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The abstract theory of scattering deals with pairs of self-adjoint operators 
Hi acting on Hilbert spaces 29 ,i = 1, 2, and the corresponding unitary 
groups Uj(t) = exp( -itHJ, t E R. Most of the existing theories are concerned 
with finding criteria for the existence and completeness of the generalized wave 
operators, defined by 

W* = s-lim U,( -t) KU,(t) Pr 
t+*CO 

where K: .X’i ---f Sa is a linear bijection and Py is the orthogonal projection 
of Sr onto the subspace ~6’7 of absolute continuity for HI . The theory can be 
applied to physical problems only if .%‘y can be shown to coincide with the 
subspace of scattering states for UI(t). This paper presents a new abstract 
definition of the scattering states, based directly on the physical meaning of 
scattering, and develops a corresponding abstract theory of wave operators. 
The applicability of the theory is demonstrated for a class of wave propagation 
problems of classical physics. 

1. INTRODUCTION 

An abstract model for many wave propagation phenomena of 
classical and quantum physics is provided by a Hilbert space 2, 
a self-adjoint operator H on SF, and the corresponding group of 
unitary operators U(t) = exp(4itH), t E R. The vectors f E X are 
interpreted as states of a physical system whose time evolution is 
given by u(t) = U(t)f. The unitarity of U(t) is equivalent to the 
conservation law I/ u(t)11 = llfll where II * II denotes the norm in 2. 

The abstract theory of scattering is concerned with the asymptotic 
equality for t ---t CO of the states of two physical systems. To formulate 
this precisely let 4 , Hi , and Uj(t) = exp(--itH& (j = 1,2) repre- 
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sent the systems and let Jz,: Zi -+ cXa denote a linear bijection with 
inverse Jlz = 1;‘. Then U,(t) may be said to be asymptotically 
equal to Uz(t) on a subspace A%‘~ C Xi if for each fr E ~4’~ there 
exists an fi E Za such that 

It is easy to show that (1.1) holds if and only if the wave operator 

W = W(H, ,f4 > Jzl , -HI) = y&n U-Q Jzl u&> P.M, (1.2) 

exists, where s-lim denotes the strong limit as an operator from Z1 
to 2s and PA denotes the orthogonal projection of X1 onto A?, . 
From this poiit of view the basic problem of the abstract theory of 
scattering is to discover those quadruples (Hz, HI, Jar, A’,) for 
which the wave operator W exists. The problem so formulated is 
extremely general and only special cases of it have been treated. 

Following the pioneering work of Kato [2, 31 and Kuroda [7] most 
of the existing work on the abstract theory of wave operators treats 
the case where A, = SPY, the subspace of absolute continuity for 
HI [4]. This choice appears to have been motivated by its mathe- 
matical convenience (see [6]) and the observation that in many 
applications to physical problems it can be shown that 

se1 = 2;” @ .3q’, (1.3) 

where Xi” is spanned by the eigenstates of Hi whose time evolution 
is known. The abstract theory based on this choice has the disadvan- 
tage that for each physical application it is necessary either to establish 
(1.3) or to investigate whether there are states in Z1 0 XP for 
which the wave operator exists. 

The purpose of this paper is to present an abstract definition of 
the subspace X’” of all scattering states for an operator H, and to 
develop the theory of wave operators with A1 = Xi”. The theory 
is motivated by, and is applicable to, a large class of scattering 
problems which includes both the quantum mechanical problem of 
scattering by a potential and scattering problems of classical physics. 

The paper is organized as follows. In Section 2 it is shown that the 
scattering states for quantum mechanical and classical waves in Rn 
can be defined by means of a family {Q,} of “localizing” operators 
on the state space 2. Then an axiomatic definition is given for 
families (Q,) of 1 oca izin o 1 g p erators on an abstract Hilbert space 2, 
and it is shown how a “scattering” subspace X6 can be associated 
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with each self-adjoint operator H and family {&I. In Section 3 
a theory of wave operators on 2” is developed. The theory is parallel 
to, but independent of, the well-known theory of wave operators 
on Zac originated by Kato and Kuroda. In Section 4 the applicability 
of the abstract theory is demonstrated for a class of scattering problems 
of classical physics. This application is based on a method due to 
Lax and Phillips [lo] and extended by La Vita, Schulenberger and 
the author [8]. The results developed below are applied in [8] which 
should be read together with this paper. 

2. LOCALIZING OPERATORS AND SCATTERING SUBSPACES 

The definition of a scattering subspace given below is suggested 
by consideration of the propagation of quantum mechanical and 
classical waves in R”. In the first case (see [l]), Z = L,(Rn) and H is 
a self-adjoint extension of the Schrodinger operator 

H = - t Dj2 + I+) 
j=l 

(2.1) 

where x = (xi , x2 ,..., zcn) E Ii”, Dj = a/ax, and V(X) is a real-valued 
potential. If U(X, t) = U(t)f( x is a corresponding wave with initial ) 
state fE2, l[fll = 1, and K C R” is a Lebesgue measurable set 
then 

is interpreted as the probability that the system corresponding to H 
is in the set K at time t. In the second case (see [17]), H is generated 
by a matrix partial differential operator 

H = -iE(x)-l ‘f AiDi 
i=l 

(2.3) 

where E(x), A, , A, ,..., A, are m x m Hermitian matrices and E(x) 
is positive definite. 2 is the Hilbert space generated by the inner 
product 

(u, 4 = s,. 4x>* E(x) 44 dx (2.4) 

where U(X) is an m x 1 matrix and U(X)* is its Hermitian adjoint. 

5sQh/3-3 
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In this case if U(X, t) = U(t)f(x) with f E ST and K C R” is Lebesgue 
measurable then 

I(K, t) 1 j-, u(x, t)* E(x) u(x, t) dx (25) 

is interpreted as the energy in the set K at time t. 
In both of the examples sketched above the fundamental meaning 

of the statement “u(x, t) is a scattering wave” is that the wave ulti- 
mately propagates out of any bounded set K; i.e., 

li$(K, t) = 0 for every bounded measurable K C Rn. (2.6) 

Thus it is natural to say that f E A? is a scattering state if and only if 
(2.6) holds. 

Condition (2.6) can be generalized to the setting of the abstract 
theory of scattering by reformulating it in operator-theoretic terms. 
First, note that (2.6) holds if and only if it holds for all balls 
B, = {x: / x 1 < 41. Define an operator Q,: Z -+ A? by 

Q&4 = x&4 44 for all x E Rn (2.7) 

where x* is the characteristic function of B, . Then I(B, , t) = 
11 Q*U(t)f II2 and (2.6) is equivalent to 

for every q 3 0. (2.8) 

It is easy to verify that the family of operators {Q,: 0 < 4 < co} has 
the properties 

Q, is an orthogonal projection on SF for each q >, 0. 

s-limQ2, = 1, the identity operator on &‘. 
4-tm 

(2.9) 

(2.10) 

It is shown next, in the context of the abstract theory, that any 
such family determines a subspace of scattering states. To this end 
let A? denote an arbitrary separable Hilbert space and let H denote 
a self-adjoint operator on X with corresponding unitary group 
U(t) = exp(-2323). 

DEFINITION. A family {Q,: 0 < q < OO] is called a family of 
localizing operators on X if Q,: X -+ 8 satisfies (2.9) and (2.10). 
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DEFINITION. A vector f E 3’ is said to be a scattering state for H 
and {Q,: 0 < q < co} if and only if (2.8) holds. The set of all scattering 
states for H and (Q,: 0 < q < co} is denoted by Z”. 

The space GP has the decomposition 

Sff=Z?C@~P (2.11) 

into the subspaces of continuity and discontinuity for H, respectively, 
and (2.11) reduces H [4, p. 5 151. A first result concerning the scattering 
states is 

THEOREM 2.1. X’” C 2”. 

Proof. Since ZC = (YP)’ it is enough to show that .YP C (YcQ)l. 
Moreover, since &+ is the closed subspace spanned by the eigenvectors 
of H it is enough to prove that if f E 2” and 4 is any eigenvector 
of H then (f, 4) = 0. To prove this note that 

where X is the eigenvalue of $. Thus 

(f, 4) = e-iAt(QqW>f~ 4 - e-iAt(W)f, Q,d - $1 (2.13) 

for all q > 0 and t E R, and hence 

Nf, $11 G II QeWf II II $ II + llfll II Q,d - 4 II. (2.14) 

If first t -+ co and then q --t co the right-hand side of (2.14) tends to 
zero, by (2.8) and (2.10). It follows that (f, 6) = 0, which completes 
the proof. 

The next result shows that H defines an operator on L%?“. 

THEOREM 2.2. Ss is a closed subspace of PC and reduces H. 

Proof. L%?S is clearly a linear manifold in Xc. Suppose that 
f E 3, the closure of 2” in GY?“, so that f = limn-tco f, where f, E sP. 
Then 

II Q&WfII < II QJW -fn>ll + II QJWn II 
G llf -fn II + II Q&WVs II 

(2.15) 
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for all t and n = 1, 2, 3 ,..., because I/ Q,U(t)lj = 1. The last term 
tends to zero when t -+ CO because fn E SF’“. Thus 

for n = 1, 2, 3,... (2.16) 

It follows thatf satisfies (2.8) because lim,,, f, = f. Hence s = SF. 
X5 reduces H if and only if it reduces U(T) = exp(--&H) for 

each T E R. Hence it is sufficient to prove that U(T) GYP” C SF” for 
each T E R (which implies that U(T)(~?")' C (8”)’ for each T E R 
because u(T) is unitary). But this property is immediate, because if 
f E SF” then 

/I !&u(t) U(T)fll = 11 Q,u(t + ~)fIl- 0 (2.17) 

when t -+ CQ by (2.8). This completes the proof. 
A primary problem of scattering theory, as developed here, is to 

identify or characterize the subspace SF” of scattering states. In [8] 
it is shown for a class of scattering problems of classical physics that 
2” = Zc = Xac. This result cannot hold in all cases. However, 
the following partial result holds whenever the localizing operators Q,r 
are H-compact [4, p. 1941. 

THEOREM 2.3. If Q, is H-compact for every q > 0 then Zac C S”. 

Proof. It must be shown that each f E ~4% satisfies (2.8). Note 
that it is sufficient to prove this for a dense subset of Zac because 
f&U(t) is uniformly bounded for all q > 0 and t E R. The dense set 
D(H) n Xac will be used. Note that if f E s’P~, g E 8, and 
(17(h): h E R} is the spectral family for H, then (II(h g) is absolutely 
continuous and hence 

(U(t)f, g) = 1, exp(-ith) d(nzj” g, dh (2.18) 

where d(Il(A)f, g)/dh E&(R). It follows by the Riemann-Lebesgue 
theorem that U(t)f -+ 0 weakly in S? when t -+ CD. Next if f E D(H) 
then II U(t)f II = Ilf II and 

II fw)fI/ = I/ u(t) ml = II Wll (2.19) 

for all t E R. Hence the set of vectors { U(t)f: t E R) is bounded in 
the graph norm of H. Therefore, since Q, is H-compact, the set of 
vectors {&U(t)f: t E R} is precompact in 2. In particular, any 
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sequence (Q,U(t,)f} with t, + GO contains a subsequence (Q,U(&‘)f} 
which converges in X: 

;z QJ&n'>f = g in 2f?. 

But if fg YP then QnU(tn’)f--+ 0 weakly in 2. Thus g = 0 by the 
uniqueness of weak limits. Finally, the entire sequence JQQU(tn)f} 
must converge strongly to zero, because every sequence contains 
a subsequence which does so. Thus D(H) n Xac C Zs and the 
proof is complete. 

It is known that z?” has the reducing decomposition 

yp = gp @ $fp (2.21) 

where Xsc is the singularly continuous subspace [4, p. 5161. Hence 
Theorem 2.3 implies 

COROLLARY 2.4. If Qg is H-compact for every q 3 0 then 
JPC = {O} * 2fP = &%c. 

Proof. This is immediate because Theorem 2.3 implies the 
inclusions 

JP c GP c JP = 2Pc @ LPC. (2.22) 

States which scatter when t -+ 00 were defined and studied above. 
Corresponding results for states which scatter when t -+ -co are 
needed for the theory of the scattering operator. However, these 
follow immediately from the results already given, since 

UH(--t) = exp(itEZ) = u-,(t). (2.23) 

Hence, each H and localizing family ji& 0 < q < co} define a pair 
of scattering subspaces P*“, correspondmg to t + f co, and Theo- 
rems 2.2 and 2.3 hold for both of them. 

3. PROPERTIES OF THE WAVE OPERATORS ON THE 
SCATTERING SUBSPACES 

In the abstract theory of scattering based on the subspace of absolute 
continuity Xac, as developed by Kato [4] and Kuroda [7], it is 
emphasized that the wave operators W(H, , HI , Jzl , Xi) have many 
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properties that follow directly from their existence. Moreover, these 
properties play a major role in the existence and completeness theory 
for the wave operators. In this section it is shown that an analogous 
theory based on a scattering subspace Z-F” can be developed which is 
parallel to, but independent of, the theory based on Zac. 

Consider a pair of systems defined by separable Hilbert spaces q 
and self-adjoint operators Hi (j = 1,2), and write Ui(t) = exp( -itHi). 
Let {Qpj: 0 < Q < co} d enote a family of localizing operators 
on $ and let 3” denote the scattering subspace for Hj and 
{Q,j: 0 < 9 < co}. Let Pj” denote the orthogonal projection of 3 
onto 3”. The wave operators 

JJv2 9 Hl 9 J21 > qs) = s;$ U2(-0 J21Udt) Pl” (3.1) 

will be considered, where Jz,: &?I --t Zz is a linear bijection with 
inverse JIz = 1;:. 

Kato has observed that different operators JzI may produce the 
same wave operators and has formulated the following criterion [5]. 

DEFINITION. JzI and Jil are said to be equivalent with respect to 
HI and PI8 (in symbols, JzI N J&(H, , PI”)) if and only if 

s;tF (Jzl - Jk> Ut) pl” = 0. (3.2) 

It is easy to verify that this is an equivalence relation. Its importance 
for scattering theory is due to 

THEOREM 3.1. Let JzI N JLW, , PI”>. Then WV& ,K , Jzl , =%9 
exists if and only if W(H, , HI , J.& , XIS) exists. Moreover, ;f these 
wave operators exist they are equal: 

W(H2 , Hl 9 .I;1 , %“) = W(H2 , Hl , J21 9 q9. (3.3) 

The analogous result with X1” replaced by Xi was proved by 
Kato [5] and the same proof is applicable to Theorem 3.1. 

Some of the properties of wave operators that follow directly from 
Definition (3.1) are derived next. The following notation is used for 
brevity: 

W21 = WH2 9 Hl , 121 , -%9’ (3.4) 

THEOREM 3.2. If W21 exists then it is an intertwining operator for 
the pair HI , Hz ; that is, 

W21H, C H, W2’. (3.5) 
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The proof depends only on the fact that Pi” commutes with Hi 
and is the same as the analog for XT proved in [5]. 

Several properties of the wave operators follow directIy from the 
intertwining relation (3.5). These results are exact analogs of results 
for Zyc and may be proved by the same arguments (see [S] for 
details). 

THEOREM 3.3. If w2l exists and if PI and Pz denote the orthogonal 
projections on A1 = N(Wzl)J- and A%‘~ = N(W21*)-L, respectively, then 
j Wzl 1 and PI commute with HI, / W21* 1 and P2 commute with Hz, 
and the parts of HI and H2 in A!, and A2 are unitarily equivalent. 

Partial information concerning the nullspace and range of W21 is 
given by (see [5, Theorem 3.21). 

THEOREM 3.4. If W21 exists then 

w21 = w21p s 
1 and PI < PI”. (3.6) 

DEFINITION. The wave operator W21 is said to be semicomplete 
0 PI = PI”. W1 is said to be complete o PI = PI” and P2 = Pzs. 

In the abstract theory of scattering the wave operator W1 may or 
may not be a partial isometry and it may or may not be semicomplete 
or complete. The existence of one or more of these properties depends 
on the choice of the Hi , (Qd: 0 < q < co} (j = 1,2) and J2i , as 
does the existence of W21. However, criteria which guarantee these 
additional properties can be formulated within the abstract theory. 
Several such results which are useful for applications are given below. 

THEOREM 3.5. Let w2l exist and assume 

there exists a unitary Jil - J,,(H, , PI”). (3.7) 

Then w2l is a partial isometry with initial set XI? 

w21*w21 = p * 1 t (3.8) 

and w2l is semicomplete. 

The proof is essentially the same as in Kato [5, Theorem 6.21. 

THEOREM 3.6. Let W21 exist and assume that (3.7) holds and 

8,2Jz1 = JaQ, for O<q<co. (3.9) 
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Then 
w21 r- pzqm and P2 < Pz”. (3.10) 

Proof. Pz is the orthogonal projection onto N(W21*)l : R(W21). 
Thus both parts of (3.10) are equivalent to the statement that 
R( Wzl) C Z2”. To prove this note that u E R( W21) if and only if 
u = W2% for some v E ZiS. For this pair of vectors Definition (3.1) 
implies 

pir { U&)u - J21ul(t)w} = 0 in Hz. (3.11) 

Moreover, for any 4 3 0, 

Note that hypothesis (3.9) was used in the second inequality of (3.12). 
Both terms on the right in (3.12) tend to zero when t -+ co, by (3.11) 
and because v E Xi”. Thus every u E R( W2’) is a scattering state for 
Hs ; that is, R(W21) C %a”. This completes the proof of Theorem 3.6. 

The final result from the abstract theory that will be presented 
here is a completeness criterion. It is based on a chain rule for wave 
operators which can be formulated as follows. 

THEOREM 3.7. Let W(H, , HI, Jzl, Xls) and W(H, , H, , jS2, XzS) 
exist and let Ja2 satisfy (3.7) and Qq2, Q,” satisfy (3.9). Moreover, let 
j31 - J32J21(Hl , Pls). Then W(H, , fJl , Is1 , es> exists and 

An analogous result with Pis replaced by Pj”” was proved by Kato [5] 
and the same method applies to Theorem 3.7. 

The completeness criterion follows directly from the chain rule. 
It may be stated as follows. 

THEOREM 3.8. Let both Wzl and WI2 exist. Moreover, let both Jzl 
and Jlz satisfy (3.7) and let Q,l and Q,” satisfy (3.9). Then both W21 
and W2 are complete and 

w21* = w12 (3.14) 
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Proof. The semicompleteness of War and WI2 follows from 
Theorem 3.5. Moreover, Theorem 3.7 is applicable with Ha = Hi , 
Ja2 = J12, Q2,” = Qpl, and J3i = 1. Since W(H, , HI , 1, 91s) = PI”, 
(3.13) gives 

WlZW21= ps 
1' (3.15) 

Since the indices 1 and 2 enter symmetrically in the hypotheses it also 
follows that 

wa1w12 = p s 2’ (3.16) 

Next, note that IV1 = P2sW21 by Theorem 3.6. Taking adjoints and 
using (3.16) and (3.8) gives 

wa* = J,$n1*p2s = w21*(wq,712) = (w21*w21)J4712 

= PlSW~2 = w2 
(3.17) 

because R(Wr2) C X1” by Theorem 3.6 applied to W2. Thus (3.14) is 
verified. Combining (3.14) and (3.16) gives 

w21w21* = w21w12 = p2s (3.18) 

which proves the completeness of IV”. The completeness of IV2 
follows by symmetry. 

The wave operators defined by (3.1) relate the behavior of Ui(t) 
and U2(t) for t --+ + co. Analogous operators relate their behavior 
for t -+ -CO, and these are needed in the theory of the scattering 
operator. In this connection note that if the two scattering subspaces 
for t + f. 00 are defined by 

&” = iTis = {f: Jj& I/Q,, exp(--itH)fIj = 0 for all q > 0} (3.19) 

then 

&S(H) = sfy(--H), (3.20) 

and the corresponding orthogonal projections satisfy 

Thus, if 

P*I(H) = P,s(--H). (3.21) 

w&&l , H, J, &“(H)) = -1’ “,+:z exp(itHJJ exp( --itH) P+S(H), (3.22) 
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then 

W(ff,, H, 1, X”(H)) = W+(-Ho, -H, J, Z+“(-H)). (3.23) 

Hence, the results proved above for the wave operators W, also hold 
for W-. 

4. APPLICATIONS TO SCATTERING PROBLEMS OF CLASSICAL PHYSICS 

In this section the applicability of the theory developed in Sections 2 
and 3 to scattering problems of classical physics is demonstrated. In 
particular, it is shown that the existence and completeness of the 
wave operators on the scattering subspaces Z+” can be proved directly, 
on the basis of the results in Sections 2 and 3, without reference to 
theories based on Zac, Zc, or other subspaces. 

The method used here is an adaptation of a method due to Lax 
and Phillips [9, lo]. L ax and Phillips were the first to develop an 
abstract scattering theory which did not depend on the theory of Zac 
(see [9] for references). Moreover, in [9, Chap. VI; lo] they applied 
their theory to self-adjoint matrix operators 

H = --i ‘f A,(x) Dj + B(x) (4.1) 
Zi=l 

under the assumptions 

H is elliptic. (4.2) 

The coefficients A,(x) (j = 1,2,..., n) and B(x) are smooth functions. (4.3) 

A,(x) = Aj and B(x) = 0 for / x / > 01. (4.4) 

n is odd. (4.5) 

In their work H is compared with the operator 

Ho = -i i A,OD, , 
i=l 

(4.6) 

both operating in A? = &JR”), and it is shown that the wave operators 
W,(H, , H, 1, G@) and W+(H, Ho , 1, Xoc) exist and are complete. 
The scattering subspaces %+” and Zi,+ were not introduced in their 
work but their results imply that in the notation of this paper, 
21” = XC = GFC and A?:,, = sot = SF. 
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The abstract theory of Lax and Phillips was applied to scattering 
problems of classical physics by La Vita, Schulenberger and the 
author [8]. The Hilbert space 9 and self-adjoint operator H were 
defined by (2.4) and (2.3) (see [17] for details) and it was assumed 
that 

E(x) is Lebesgue-measurable, bounded, and uniformly positive definite on Rn. 
(4.7) 

rank f A,p, = m - k for all p E Rn - (0). (4.8) 
j=l 

In (4.8), K is a fixed integer with 0 < k < m. The significance of 
this condition is discussed in [12] and [13]. The application of the 
Lax-Phillips theory to this class of operators was made possible by 
a local compactness theorem for the operators (2.3) due to Schulen- 
berger [ll]. 

In [8] H was assumed to satisfy both (4.7) and (4.8) and the 
hypotheses 

E(x) = E, for 1 x / > 01 (4.9) 

and 
n is odd. (4.10) 

H was compared with the operator 

H,, = -iEi’ i A,D, 
j=l 

operating on the Hilbert space X0 with inner product 

(u, w)o = j-, 4x)* 444 dx. 

(4.11) 

(4.12) 

The identification operator Jo: S -+ So, defined by 

Jo44 = 44 for all x E Rn, (4.13) 

and its inverse J = J$ were used (Z and Z0 are equivalent Hilbert 
spaces). {Q,} and @8> were the families of localizing operators 
defined by (2.7) on X and Ho respectively. 

Abstract localizing operators and scattering subspaces were first 
introduced and applied in [8]. However, an exposition of the abstract 
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theory was left to the present paper. In particular, Theorem 3.8 (the 
completeness criterion) and Theorem 4.2 are needed to complete 
the exposition in [8]. The principal result of [8] is 

THEOREM 4.1. If E(x), A, , A, ,..., A, satisfy (4.7), (4.8), (4.9), 
and (4.10), then the wave operators W,(H, , H, J,, , Z+“) and 
W,(H, H,, , J, SF:,,) exist and are complete. 

The proof of this result given in [8] consists of the following major 
steps. (a) Construct incoming and outgoing subspaces g&T for 
U(t) = exp( -itH) in the reducing subspace 2”. (b) Use 9h,T to prove 
that s?+” = SF”. (c) Use (a) and (b) to prove the existence and 
completeness of the wave operators on ZY” = &‘“. Here, in order to 
emphasize that a scattering theory based on Zks can be developed 
independently of theories based on 2” or other subspaces, a direct 
proof of Theorem 4.1 is given. The proof is a simple modification of 
the one given in [8] and should be read in conjunction with the proof 
in [8]. 

Proof of Theorem 4.1. The proof is based on the observation that 
the subspaces .9-Y and a+’ constructed in [8] are actually incoming 
and outgoing subspaces of KS and SF+“, respectively. The fact that 
9*’ C Z?” follows immediately from [8, Eqs. (6.2), (6.4), and 
Theorem 6.51. To prove that 9+’ are incoming and outgoing sub- 
spaces of Z*“, the three axioms of the Lax-Phillips theory [8, 
Eqs. (3.1)-(3.3)] must be verified with 5SiT for SB* and Z+” for S. 
Only (3.3) is difficult to verify. It states that Q,T = Ukt,,, U(t) 9*’ 
is dense in SF?“. The density of Q,T in Zc was proved in [S, Theo- 
rem 6.81. A direct proof that sZ,r is dense in Z&” can be given by 
the same method and is even easier. In fact, it is shown in the proof 
given in [8] that if f~ SF” and f 1 Q+T then there exist positive 
constants CL, q, and K such that 

(4.14) 

for all t > 27. In particular, this holds for any f E S+” such that 
f 1 s2+T. It follows from (4.14), (2.8), and (2.10) that f = 0. Hence 
Q+7 is dense in Z+“, and a similar proof holds for Q-T and X8. 

The existence of W,(H,, , H, J,, , S+“) follows immediately from 
the fact that 9&r are incoming and outgoing subspaces of Z*“. The 
simple proof, due to Lax and Phillips, is given in [g, Theorem 7.21. 
The completeness of W+(H, , H, J,, , s’&“) follows from [8, Theo- 
rem 2.41. The proof of this last result is based on the abstract theory 
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and was left to the present paper. In fact, it follows immediately 
from Theorem 3.8 above, as soon as the hypotheses of that theorem 
are verified. To see what is needed, make the identifications 

HI = H, K = Ho, Jn = Jo 9 sls = Y*s (4.15) 

in Theorem 3.8. Then all the hypotheses will be satisfied if 

Q,“Jo = JoQ, (4.16) 

and there exist unitary operators J’ and JO such that 

J’ - J(H, 3 G+> and Jo’ - JdK P”>. (4.17) 

Equation (4.16) follows immediately from the definitions of J,, , Q, 
and Q,” given above. The unitary operators 

J’ = E-1PE~P and JO’ = E;WEW (4.18) 

may be used to verify (4.17). Th e correctness of (4.17) follows from 

THEOREM 4.2. Let K: 2 -+ So be dejned by Ku(x) = K(x) u(x) 
where K(x) is an m x m matrix over C for each x E Rn with the 
properties that K(x) is bounded and Lebesgue measurable on Rn and 
limIzl+m K(x) = 1. Then K - J,(H, P”). 

Proof. It must be shown that lim,, lj(K - Jo) U(t)u Ilo = 0 for 
all u E A?“; see (3.2). Now if U(X, t) = U(t) U(X) then 

ll(K - Jo) Wb II: = 1,. (VW - 1) 4x, tN* J%(Q) - 1) 4x, 0 dx. 
(4.19) 

Notice that if M is an m x m matrix and u is an m x 1 matrix then 
(Mu)~ = CrEl Mikuk , whence 

forj = 1, 2,..., m. Therefore, if the notation 

II ~llm&Ix = ,$a& I Mjk 1 (4.21) 

is used, then 

(Mu)* Mu < m2 II M [I&, u*u. (4.22) 
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Now E(x) and E, are bounded and uniformly positive definite; that 
is, 

CU*U < u*E(x)u, u*E,u < c’u*u for all x E R” and u E C’“, (4.23) 

where 0 < c < c’. Combining (4.22) and (4.23) gives 

(Mu)* E,,Mu < c’(Mu)* Mu < c’m2 I/ M ilka, u*u < c // M II&,, u*E(x)u 
(4.24) 

where F = c’m’F is independent of M, x, and u. Returning to (4.19), 
(4.24) gives 

ll(K - Jo) W)u II: B c f II K(x) - 1 II&x u(x, t)* E(x) u(x, t) dx 
Rn 

d z f$>; II K(x) - 1 Ilkax I,,,,, u(x, t>* E(x) u(x, t) dx 

+ E fig II K(x) - 1 litax /,,,<, 4x, t)* E(x) 4x, t) dx 

< E gy* II K(x) - 1 llilax II W)u /I2 (4.25) 

+ E ~g II K(x) - 1 Ilimx II Q,W)u II2 

< c ~2 II K(x) - 1 IIt, II u /I2 + Cl1 QaU(t)u II2 

because K(x) is bounded on Rn. The last term tends to zero when 
t + cc because u E 28. Thus 

E IIF - J,) u(t)u II: < 5 zc; II K(x) - 1 llfmx II u l12. (4.26) 

Moreover, the right-hand side of (4.26) tends to zero when q---t co 
because lim tr I+m K(x) = 1. This completes the proof. 

5. CONCLUDING REMARKS 

The results given above show that an abstract theory of scattering 
based on the concepts of families of localizing operators and their 
scattering subspaces can be developed, and applied to concrete 
problems, independently of other theories based on the subspace of 
absolute continuity. Hence, a choice among these theories becomes 
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a matter of taste. From the viewpoint of pure mathematics, where 
internal consistency and richness of results are the principal criteria, 
the theories based on Zac might be preferred because they are better 
developed and have more applications at present. However, it seems 
likely that the theory based on 8” will be extended and new applica- 
tions found. (In this connection, recent unpublished work by Lax 
and Phillips, extending their methods to differential operators on 
even-dimensional spaces, can be used to delete hypothesis (4.9) in 
Theorem 4.1.) From the viewpoint of mathematical physics it seems 
to the author that a condition like (2.8) must be accepted as the defining 
condition for scattering states. From this viewpoint, other theories 
must be regarded as incomplete until the relationship of Z*” and 
Xac is clarified. At present, in all the cases that have been analyzed 
completely it has been found that Y+” = &+ = 2”. However, it 
seems certain that ultimately cases will be found where X*” differs 
from Zac and/or 2”. In such cases the mathematical physicist must 
give preference to ShS. 
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