-

ficity and sensitivity toward exogenous wild-type, but not S793

mutants (Figure S4C). We transfected HaCaT cells with FLAG-

AMOTL1 and treated the cells with phenformin or DMSO control

for 1 or 2 hr. We observed that the AMOTL1 p-S793 increased

within 1 hr (Figure 4F), suggesting that its phosphorylation is

indeed enhanced by AMPK activation. We also observed that

exogenous FLAG-AMOTL1 has high basal S793 phosphory-

lation levels, possibly resulting from the basal AMPK activity

in the cells (Figures 4F and 4G). Consistently, when AMPKa1/

AMPKa2 subunits are silenced by siRNAs (with knockdown effi-

ciency of �50%) in HEK293A cells, we observed a significant

decrease in the basal p-AMOTL1 levels (Figure 4G), thus sug-

gesting that inhibition of AMPK could inhibit p-AMOTL1. With
, October 23, 2014 ª2014 The Authors 499
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Figure 4. AMPK Directly Phosphorylates AMOTL1 S793, Leading to Its Stabilization and YAP Inhibition

(A) Alignment of the conserved AMPK substrate motifs in angiomotin family proteins (AMOTL1, AMOT, and AMOTL2) of different species.

(B) LC-MS/MS studies of phosphorylation of AMOTL1 S793. FLAG-AMOTL1 was purified from HEK293A cells treated with metformin (10 mM) or metformin

and compound C (10 mM). Extracted ion chromatographs of peptides containing S793 were shown. Peak A, unphosphorylated peptide; peak B, peptide with

p-S805; peak C, peptide with p-S793; peak D, peptide with p-S793 and p-S805.

(legend continued on next page)

500 Cell Reports 9, 495–503, October 23, 2014 ª2014 The Authors



the decrease of basal p-AMOTL1 levels, the fold induction of

p-AMOTL1 by metformin treatment is more significant, suggest-

ing that the phosphorylation of exogenous AMOTL1 at S793

indeed could be regulated by AMPK (Figure 4G). Collectively,

these data suggest that AMOTL1 is indeed an AMPK substrate

and AMOTL1 S793 could be phosphorylated by AMPK directly.

AMPK-Mediated AMOTL1 S793 Phosphorylation Leads
to Increased Protein Stability
We then probed the functional consequences of AMOTL1 S793

phosphorylation. We transfected HEK293T cells with either wild-

type or S793A AMOTL1 and treated cells with AMPK activator

A-769662 (100 mM). We then measured the protein half-life of

wild-type and AMOTL1 S793A by cycloheximide chase followed

by western blotting (Figure 4H). We found that the half-life of the

S793Amutant is markedly shorter than thewild-type, suggesting

that loss of S793 phosphorylation destabilizes AMOTL1. Further-

more, dephosphorylation of AMOTL1 by compound C treatment

also dramatically decreased the half-life of endogenous

AMOTL1 (Figure S4D). Because Lats1/Lats2 phosphorylation

of AMOT at S175 has been implicated in regulation of its locali-

zation and stability (Adler et al., 2013b; Dai et al., 2013), we

tested whether Lats1/Lats2 are required to stabilize AMOTL1

upon energy stress. We found that, although knocking down

Lats1/Lats2 decreased basal AMOTL1 protein levels, it had no

effect on the AMPK-activator-mediated increase of AMOTL1

protein levels (Figure S4E). Further studies are needed to eluci-

date the cooperation between the Lats1/Lats2 and AMPK phos-

phorylation sites on motin proteins.

To test whether AMOTL1 S793 phosphorylation is functionally

involved in YAP inhibition, we knocked down endogenous

AMOTL1 using shRNA and then overexpress the shRNA-resis-

tant version of AMOTL1 wild-type or AMOTL1 S793A mutant.

Interestingly, we found that, in cells expressing wild-type

AMOTL1, phenformin could significantly inhibit YAP target

gene expression. However, in cells expressing AMOTL1 S793A

mutant, phenformin failed to inhibit YAP target genes (Fig-

ure S4F). Furthermore, in cells expressing wild-type AMOTL1,

phenformin could potently inhibit cell proliferation, whereas ex-

pressing AMOTL1 S793A mutant significantly rescues the inhib-

itory effects of phenformin (Figure 4I). These results suggest that

AMOTL1 S793 phosphorylation couldmodulate YAP functions in

response to energy stress and could be one of the mechanisms

leading to YAP inhibition.
(C) The abundance of the peptides was quantified by measuring the area under

(D) Recombinant AMPK phosphorylates AMOTL1 wild-type, but not S793A muta

(E) HEK239T cells were treated for 8 hr with DMSO (control), 1 mM A-769662, or 1

followed by western blotting with anti-AMOTL1.

(F) Phenformin treatment increased AMOTL1 S793 phosphorylation. An antibod

transfected with FLAG-AMOTL1 and then treated with DMSO or phenformin (1 m

(G) Knockdown of AMPKdecreased the levels of p-AMOTL1. Cells were transfecte

then treated with metformin (10 mM) or DMSO control. p-AMOTL1 levels were d

(H) AMOTL1 S793A has a shorter half-life than wild-type AMOTL1. HEK293T cell

16 hr with A-769662 and then treated for the indicated time with cycloheximide

(I) Cells were transfected with AMOTL1 wild-type or S793A mutant and then tre

determined by CellTiter Glo. Data are represented as mean, SD; n = 3 (*p < 0.01

(J) A proposed model of energy-stress-mediated YAP inhibition.

See also Figure S4.

C

DISCUSSION

Here, we propose a signaling mechanism (Figure 4J), in which

cellular energy level is an upstream regulator of Hippo signal-

ing. We found that energy stress activates AMPK, stabilizes

AMOTL1, and leads to YAP inhibition. Although glucose depriva-

tion and metformin treatment could activate AMPK relatively

quickly (in 1 hr; Nguyen et al., 2013), sustained AMPK activation

(�2–6 hr) was required to inhibit YAP. This is consistent with our

proposed mechanism in which phosphorylation of AMOTL1 by

AMPK leads to AMOTL1 protein accumulation due to its

increased half-life. However, other possible AMPK substrates

(Kibra, ZO-2, and YAP) and other motin family members could

also be involved in the regulation of YAP. Therefore, further

studies to characterize them as AMPK substrates would shed in-

sights into the mechanisms of YAP regulation. In addition, it is

also possible that other AMPK-related kinases (such as SIK or

microtubule affinity-regulating kinase [MARK]) could mediate

the basal phosphorylation of AMOTL1 and AMPK activation

boosts the existing phosphorylation in response to metabolic

stress, which is not uncommon in AMPK-regulated substrates

(Shackelford and Shaw, 2009).

Among the motin family proteins, AMOTL1 might be the major

mediator of the effects. We could not detect phosphorylation of

the predicted AMPK motif (S787) in AMOT by mass spectrom-

etry. Other non-AMPK sites (S97 and S714) are phosphorylated

upon metformin treatment in mass spectrometry studies (Fig-

ure S4G). These results suggest that other kinases downstream

of AMPK or less-stringent AMPK substrate sites might be

involved. Therefore, AMOT might be regulated differently than

AMOTL1, and future studies are needed to elucidate the regula-

tion of AMOT and AMOTL2 in response to energy stress and their

roles in YAP regulation.

LKB1/STK11 is a known tumor suppressor (Shackelford and

Shaw, 2009) and a major upstream regulator of AMPK. Our re-

sults suggest that loss of LKB1 and AMPK activities might

contribute to tumorigenesis through destabilizing AMOTL1,

leading to hyperactivation of YAP. A recent study has shown

that LKB1 acts through the MARK family to regulate the localiza-

tion of Scribble (Mohseni et al., 2014). Our results and the results

of Mohseni et al. (2014) suggest that there are multiple pathways

downstream of LKB1 to regulate YAP activity. This could have

important implications for the treatment of LKB1-dependent tu-

mors. Recent work by the Cancer Genome Atlas Project has
the curve (AUC) in the spectra.

nt, in vitro. IB, immunoblot.

mM phenformin. Protein lysates were then analyzed by Phos-Tag SDS-PAGE

y recognizing p-AMOTL1 (S793) was used in western blot. HaCaT cells were

M) for 1 or 2 hr.

d with siRNAs targeting AMPKa1 and AMPKa2 and FLAG-AMOTL1. Cells were

etermined by using a phosphospecific antibody recognizing AMOTL1 S793.

s transfected with either wild-type or S793A mutant AMOTL1 were treated for

(CHX).

ated with DMSO control or phenformin (1 mM) for 48 hr. The cell viability is

).
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identified mutations of AMOTL1 at the AMPK recognition motif

(R789C, P790I, and R792H) in multiple cancers. Although at

low frequencies, such mutations might lead to loss of AMPK-

mediated S793 phosphorylation and promote YAP activation

in these cancers. In summary, our studies have shown that

cellular energy sensor AMPK could regulate YAP by directly

phosphorylating and stabilizing tight-junction protein AMOTL1,

connecting energy sensing to the regulation of Hippo pathway.

EXPERIMENTAL PROCEDURES

Immunofluorescence Staining, YAP Translocation Assay, and

Imaging Analysis

Cells were fixed and then stained with primary antibody (anti-YAP). The images

were acquired by high-throughput confocal microscopy (Opera High Content

Screening System). Four images/well were captured using a 203 objective at a

resolution of�0.65 mm/pixels. The images of YAP immunostaining and nuclear

Hoechst were analyzed with a custom Acapella (PerkinElmer) script as previ-

ously reported or with CellProfiler (Carpenter et al., 2006). YAP nuclear/cyto-

plasmic translocation was defined using the Pearson’s correlation coefficient

(R) between the YAP and the Hoechst fluorescence channels across each pixel

of the cellular object detected.
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