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The Cauchy-Poisson Waves in an Inviscid Rotating Stratified Liquid 

DAVID ROLLINS AND LOKENATH DEBNATH 

Department of Mathematics, University of Central Florida 

1. FORMULATION 

We consider the sxisymmetric Cauchy-Poisson waves in an inviscid incompressible rotating 
stratified liquid of infinite depth. We use the cylindrical polar coordinates (r, 0, z) and 
consider a semi-infinite body of liquid bounded by 0 5 r 5 00, -co < z < Q(T). The liquid 
is subjected to a uniform rotation with angular velocity Sl about the vertical axis r = 0 
so that the equation of the paraboloidal free surface with 2e as latus rectum is given by 
2 = Q(P) = r2/2e. 

We assume that the disturbed free surface is given by 

* = 20(r) + rl(r,t) (1.1) 

due to superimposed initial elevation 

2 = 20(r) = aqo(r) = a- ‘(‘) at t = 0, 
r (1.2) 

where 27ra is the displaced volume associated with the initial elevation and 6(r) is the Dirac 
delta function. 

The problem will be studied under the Boussinesq approximation. We assume the density 
field varies exponentially with the depth of the liquid. The Brunt-V&&i frequency N is 
given by 

N= -i?k 
[ 1 

i 
PO d.z 

(1.3) 

where g is the acceleration due to gravity, pc(r) and pc( ) z are the pressure and density in a 
reference state of hydrostatic equilibrium. The pressure p and the density p are expanded 
about po and pc so that Vpc = gpc, p = po + p’, and p = po + p’ where p’ and p’ are the 
perturbed quantities. We further assume that the density field varies exponentially with the 
depth SO that N is real and positive for stable mean density distribution (dpo/dr < 0) and 
it remains constant throughout the flow field. 

In view of these assumptions together with the acceleration potential x = p’/po+g(r-ro), 
the basic equations in a rotating frame of reference are 

3 u, 21, w) + 2R(-v, u,o> = -(&O, gx - (O,O, $1 (14 

(1.5) 

(1.6) 
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where (u, V, w) is the velocity vector. The free surface conditions are 

x = 97, w = qr + uzh(r) on 2 = 20(P) (1.7) 

The bottom boundary condition is 

x2 -0 aSZ-+-00 (13) 

The wave motion is generated by the action of the initial surface elevation at t = 9 so 
that the initial conditions are 

u=?J=w=x =o, ‘I= aqo(r) at t = 0 0.9) 

2. FORMAL SOLUTION OF THE PROBLEM 

We first transform the initial value problem (1.4-1.9) to a boundary value problem by 
using the Laplace transform with respect to t. We next introduce a change of variable 

r = t<, 2 = $[f$ + X21(1 - <“)I (2.lab) 

with 0 5 < 5 co and 1 5 C < co so that the free surface z = zg(r) corresponds to < = r 

and C = 1. The Laplace transformed equation for X(<, C, s) and the associated boundary 
conditions become 

M2P(fi[)E + c-‘(R&C = 9 (2.2) 

s2 ‘9 N2X - (A’e)-‘& = 0ts2 l N2)qo(C) on C = 1 (2.3) 

where X2 = (s2 + 4Q2)/(s2 + N2) an d s is the Laplace transform variable. 
The solutions of this system are given by 

/ 
O” x(<, C, t) = M-r J&~)Z(k, s)P(Xk1<)kdk, (2.4) 

0 

J 
00 

d&t) = a (lirn+ t-’ Jc(rc@(k, s)P(M!C)kdL, 
0 

(2.5) 

where t” stands for the inverse Laplace transform, z(h,s) is the joint Laplace-Hankel 
transform of the free surface elevation in the limit C --+ l+ given by 

Z(rC, s) = aS[s2 + (g1e/A)q!~(n)]-~, K = AM, (2.6) 

?j(n) = %!Q N 1+ l Ko(KC) 

Ko(K) 
G as IC + 00 and P(K~) = - 

K&c) 
(2.7ab) 

where Ko(,+r) and K~(K) are modified Bessel functions. The free surface elevation is then 

J 
Co 

tjfr,t) = C-’ z(k, s)Jo(M)Qkdk: 
0 

(24 

where Q = lirq,l+ P(Nd() 
The implicit form of the dispersion relation is obtained by setting s = ficJ in the denom- 

inator of the function z(k,s) and then equating the denominator to zero as 

w* = N2 + (gk/A)$(Ake) or w* = 4R2 + (gkA)$(AM), (2:9ab) 
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with A* = (w* - ~R*)/(u* - N*). In the planar approximation (a = 9 - oo), this 

dispersion relation has the explicit form 

w4 - w2(4R2 + N*) + 4Q2N2 - g*k* = 0 (2.10) 

In the limit 26! - 0 or N -+ 0, the dispersion relation reduces to known results (see [3,2]). 

3. ASYMPTOTIC SOLUTIONS AND CONCLUSIONS 

In order to determine the wave structure in a rotating stratified liquid, the asymptotic 
solution for sufficiently large time is of special interest. The nondimensional form of the 

solution v* = ($)r]( p, 1) can be expressed as the sum of two terms 71 and 72. The first term 

~1 is made up of contributions from the poles of z(k, s) at s = 0 and s = &iw combined 
with the contribution from the stationary point of the integral (2.5). The second term r]2 is 
made up of the branch point contributions and contributions from the stationary points of 

the associated integral. In terms of nondimensional parameters Jo G $, 0 E 5, a E R*e/g, 

and p = N*P/g, we obtain the asymptotic solution by using the stationary phase method 
in the form 

711(T,t) N 2-s/2(p-12aB-3~e-e+0(~))caj(~p+20e+~e+~Pe+o(~)), a~ p + CO (3.1) 

Similarly, we write down the asymptotic solution for ~z(r,t). For the case 2R > N, the 

solution is 

7I*(r,t) N %(I- -g~~(~t)-3~'cos( 2Rt - 7) 

+ 23i$e(1 - $)!(Nf)+l/* COS(N~ + F,, Rt -+ 00. (3.2) 

For the case N >> 212, the asymptotic solution has the form 

q2(r, t) - ,+O(l - !$(Nt)-Jl’ cos(Nt - f) 

+ 23/2-&(1 - $+.(2Rt)-3/2 cos(2Qt + ;) a.s Nt --) co. (3.3) 

For the case 2Q > N, the branch-point contribution to 712 is given by 

‘IZ(r,t) = gJl(2nt) - EL-- 
$2 JxTt 

sin(2Rt - ;, as i-8 + 00 (3.4) 

On the other hand, the branch-point 

72 = &Nt) - 

The asymptotic solution for ~(r, t) 

contribution to 512 for the case N >> 2R is 

pe ’ sin(Nt -- 
Nt ,JZ77 

- ;) as Nt + 00 (3.5) 

consists of several distinct wave terms. The first term 
represented by (3.1) corresponds to surface waves which are qualitatively similar to those 
in the classical Cauchy-Poisson problem for an inviscid nonrotating nonstratified liquid. 
However, the amplitude, and phase of the waves are modified by rotation, stratification, 
and the curved surface of the liquid. For a rapidly rotating liquid (2R >> N), the second 
term (3.2) represents inertial waves of frequency 2Q and internal waves of frequency N. The 
amplitude and phase of these waves are modified, and the former decays as Rt + cm. 

Finally, for the case of strong stratification, the solution consists of internal waves and 
inertial waves of decaying amplitude as Nt + co. Thus the second term represented by oh 
has its existence entirely due to rotation and density stratification. These waves have no 
antecedents in an inviscid nonrotating and nonstratified liquid. 
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