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Abstract

We provide in this paper asymptotic theory for the multivariate GARCHðp; qÞ process.
Strong consistency of the quasi-maximum likelihood estimator (MLE) is established by

appealing to conditions given by Jeantheau (Econometric Theory 14 (1998), 70) in conjunction

with a result given by Boussama (Ergodicity, mixing and estimation in GARCH models,

Ph.D. Dissertation, University of Paris 7, 1998) concerning the existence of a stationary and

ergodic solution to the multivariate GARCHðp; qÞ process. We prove asymptotic normality of
the quasi-MLE when the initial state is either stationary or fixed.
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1. Introduction

There is now an insurmountable literature on generalized autoregressive
conditional heteroscedasticity (GARCH). The model and its various subsidiaries
have been one of the most successful econometric modelling schemes over the past
two decades or so. For univariate GARCH, there is more or less coherent
asymptotic theory for the maximum likelihood estimator (MLE), enabling
practitioners to conduct statistical inference with a reasonable amount of confidence,
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given as usual, correct model specification and a large enough sample. The story is
markedly different in the multivariate case. Here, since asymptotic theory is rare,
practitioners often resort to asymptotic normality simply as a rule of thumb. See for
instance, [5, pp. 306–307] or [11].
Broadly speaking, most papers in the area concentrate on either the univariate or

the multivariate case and on either the statistical or probabilistic properties of these
processes. In the following, we outline the ongoing research on asymptotic theory for
GARCH. The univariate ARCHðpÞ model

xt ¼
ffiffiffiffi
ht

p
et; etBiidð0; 1Þ; ht ¼ w þ

Xp

i¼1
aix

2
t�i ð1Þ

was originally presented by Engle [13]. It was generalized by Bollerslev [4] to
GARCHðp; qÞ; with

ht ¼ w þ
Xq

i¼1
aix

2
t�i þ

Xp

i¼1
biht�i:

The model requires w40 and aiX0; biX0; 8i: It has been shown by Bollerslev [4] to
be second-order stationary if and only if

w40 and
Xq

i¼1
ai þ

Xp

j¼1
bjo1:

Weiss [28] established consistency and asymptotic normality of the MLE in a
univariate linear dynamic model with ARCHðpÞ errors, a model slightly more
general than (1). He proved asymptotic normality by appealing to conditions given
by Basawa et al. [2]. These conditions appear to form the backbone of many related
studies to follow. Nelson [25] gave necessary and sufficient conditions for strict
stationarity and ergodicity of the univariate GARCH(1,1) model. His condition

Eflogðb1 þ a1e2t Þgo0 ð2Þ

does not exclude the case b1 þ a1 ¼ 1 and hence, allows for the possibility of
integrated GARCH (IGARCH).
Lumsdaine [21] established consistency and asymptotic normality of the quasi-

MLE in the GARCH(1,1) and IGARCH(1,1) models under the assumptions: (i) The

true parameter y0AintðYÞ; YCR4 is a compact parameter space, (ii) Nelson’s [25]
condition (2) and (iii): etBiid fe; with fe a symmetric unimodal density, bounded in

the neighborhood of the origin, EðetÞ ¼ 0; VarðetÞ ¼ 1 and Eðe32t ÞoN: In addition, ht

is independent of fet; etþ1;yg: The main difference between Lumsdaine’s [21] and
Weiss’ [28] conditions is that the former are imposed on the noise density whereas the

latter are imposed on the process. In particular, Weiss assumed Eðx4t ÞoN: Lee and
Hansen [19] also considered the univariate GARCH(1,1) model with the possibility
that the process is integrated or even mildly explosive. In contrast with Lumsdaine’s
[21] work, no assumption was made on the shape of the density. For nonintegrated
GARCH, Lee and Hansen [19] gave a first proof of consistency of the quasi-
MLE under the assumptions that et is strictly stationary and ergodic with
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Eðjetj2þdjFt�1ÞpSdoN; where Sd is a positive constant, d40;Ft ¼ sfxt; xt�1;yg
and a1 þ b1o1: Asymptotic normality for the IGARCH case was given under the

additional assumption Eðe4t jFt�1ÞpKoN: Ling and Li [20] established asymptotic
theory for the estimators of the ARMA parameters in unstable ARMA processes
with GARCH innovations. They derived the limiting distribution of the MLE in a
unified manner for all types of roots of the ARMA part inside/outside the unit circle.
The limiting distribution involves a sequence of independent bivariate Brownian
motions with correlated components.
Parallel to the asymptotic theory of estimation, Bougerol and Picard [8]

established strict stationarity and ergodicity of the univariate GARCHðp; qÞ model
in terms of the top Lyapunov exponent

l ¼ inf
tAN

ðt þ 1Þ�1EflogjjAðe0ÞAðe�1Þ?Aðe�tÞjjgo0;

where AðetÞ is a matrix composed of the coefficients of the process and the noise et;
the et are iid and jj:jj is the Euclidian norm. Their result is a generalization of
Nelson’s [25] result for the stable GARCH(1,1) case. Bougerol and Picard [8] proved
their main theorem by writing the model as a first-order recursion with random
coefficients. The intuition is given by Bougerol’s [7, Theorem 3.1] conditions under
which the function of recursion is Lipschitz. A model Ytþ1 ¼ FðYt; Ztþ1Þ with
ZtBiidð0; 1Þ is said to satisfy a Lipschitz property if

jjFðx; ZÞ � Fðy; ZÞjjpaðZÞjjx � yjj

for a positive valued function a with EðaðZtÞ
mÞo1 and EðjjFð0; ZtÞjj

mÞoN for some
real number mX1: In the GARCHðp; qÞ context the components of Yt are the past
and current values of xt; and ht: The Lipschitz idea works for univariate
GARCHðp; qÞ models. Unfortunately, Bougerol and Picard’s [8] approach does
not extend in general to the multivariate case. Boussama [9] gave a counter-example
to this extent. Recently, Hansen and Rahbek [15] used an operational drift criterion
from Markov chain theory to obtain stationarity, ergodicity, and existence of
moments in a simple multivariate ARCH(1) process. The simple model discussed in
their work retains the Lipschitz property used in Bougerol’s [7] work. Boussama [9]
proved the existence of a stationary and ergodic solution for multivariate
GARCHðp; qÞ models by using Markov chain theory and algebraic topology.
Starting under Bougerol and Picard’s [8] conditions, Elie and Jeantheau [12]

established strong consistency of the quasi-MLE in the univariate GARCHðp; qÞ
model and Boussama [10] proved asymptotic normality of the quasi-MLE in the
same model under moment conditions of order 6 on the noise and under the minimal
strict stationarity conditions that allow for IGARCH models.
As opposed to the univariate case, asymptotic theory of estimation for

multivariate GARCH processes is far from being coherent. Bollerslev and
Wooldridge [6] proposed the condition that the likelihood follows a uniform weak
law of large numbers for consistency of the MLE. They also assumed asymptotic
normality of the score but have not verified whether any of the conditions actually
holds for specific multivariate GARCH models. Tuncer [27] established weak
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convergence of the MLE of a multivariate GARCH(1,1) BEKK1 representation, a
model proposed by Engle and Kroner [14]. Jeantheau [18] gave conditions for strong
consistency of the MLE for multivariate GARCH and verified that the conditions
hold for the multivariate model with constant correlation (e.g., Bollerslev [4]).
Jeantheau’s [18] work does not require conditions on the log-likelihood derivatives.
His main condition is that the process admits a unique strictly stationary and ergodic
solution.
In this paper we establish asymptotic theory for the multivariate GARCHðp; qÞ

process. In Section 3 we prove strong consistency of the quasi-MLE by verifying
conditions given by Jeantheau [18]. In Section 4 we establish asymptotic normality of
the quasi-MLE when the initial state of the process is either in the stationary law or
fixed. We assume existence of a density with support containing the origin for the
rescaled innovation et and the finiteness of moments of the process up to order 8. We
emphasize that the tools adopted by Lumsdaine [21] and Lee and Hansen [19] in the
univariate setting do not seem to be of much use in the multivariate framework. In
addition, our model is non-Lipschitz and so our conditions are set on the process.
Finally, our model excludes the IGARCH case. For the clarity of the exposition, we
include only the chief results in the main body of the paper. All detailed proofs are
placed in the appendix.

2. Notation and preliminaries

We consider the multivariate GARCHðp; qÞ model defined as follows. Let ðXtÞtAZ

be a sequence of random variables of Rd and letFt be the s-field generated by past
Xt’s, i.e.,Ft ¼ sðXt;Xt�1;yÞ:We assume that Xt is square integrable and such that

Xt ¼ H
1=2
t et ð3Þ

with

etBiidð0; IdÞ; ð4Þ

where Id is the d 
 d identity matrix. Without loss of generality, we choose H
1=2
t to

be symmetric. The process Xt is a martingale-difference

EðXtjFt�1Þ ¼ 0 a:s: ð5Þ

with a conditional covariance matrix

EðXtX
0
t jFt�1Þ ¼ Ht: ð6Þ

Engle and Kroner’s [14] BEKK representation is given by

Ht ¼ C þ
Xq

i¼1

Xk

j¼1
AijXt�iX

0
t�iA

0
ij

 !
þ
Xp

i¼1

Xk

j¼1
BijHt�iB

0
ij

 !
; ð7Þ

1The acronym BEKK stands for Baba, Engle, Kraft, and Kroner, who wrote an earlier version of the

paper by Engle and Kroner [14].
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where the matrices C; Aij; for i ¼ 1;y; q; j ¼ 1;y; k and Bij ; for i ¼ 1;y; p; j ¼
1;y; k satisfy the assumption

C is positive definite; Aij;Bij are real d 
 d matrices; ð8Þ

and k is an integer less than dðd þ 1Þ=2: The main advantage of this model is that it
guarantees positive definiteness of Ht: Denote by vec and vech the operator that
stacks the columns of a matrix, and the vector-half operator, which stacks the lower
triangular portion of a matrix, respectively. Then (7) can be rewritten as

vecðHtÞ ¼ vecðCÞ þ
Xq

i¼1
A%

i vecðXt�iX
0
t�iÞ þ

Xp

i¼1
B%

i vecðHt�iÞ ð9Þ

with A%
i ¼

Pk
j¼1 Aij#Aij for i ¼ 1;y; q and B%

i ¼
Pk

j¼1 Bij#Bij for i ¼ 1;y; p;

and # denoting the Kronecker product.
Since the matrices involved in the representation are symmetric, we may also write

vechðHtÞ ¼ vechðCÞ þ
Xq

i¼1
Ãi vechðXt�iX

0
t�iÞ þ

Xp

i¼1
B̃i vechðHt�iÞ; ð10Þ

where Ld and Kd are matrices of dimension dðd þ 1Þ 
 d2 satisfying Ãi ¼ LdA%
i K 0

d

for i ¼ 1;y; q and B̃i ¼ LdB%
i K 0

d for i ¼ 1;y; p: Note that dimðvecðHtÞÞ ¼ d2 and

dimðvechðHtÞÞ ¼ dðd þ 1Þ=2:Without loss of generality, we can set k ¼ 1: All proofs
in the paper trivially extend to any arbitrary k:We denote by y the parameter vector
of the process, so that the matrices C; Ãi and B̃i are functions of y: C ¼ CðyÞ;
Ãi ¼ ÃiðyÞ and B̃i ¼ B̃iðyÞ:Note that in most applied work the entries in the matrices
C; Ãi and B̃i are simply the components of y:
The model is not assumed to be necessarily Gaussian, but we work with the

Gaussian log-likelihood. So, the quasi-MLE #yn is defined as minimizing

LnðyÞ ¼
1

2n

Xn

t¼1
ctðyÞ

with

ctðyÞ ¼ log½detðHt;yÞ þ X 0
t H

�1
t;y Xt;

where detðAÞ denotes the determinant of the matrix A: Note that the likelihood
depends on the observed Xt and also on Ht which needs to be calculated recursively.
We consider two possibilities for the choice of the initial value of the process. The
first option is to assume that the initial value of the Ht sequence is drawn from the
stationary law. This approach is of little practical use but of important theoretical
conveniency: indeed it allows to work first with a stationary process. For practical
purposes it is easier to assume a fixed initial value. This leads to nonstationarity
of Ht: We show in the paper that either option leads to the same asymptotic
results. The key point is that nonstationary Hts converge to stationarity with an
exponential rate.
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We further make use of the following notation. jj � jj is the Euclidian norm for both
vectors and matrices, jjAjj2 ¼ TrðA0AÞ ¼

P
i;j A2i;j; rðAÞ the spectral radius of A , i.e.,

the largest modulus of the eigenvalues of A: NðAÞ is the spectral norm of A; namely,
the square root of rðA0AÞ: The following inequalities (see Magnus and Neudecker
[22]) will be used extensively in our work:

jTrðABÞjpjjAjj jjBjj;NðABÞpNðAÞNðBÞ; ð11Þ

jjABjjpNðAÞjjBjj; jjABjjpjjAjjNðBÞ;NðA þ BÞpNðAÞ þNðBÞ: ð12Þ

If A is d 
 d; then

NðAÞpjjAjjp
ffiffiffi
d

p
NðAÞ: ð13Þ

3. Strong consistency

In this section we establish strong consistency of the quasi MLE by appealing to
Jeantheau’s [18] conditions. Let Y be the parameter space and y0AYCRr be the true
parameter value. Jeantheau’s [18] conditions for strong consistency of the quasi-
MLE are:

A0. Y is compact.
A1. 8y0AY; the model admits a unique strictly stationary and ergodic solution,

following a stationary law Py0 :
A2. There exists a deterministic constant c such that 8t; 8yAY; detðHt;yÞXc:
A3. 8y0AY; Ey0ðjlogðdetðHt;y0ÞÞjÞoN:
A4. The model is identifiable.
A5. Ht;y is a continuous function of y:

We now verify that the conditions hold for the model under consideration.
First, A0 is always assumed. For A1, we recall the following theorem from
Boussama [9].

Theorem 1. For the model given by (3), (4) and (7), assume that the et’s admit a density

absolutely continuous w.r.t. the Lebesgue measure, positive in a neighbourhood of the

origin. Assume moreover that

r
Xq

i¼1
Ãi þ

Xp

i¼1
B̃i

 !
o1;

and let Y be defined by

Yt ¼ ðvechðHtþ1Þ0; vechðHtÞ0;y; vechðHt�pþ2Þ0;X 0
t ;X

0
t�1;y;X 0

t�qþ1Þ
0: ð14Þ

Then the recurrence relations (3), (4) and (7) for Y have an almost surely unique strictly

stationary causal solution which constitutes a positive Harris recurrent Markov chain

which is geometrically ergodic and b-mixing.
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Boussama [9] proved the theorem on an application of theorems by Meyn and
Tweedie [23] together with some results given in [24]. Both Boussama [9] and
Mokkadem [24] make extensive use of algebraic topology.
To show A2, we note that for any positive-definite matrix W and for any positive-

semidefinite matrix D, detðW þ DÞXdetðWÞ þ detðDÞ: It follows from (7) that
detðHt;yÞXdetðCðyÞÞ: As Y is compact, we may set c :¼ infyAY detðCðyÞÞ as soon as
CðyÞ is a continuous function of y and we assume that c40: For A3, let xiðyÞ be the
(positive) eigenvalues of Ht;y for a fixed t: Then

log½detðHt;yÞ ¼
Xd

i¼1
logðxiðyÞÞp

Xd

i¼1
xiðyÞ ¼ TrðHt;yÞ;

implying that

EðlogðdetHt;yÞÞpEðTrðHt;yÞÞ ¼
Xd

i¼1
Eð½Ht;yiiÞ:

By the square integrability of Xt; EðvechðHt;yÞÞoþN: Thus, EðlogðdetHt;yÞÞþoN

and EðlogðdetHt;yÞÞ�psupð�logðcÞ; 0ÞoN: Therefore, EjlogðdetHt;yÞjoþN and

A3 is fulfilled. For Assumption A4, we recall the following proposition by Engle and
Kroner [14]. Defining two representations to be equivalent if each sequence fXtg
generates the same sequence fHtg for both representations, they prove:

Proposition 1. For the model

Ht ¼ C0C
0
0 þ

Xk

j¼1
A0
1jXt�1X

0
t�1A1j þ

Xk

j¼1
B0
1jHt�1B1j ;

suppose the diagonal elements of C0 are restricted to be positive. Assume that A1ks
; with

ks ¼ dðs � 1Þ þ 1;y; ds and s ¼ 1;y; d; is the matrix obtained by setting the first

s � 1 columns and the first ks � dðs � 1Þ � 1 rows to zero. Assume also that

½A1ks
dd40; 8ks and that similar restrictions are set on the B1j matrices. Then a fully

general BEKK model is obtained which has no other equivalent representations in this

class.

Similar conditions for identification can be set for higher order BEKK processes,
see [14]. This definition is consistent with Jeantheau’s [18, p. 72] definition of
identifiability, namely, 8yAY; 8y0AY;

Ht;y ¼ Ht;y0 ;Py0 � a:s: ) y ¼ y0:

Finally, A5 is obviously fulfilled. We summarize our findings so far in Theorem 2.

Theorem 2. For the GARCHðp; qÞ process defined by (3), (4) and (7) and for #yn as

defined above, assume that:

1. Y is compact, C; Ãi; B̃i are continuous functions of y; and there exists c40 such that

infyAY detCðyÞXc40;
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2. The model is identifiable,
3. The rescaled errors et admit a density absolutely continuous w.r.t. the Lebesgue

measure and positive in a neighbourhood of the origin,

4. 8yAY; rð
Pq

i¼1 ÃiðyÞ þ
Pp

i¼1 B̃iðyÞÞo1:

Then #yn is strongly consistent, that is, #yn-n-þN y0; Py0 � a:s:

The result was stated without proof by Boussama [9]. Theorem 2 is valid
only under a random initial condition drawn in the stationary law (see [18]). An
extension is required for the fixed initial condition case and this we shall provide in
Section 4.2.

4. Asymptotic normality

4.1. The initial state is stationary

In this section we establish asymptotic normality of the quasi-MLE. We first
assume that the initial conditions for Ht are in the stationary law. In the next section
we will deal with the fixed initial state case. Basawa et al. [2] gave conditions for
asymptotic normality of the MLE for general stochastic processes. These conditions
were previously employed by, among others, Weiss [28, p. 130] and Lumsdaine [21,
p. 594]. The conditions are:

(i) �1
T

PT
t¼1

@2ctðy0Þ
@y@y0 -

P
C1 when T-þN for a nonrandom positive-definite

matrix C1:

(ii)
1ffiffiffi
T

p
PT

t¼1
@ctðy0Þ

@y -
L

Nð0;C0Þ when T-þN for a nonrandom C0:

(iii) For all i; j; k; Eðsupjjy�y0jjpd j
@3ctðyÞ

@yi@yj@yk
jÞ is bounded for all d40:

Similar conditions are given by Amemiya [1, Theorem 4.1.3]. By Theorem 1 and

under the assumptions of Theorem 2, @2ctðy0Þ=@y@y0 is ergodic and so, condition (i)
will be satisfied if C1 is finite and positive definite. As

@ct

@yi

ðyÞ ¼ Tr @Ht;y

@yi

H�1
t;y � XtX

0
t H

�1
t;y

@Ht;y

@yi

H�1
t;y

� �
;

we find, using (6), that

Ey0
@ct

@yi

ðy0ÞjFt�1

	 

¼ 0 a:s:

Thus, the score is a martingale difference. Moreover, it also follows from Theorem 1
and under the assumptions of Theorem 2 that @ctðy0Þ=@y is a strictly stationary and
ergodic process, because it is a measurable function of a strictly stationary and
ergodic process. Thus, we may apply the CLT for martingales (e.g., [3, p. 788]) to
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obtain condition (ii) above, as long as C0 ¼ Ey0fð@ctðy0Þ=@yÞð@ctðy0Þ=@y0Þg is finite.
Note that we only require the finiteness of the second moment of @ctðy0Þ=@y for the
application of Billingsley’s [3] martingale CLT, whereas Lumsdaine [21] required the
finiteness of the 2þ d order moment of @ctðy0Þ=@y; for some positive d: Lumsdaine
[21] applied Theorem 6.3 of Serfling [26] which imposes this additional restriction but
reduces the assumptions fstrict stationarity, ergodicityg to fweak stationarity,
Eq. (6.7) of Serflingg: See Serfling [26, p. 1174] for discussion. This additional
restriction effectively forced Lumsdaine [21, p. 594] to show existence of the third
order moment. Finally, we note that condition (iii) above follows from Basawa
et al.’s [2] condition B7. In our case, we shall see in the proofs that condition (iii)
holds with the supremum taken over all Y:
To prove asymptotic normality of the quasi-MLE, it will suffice then to verify the

following conditions:

B1. C1 ¼ Eðð@
2ctðy0Þ
@yi@yj

Þ1pi;jprÞ is finite and positive definite.

B2. C0 ¼ Eð@ctðy0Þ
@y

@ctðy0Þ
@y0 Þ is finite.

B3. Condition (iii) above.

In addition, we require that the components of et (for a fixed t) are independent.
These requirements are fulfilled in the Gaussian case, but of course not in general.
We prove B1–B3 in the appendix.

Theorem 3. Under the assumptions,

(i) (1)–(4) of Theorem 2, and CðyÞ; ÃiðyÞ; B̃iðyÞ admit continuous derivatives up to

order 3 on Y;
(ii) the components of et are independent,
(iii) Xt admits bounded moments of order 8,
(iv) the initial value (in H) is drawn for the stationary ergodic law,ffiffiffi

n
p

ð#yn � y0Þ -
D

n-N

Nð0;C�1
1 C0C

�1
1 Þ; under Py0 :

Note that if moreover etBNð0; IÞ; then C0 ¼ 2C1 and the asymptotic law reduces
to Nð0; 2C�1

1 Þ:

4.2. The initial state is fixed

We considered above a random initial condition for the process, drawn
from the stationary law. Here we assume that the initial value of the process is

fixed. Let Ht ¼ ðvechðHtÞ0;y; vechðHt�mþ1Þ0Þ0 where m ¼ maxðp; qÞ: Let x ¼
H0AR

mdðdþ1Þ=2
þ be the initial state. Let ht;x;y be the values of ht given the initial

state. #yx;n denotes the quasi-MLE given the initial state. That is, the value that
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minimizes

Lnðx; yÞ ¼
1

2n

Xn

t¼1
ctðx; yÞ

with

ctðx; yÞ ¼ log½detðHt;x;yÞ þ X 0
t H

�1
t;x;yXt;

with Hx;t;y built of the hx;t;ys. We establish the following result:

Theorem 4. Under the Assumptions of Theorem 3, with the exception that the initial

condition xAR
mdðdþ1Þ=2
þ of the process Ht is fixed, #yx;n is strongly consistent andffiffiffi

n
p

ð#yx;n � y0Þ -
D

n-þN

Nð0;C�1
1 C0C

�1
1 Þ under Py0 :

From Jeantheau [17, pp. 19,41] and from Theorem 2.2 of Elie and Jeantheau [12],
strong consistency is obtained under the additional condition

sup
yAY

jctðyÞ � ctðy; xÞj-0 a:s:

The condition is proved in Appendix B. The asymptotic normality is then a
consequence of this result and Theorem 3.

5. Remarks

For the univariate GARCH(1,1) model, Lumsdaine [21] established con-
sistency and asymptotic normality of the quasi-MLE under strong assumptions
on the shape of the normalized innovation density and boundedness of the
conditional moment of order 32. Together with the contributions of Weiss
[28], Nelson [25], Lee and Hansen [19], and others, asymptotic theory for the
univariate GARCH(1,1) model is fairly well covered. The univariate GARCHðp; qÞ
is treated in [9,10].
In this paper, we established asymptotic theory for the multivariate GARCHðp; qÞ

model. The tools usually used in the univariate case do not seem to be suitable for
the multivariate model. We appealed to Jeantheau’s [18] conditions in proving strong
consistency of the MLE. Asymptotic normality of the MLE is proven then with the
aid of Basawa et al.’s [2] conditions. The results of the paper enable practitioners to
apply tools of statistical inference in a justified manner, whereas previously these
tools were only used as a rule of thumb.

Appendix A. Proof of Theorem 3

The proof of Theorem 3 requires B1–B3. The proofs make extensive use of

relations (11) to (13). First, we find a deterministic bound for the norms ofH�1
t ; since
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it will be useful in several points. For a positive-definite matrix C and a positive-
semidefinite matrix D; we have

0pTr ½ðC þ DÞ�2 ¼ jjC�1=2ðI þ C�1=2DC�1=2Þ�1C�1=2jj2

pTr ðC�2ðI þ C�1=2DC�1=2Þ�2Þ

p ðTr ðC�4ÞTrððI þ C�1=2DC�1=2Þ�4ÞÞ1=2:

As the eigenvalues of I þ C�1=2DC�1=2 are all greater than unity, those of its inverse
are necessarily in ð0; 1 as well as those of any power of the inverse. This implies that

Tr ðI þ C�1=2DC�1=2Þ�4od:

Thus,

NðH�1
t;y Þ

2pjjH�1
t;y jj

2p
ffiffiffi
d

p
jjC�2ðyÞjjpK2: ðA:1Þ

The bound is uniform in t and also uniform on Y using Assumption 1 of Theorem 2
which implies that all eigenvalues admit a uniform lower bound. Eq. (A.1) implies

that if X admits finite moments of order 8, i.e., if EðjjX jj8ÞoþN; then Ejjejj8oþ
N; because

jjejj8 ¼Tr4 ðe0eÞ ¼ Tr4 ðX 0H�1XÞ

¼Tr4 ðXX 0H�1ÞpK4jjX jj8:

Lemma A.1. Denote ’Ht;i ¼ @Ht=@yi and m4;p ¼ Eðe4t;pÞ: Then

Et�1
@ct

@yi

ðy0Þ
@ct

@yj

ðy0Þ
	 


¼
Xd

p¼1
ðm4;p � 3Þ½H

�1=2
t

’Ht;iH
�1=2
t pp½H

�1=2
t

’Ht;jH
�1=2
t pp

þ 2 Tr ð ’Ht;iH
�1
t

’Ht;jH
�1
t Þ ðA:2Þ

and

Et�1
@2ct

@yi@yj

ðy0Þ
	 


¼ Tr ð ’Ht;iH
�1
t

’Ht;jH
�1
t Þ: ðA:3Þ

Proof. For simplicity, Ht denotes Ht;y in the first two equalities and Ht;y0 later on.

First,

@ct

@yi

ðyÞ ¼ Tr ½ ’Ht;iH
�1
t � XtX

0
t H

�1
t

’Ht;iH
�1
t 

and

@2ct

@yj@yi

ðyÞ ¼Tr ½Ḧt;i;jH
�1
t � ’Ht;iH

�1
t

’Ht;jH
�1
t þ XtX

0
t H

�1
t

’Ht;jH
�1
t

’Ht;iH
�1
t

� XtX
0
t H

�1
t Ḧt;i;jH

�1
t þ XtX

0
t H

�1
t

’Ht;iH
�1
t

’Ht;jH
�1
t : ðA:4Þ
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Using the fact that all terms in Ht and its derivatives are in Ft�1; we obtain (A.3).
Further,

Et�1
@ctðy0Þ
@yi

@ctðy0Þ
@yj

� �
¼ Et�1ðTr ðXtX

0
t H

�1
t

’Ht;iH
�1
t ÞTrðXtX

0
t H

�1
t

’Ht;jH
�1
t ÞÞ

� Et�1ðTr ðXtX
0
t H

�1
t

’Ht;iH
�1
t ÞTrð ’Ht;jH

�1
t ÞÞ

� Et�1ðTr ðXtX
0
t H

�1
t

’Ht;jH
�1
t ÞTrð ’Ht;iH

�1
t ÞÞ

þ Et�1ðTr ð ’Ht;iH
�1
t ÞTr ð ’Ht;jH

�1
t ÞÞ

¼ Et�1ðTrðXtX
0
t H

�1
t

’Ht;iH
�1
t ÞTrðXtX

0
t H

�1
t

’Ht;jH
�1
t ÞÞ

� Trð ’Ht;iH
�1
t ÞTrð ’Ht;jH

�1
t Þ:

Let H
�1=2
t be a symmetric root of Ht and Mi ¼ H

�1=2
t

’Ht;iH
�1=2
t : Then

Et�1ðTrðete0tMiÞTrðete0tMjÞÞ ¼ Et�1
Xd

r¼1

Xd

u¼1
et;ret;u½Mik;p

 ! Xd

s¼1

Xd

v¼1
et;set;v½Mjl;q

 !" #
:

¼
Xd

u¼1

Xd

r¼1

Xd

s¼1

Xd

v¼1
½Mir;u½Mjv;sEðet;ret;uet;set;vÞ

¼
Xd

r¼1
½Mir;r½Mjr;rðm4;r � 3Þ þ

Xd

r¼1

Xd

s¼1
½Mir;r½Mjs;s

þ
Xd

r¼1

Xd

u¼1
½Mir;u½Mj r;u þ

Xd

r¼1

Xd

u¼1
½Miu;r½Mjr;u

¼
Xd

r¼1
ðm4;r � 3Þ½Mir;r½Mjr;r þ Tr ðMiÞTrðMjÞ

þ 2TrðMiMjÞ;

where we used that Et�1ðet;ret;uet;set;vÞ ¼ Eðet;ret;uet;set;vÞ ¼ m4;r if r ¼ s ¼ u ¼ v; 1

if r ¼ u; s ¼ v with ras; or r ¼ s; u ¼ v with rau or r ¼ v; u ¼ s with rau

and 0 otherwise. The lemma is proved on recalling that Tr ðMiÞTr ðMjÞ ¼
Trð ’Ht;iH

�1
t ÞTrð ’Ht;jH

�1
t Þ: &

Proof of B1. From Eq. (A.3),

Et�1
@2ctðy0Þ
@yi@yj

� �
¼ jTrð ’Ht;iH

�1
t

’Ht;jH
�1
t ÞjpjjH�1

t jj2jj ’Ht;ijj jj ’Ht;jjj;
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so that

E
@2ctðy0Þ
@yi@yj

� �
pK2E1=2ðjj ’Ht;ijj2ÞE1=2ðjj ’Ht;jjj2Þ:

To show that C1 is finite, we require the following lemma.

Lemma A.2. Assume that the true model for Y is such that X is strictly stationary and

admits moments till order 4, and in particular that the initial condition in H is given

(and depends only on y0) and is drawn in the stationary law. Then for all 1pk; lpd;
i ¼ 1;y; r;

E sup
yAY

@Ht

@yi

ðyÞ
	 
2

k;l

( )
oþN:

The uniformity requirement of Lemma A.2 is only needed for B3.

Proof of Lemma A.2. Let Xt and Ht be defined by

Xt ¼ ðvechðXtX
0
t Þ

0;y; vechðXt�qþ1X
0
t�mþ1ÞÞ

0;

Ht ¼ ðvechðHtÞ0;y; vechðHt�mþ1Þ0Þ0; ðA:5Þ

where m ¼ maxðp; qÞ and let the vector C1 be defined by

C1 ¼ ðvechðCÞ0; 0;y; 0Þ0

with size mdðd þ 1Þ=2: Then Htþ1 ¼ C1 þ BHt þ AXt; where A and B are defined
by

A ¼

Ã1 y y y Ãm

I 0 0 y 0

0 & & & ^

^ & & & 0

0 y 0 I 0

0
BBBBBB@

1
CCCCCCA
; B ¼

B̃1 y y y B̃m

I 0 0 y 0

0 & & & ^

^ & & & 0

0 y 0 I 0

0
BBBBBB@

1
CCCCCCA
; ðA:6Þ

with convention Ãi ¼ 0 if i4q and B̃i ¼ 0 if i4p: The model can be written as

HtðyÞ ¼
Xt�1
k¼0

BkðyÞC1ðyÞ þ BtðyÞH0 þ
Xt�1
k¼0

BkðyÞAðyÞLkXt�1ðy0Þ; ðA:7Þ

where L is the backshift operator LXt ¼ Xt�1:
Boussama [9] proved the following result:
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Proposition A.1.

r
Xq

i¼1
Ãi þ

Xp

i¼1
B̃i

 !
o1) r

Xp

i¼1
B̃i

 !
o1 and r

Xp

i¼1
B̃i

 !
o1) rðBÞo1:

Thus Assumption 4 of Theorem 2 implies that 8yAY; rðBðyÞÞ :¼ r1ðyÞo1:
We shall denote by r0 ¼ supyAY r1ðyÞ and r1 being continuous we know that r0o1
(see [16], for the continuity of the eigenvalues). This allows to prove the following
lemma:

Lemma A.3. There exists a constant C independent of y such that NðBkÞpCkd0rk
0 for

all kX1; where d0 ¼ mdðd þ 1Þ=2:

Since under our assumptions,

@

@yi

H0 ¼
@

@yi

Xt ¼ 0;

because H0 is fixed and X depends on y0 but is not a function of y; we have

@Ht

@yi

¼ @

@yi

Xt�1
k¼0

BkC1

 !
þ @

@yi

ðBtÞH0 þ
@

@yi

Xt�1
k¼0

BkLkA

 !
Xt�1: ðA:8Þ

As

@Bk

@yi

¼
Xk�1
j¼0

Bj @B

@yi

Bk�1�j;

we get

Bj@B

@yi

Bk�1�j





pNðBjÞ @B

@yi





NðBk�1�jÞ; j ¼ 0;y; k � 1;

so that for j ¼ 0;y; k � 1; using Lemma A.3,

Bj @B

@yi

Bk�1�j





pC2kd0rk�1

0

@B

@yi





:

First, we note that the norms of the derivatives Nð@B=@yiÞ; Nð@A=@yiÞ
and jj@C1=@yijj are uniformly bounded on Y because these derivatives are all
continuous functions of the parameters and y belongs to a compact set. Then we
denote by Si ¼ supyAY Nð@A=@yiÞ; S0

i ¼ sup
yAY

Nð@B=@yiÞ and S00
i ¼ sup

yAY
jj@C1=@yijj:

Moreover, let S0 ¼ supyAY NðAÞ: The derivative given by (A.8) involves three terms
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to bound,

@

@yi

Xt�1
k¼0

BkC1

 !



 ¼

Xt�1
k¼1

@Bk

@yi

C1 þ
Xt�1
k¼0

Bk@C1
@yi







pC2 @B

@yi





Xt�1

k¼1
kd0rk�1

0 þC
@C1
@yi





 Xt�1

k¼0
kd0rk

0

p
Cðd0 � 1Þ!
r0ð1� r0Þ

d0
C

@B

@yi





þ @C1

@yi







� �
;

using
Pt�1

k¼1 kd0rk
0p

P
N

k¼1 kd0rk
0 ¼ ðd0 � 1Þ!=ð1� r0Þ

d0 : Of course, we implicitly

assume that r0a0; but if it is, the terms are straightforwardly bounded because B

is then nilpotent and all sums are finite. Then we have

sup
yAY

@

@yi

Xt�1
k¼0

BkC1

 !



pCðd0 � 1Þ!

ffiffiffiffiffi
d0

p

r0ð1� r0Þ
d0

ðCS0
i þ S00

i Þ:

In the same way,

@

@yi

ðBtÞH0





p ðd0 � 1Þ!C

r0ð1� r0Þ
d0

@B

@yi





 H0j jj j:

Finally,

@

@yi

Xt�1
k¼0

BkLkA

 !
Xt�1





p

Xt�1
k¼0

@

@yi

BkLkA

� �" #
Xt�1







þ
Xt�1
k¼0

BkLk @

@yi

A

� �" #
Xt�1







¼ jjT1jj þ jjT2jj:

Then for the second term, we write

jjT2jjpC2
Xt�1
k¼0

kd0rk
0N

@A

@yi

� �
jjXt�kjj

and

E sup
yAY

jjT2jj2
� �

pC2S2i

Xt�1
k;k0¼0

kd0ðk0Þd0rkþk0

0 EðjjXt�kjj jjXt�k0 jjÞ

pC2S2i

Xt�1
k¼0

kd0rk
0 E

1=2ðjjXt�kjj2Þ
 !2

pC2S2i
½ðd0 � 1Þ!2

ð1� r0Þ
2d0

EðjjX0jj2Þ:
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For the first term we have

jjT1jjpC2
Xt�1
k¼1

kd0þ1rk�1
0 NðAÞjjXt�k�1jj

 !
N

@B

@yi

� �

pC2
Xt�1
k¼1

kd0þ1rk�1
1 jjXt�k�1jj

 !
NðAÞN @B

@yi

� �
:

So

E sup
yAY

jjT1jj2
� �

pC2S20ðS0
iÞ
2
E
Xt�1
k¼1

kd0þ1rk�1
0 jjXt�k�1jj

 !2

pC2S20ðS0
iÞ
2
E

Xt�1
k;k0¼1

ðkd0þ1rk�1
0 Þððk0Þd0þ1rk0�1

0 ÞjjXt�k�1jj jjXt�k0�1jj
 !

:

p
ðd0!CS0S

0
iÞ
2

½r0ð1� r0Þ
d0 2

EðjjX0jj2Þ:

As EðjjX0jj2ÞoN; the proof is completed. &

Proof of Lemma A.3. If we can find a complex unitary matrix P which satisfies

Pn ¼ P�1; Pn being the conjugate transpose of P; such that B ¼ PnDP; D diagonal,
then it immediately follows that

NðBkÞ ¼ NðPnDkPÞ ¼ r1=2ðPnðDDnÞk
PÞ ¼ r1=2ððDDnÞkÞ ¼ rk

1ðBÞ;

so that the result holds with C ¼ 1: In general though, B cannot be diagonalized. In
this case, we can still find a complex unitary matrix P and a complex lower triangular

matrix T such that B ¼ PnTP: The diagonal terms of T are the eigenvalues of B: See
[22, Theorem 12]. Write T ¼ D þ L where D is diagonal and L is lower triangular

with null diagonal. It follows that L is nilpotent with Ld0 ¼ 0: We have NðBkÞ ¼
NðTkÞ as above and

NðTkÞpNðDkÞ þ
Xd0
j¼1

k

j

 !
NðLÞj

NðDÞk�j

p rk
1 þ

Xd0
j¼1

k

j

 !
NðLÞjrk�j

1 ;

for any kXd0: Let k ¼ d0 þ n: Then

NðTkÞprn
1 rd0

1 þ
Xd0
j¼1

k

j

 !
NðLÞjrd0�j

1

 !
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and

k

j

 !
¼

d0

j

 ! Yn

p¼1

1

1� j
d0þp

 !
:

But for any real x; 0pxp1=d0; �logð1� xÞpðd0=ð1þ d0ÞÞx; so that for any jX1;

log
Yn

p¼1

1

1� j
d0þp

 !" #
¼ �

Xn

p¼1
log 1� j

d0 þ p

� �
p

d0

1þ d0

Xn

p¼1

j

d0 þ p

p
j

1þ d0

Xn

p¼1

1

1þ p=d0
p

jd0

1þ d0
log 1þ n

d0

� �

p d0 log 1þ n

d0

� �

as jpd0: Thus,

k

j

 !
p

d0

j

 !
1þ n

d0

� �d0

and

NðTd0þnÞprn
1 1þ n

d0

� �d0

ðNðLÞ þ r1Þ
d0 : ðA:9Þ

It is thus clear from (A.9) that

NðTkÞp 1þ NðLÞ=r0
d0

� �d0

kd0rk
0 :

Since

NðLÞ ¼ NðT � DÞpNðTÞ þNðDÞpr0 þNðBÞ;

we find the result with C ¼ ½ð2þ supyAY NðBðyÞÞ=r0Þ=d0d0 ; where the supremum is
finite since B is a continuous function of y and Y is compact. &

Next, we prove that C1 is positive definite. Let Ai ¼ H�1=2 ’HiH
�1=2 where the t

index is omitted for brevity andH�1=2 is a symmetric root ofH�1:Using that for any

matrices A;B; TrðABÞ ¼ vecðA0Þ0vecðBÞ; we find that the matrix Et�1ð@2ctðy0Þ=@y2Þ
is equal to 2WW 0 where W 0 ¼ ðvecðA1ÞjvecðA2Þj?jvecðArÞÞ: Then using that

vecðABCÞ ¼ ðC0#AÞvecðBÞ (see [22, Theorem 2, p. 30]), we have vecðAiÞ ¼
ðH�1=2#H�1=2Þ vecð ’HiÞ: Using now that ðA#BÞðC#DÞ ¼ ðAC#BDÞ; we have

Et�1ð@2ctðy0Þ=@y2Þ ¼ 2WW 0 ¼ 2ðvecðAiÞ0 vecðAjÞÞ1pi;jpr

¼ 2ðvecð ’HiÞ0ðH�1=2#H�1=2ÞðH�1=2#H�1=2Þ vecð ’HjÞÞ1pi;jpr

¼ 2ðvecð ’HiÞ0ðH�1#H�1Þvecð ’HjÞÞ1pi;jpr

¼ 2P0ðH�1#H�1ÞP;
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where P ¼ ðvecð ’H1Þjvecð ’H2Þj?jvecð ’HrÞÞ: We know that H�1#H�1 is positive
definite. Further, the eigenvalues of A#B are limj if li are the eigenvalues of A and

mj are those of B (see [22, Theorem 1, p. 28]. This implies that the eigenvalues of

H�1#H�1 are positive, H�1 being positive definite. It follows that C1 is at least
positive semidefinite. Now, assume that C1 is not full rank. Then there exists a vector
x; independent of t; such that

x0EðP0
tðH�1

t #H�1
t ÞPtÞx ¼ 0:

But x0EðP0
tðH�1

t #H�1
t ÞPtÞx ¼ EððPtxÞ0ðH�1

t #H�1
t ÞPtxÞ ¼ 0: As the term under the

expectation is nonnegative, it is necessarily zero, and H�1
t #H�1

t being positive

definite we deduce that Ptx ¼ 0;Py0 � a:s:; 8tAN: This implies that there exists a
vector y such that

y0@ht

@y
¼
Xr

i¼1
y0

i

@ht

@yi

¼ 0; Py0 � a:s:; 8tAN;

using the notations of Lemma A.2 and denoting by @ht=@y the vector

ð@h0
t=@y1; @h0

t=@y2;y; @h0
t=@yrÞ0:

Then differentiating relation (10)

y0 @ vechðCÞ
@y

þ
Xm

i¼1

@Ãi

@y
Zt�i þ

Xm

i¼1

@B̃i

@y
ht�i

 !
¼ 0; Py0 � a:s:

or

y0@ vechðCÞ
@y

� �
þ
Xm

i¼1
y0@Ãi

@y

� �
Zt�i þ

Xm

i¼1
y0@B̃i

@y

� �
ht�i ¼ 0; Py0 � a:s:

This would make it possible to find another representation of ht and of the model
and imply a contradiction of the identifiability conditions which ensure (see [14]) that
the representation is unique.
We have thus shown that C1 is finite and positive definite. &

Proof of B2. The expectation of the second term on the rhs of (A.2) equals 2C1
which is finite by B1. As for the first term,

E
Xd

p¼1
ðm4;p � 3Þ½H

�1=2
t

’Ht;iH
�1=2
t pp½H

�1=2
t

’Ht;jH
�1=2
t pp




p max
1pppd

jm4;p � 3jE
Xd

p¼1
½H�1=2

t
’Ht;iH

�1=2
t 2pp

Xd

p¼1
½H�1=2

t
’Ht;jH

�1=2
t 2pp

" #1=2

p max
1pppd

jm4;p � 3j E
Xd

p¼1
½H�1=2

t
’Ht;iH

�1=2
t 2pp

 !
E
Xd

p¼1
½H�1=2

t
’Ht;jH

�1=2
t 2pp

 !( )1=2

p max
1pppd

jm4;p � 3jfEðTrð ’Ht;iH
�1
t

’Ht;iH
�1
t ÞÞEðTrð ’Ht;jH

�1
t

’Ht;jH
�1
t ÞÞg1=2
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using that for M ¼ ðmi;jÞ1pi;jpd ;
Pd

i¼1 m2
i;ip

Pd
i¼1

Pd
k¼1 m2

i;k ¼ TrðMM 0Þ and that
TrðH�1=2

t MÞ ¼ TrðMH
�1=2
t Þ: So the finiteness of C0 is ensured by B1. &

Proof of B3. The third order log-likelihood derivative involves terms of the form

Trð .’Ht;i;j;kH�1
t Þ; TrðḦt;i;jH

�1
t

’Ht;kH�1
t Þ; Trð ’Ht;iH

�1
t

’Ht;jH
�1
t

’Ht;kH�1
t Þ; or the traces of

the same matrices premultiplicated by XtX
0
t H

�1
t : Thus, for instance,

E sup
yAY

TrðXtX
0
t H

�1
t

’Ht;iH
�1
t

’Ht;jH
�1
t

’Ht;kH�1
t Þ

 � �

pK4E NðXtX
0
t Þ sup

yAY
ðjj ’Ht;ijj ’Ht;jjj ’Ht;kjjÞ

� �

pK4E1=4ðjjX jj8ÞE1=4 sup
yAY

jj ’Ht;ijj4
� �

E1=4 sup
yAY

jj ’Ht;jjj4
� �

E1=4 sup
yAY

jj ’Ht;kjj4
� �

:

It is clear from Lemma A.2 that if X admits moments of order 8, since

E1=4 sup
yAY

jj ’Ht;ijj4
� �

pE1=4 sup
yAY

@Ht

@yi






4

 !
;

where H is defined by (A.5), the terms above are bounded. Indeed, the result of
Lemma A.2 can also be extended to get

E sup
yAY

@Ht

@yi

	 
4
k;l

 !
oK1; E sup

yAY

@2Ht

@yi@yj

	 
2
k;l

 !
oK2; E sup

yAY

@3Ht

@yi@yj@yk

	 
2
k;l

 !
oK3

for 1pk; lpd; under our moment condition of order 8. &

Appendix B. Proof of Theorem 4

First, #yx;n is strongly consistent (see [15, p. 19,41]) if, for any xAR
mdðdþ1Þ=2
þ ;

sup
yAY

1

n

Xn

t¼1
½ctðx; yÞ � ctðyÞ


-0: ðB:1Þ

To prove (B.1), it suffices to check that

E sup
yAY

jctðyÞ � ctðx; yÞj
	 


is bounded by a summable sequence in t: Indeed then

XþN

t¼1
P sup

yAY
jctðyÞ � ctðx; yÞj4x

� �
oþN for all x40;
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so that the Borel–Cantelli lemma implies that supyAY jctðyÞ � ctðx; yÞj tends to zero
almost surely. Cesaro’s mean theorem implies then that (B.1) holds. Now

ctðx; yÞ � ctðyÞ ¼ logðdetðIr þ H
�1=2
t;y ðHt;x;y � Ht;yÞH�1=2

t;y ÞÞ

þ X 0
t H

�1
t;y ðHt;y � Ht;x;yÞH�1

t;x;yXt:

For the second term, we write

jX 0
t H

�1
t;y ðHt;y � Ht;x;yÞH�1

t;x;yXtj ¼ jTrðX 0
t H

�1
t;y ðHt;y � Ht;x;yÞH�1

t;x;yXtÞj

¼ jTrðH�1
t;y ðHt;y � Ht;x;yÞH�1

t;x;yXtX
0
t Þj

p jjXtX
0
t jjNðH�1

t;y ÞNðH�1
t;x;yÞjjHt;y � Ht;x;yjj

pK2jjXtjj2jjHt;y � Ht;x;yjj:

Using (A.7), we have

Ht �Hx;t ¼ BtðH0 �Hx;0Þ;

where Hx;0 is the initial condition for H associated with x: This implies that

NðHt;x � HtÞp jjHt;x � HtjjpjjHt �Hx;tjjpNðBtÞjjH0 �Hx;0jj

pCtd0rt
0jjH0 �Hx;0jj ðB:2Þ

by using Lemma A.3. Therefore

jX 0
t ðH�1

t;x;y � H�1
t;y ÞXtjpK2CjjH0 �Hx;0jj jjXtjj2td0rt

0:

This implies that

E sup
y

jX 0
t ðH�1

t;x;y � H�1
t;y ÞXtj

	 

¼ Oðtd0rt

0Þ ðB:3Þ

if EðjjXtjj4ÞoþN; and the bound in (B.3) is summable. For the first term, let

liðt; x; yÞ be the eigenvalues of the symmetric matrix H
�1=2
t;y ðHt;x;y � Ht;yÞH�1=2

t;y ; i ¼
1;y; d: Then

logfdet½Ir þ H
�1=2
t;y ðHt;x;y � Ht;yÞH�1=2

t;y g ¼
Xd

i¼1
logð1þ liðt; x; yÞÞ:

We have

jliðt; x; yÞjprðH�1=2
t;y ðHt;x;y � Ht;yÞH�1=2

t;y ÞpNðH�1=2
t;y Þ2NðHt;x;y � Ht;yÞ

and therefore, using (B.2), there exists a constant k independent of y such that

jliðt; x; yÞjpktd0rt
0:
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Then there exist some fixed t0 such that for tXt0; jliðt; x; yÞjp1=2; and since
jlogð1þ uÞjp2juj for jujp1=2; for tXt0;

jlogðdetðIr þ H
�1=2
t;y ðHt;x;y � Ht;yÞH�1=2

t;y ÞÞjp
Xd

i¼1
jlogð1þ liðt; x; yÞÞj

p 2
Xd

i¼1
jliðt; x; yÞjp2dktd0rt

0:

This implies that

sup
yAY

jlog½detðH�1
t;y Ht;x;yÞj ¼ Oðtd0rt

0Þ ðB:4Þ

and the bound in (B.4) is summable (over t). The compactness of Y is implicitly used
in the above considerations. Gathering the above summable bounds (B.3) and (B.4)

proves (B.1) and gives the strong consistency of #yn;x:
For asymptotic normality, write

r2Lnðx; ynn;xÞ
ffiffiffi
n

p
ð#yx;n � y0Þ ¼

ffiffiffi
n

p
ðrLnðy0Þ � rLnðx; y0ÞÞ

þ r2LnðynnÞ
ffiffiffi
n

p
ð#yn � y0Þ; ðB:5Þ

where jynn;x � y0jpj#yn;x � y0j and jynn � y0jpj#yn � y0j: In view of (B.5), the sufficient
conditions for #yx;n to have the same asymptotic distribution as #yn are

1ffiffiffi
n

p
Xn

t¼1
ðrctðy0Þ � rctðx; y0ÞÞ


-0 in probability ðB:6Þ

and

sup
yAY

1

n

Xn

t¼1
ðr2ctðx; yÞ � r2ctðyÞÞ


-0 in probability: ðB:7Þ

Using Markov’s inequality, which implies that PðjX jXaÞpEðjX jpÞ=ap for any pX0;
we know that (B.6) holds if for all i;

XN
t¼1

E
@

@yi

ctðy0Þ �
@

@yi

ctðx; y0Þ





 is bounded: ðB:8Þ

We omit the index y0 for simplicity:

@

@yi

ctðy0Þ �
@

@yi

ctðx; y0Þ


 ¼ jX 0
t ðH�1

t
’Ht;iH

�1
t � H�1

x;t
’Ht;x;iH

�1
x;t ÞXt

� TrðH�1
t

’Ht;iÞ � TrðH�1
x;t

’Ht;x;iÞj: ðB:9Þ
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There are thus two types of terms to study. First,

jTrðH�1
t

’Ht;iÞ � TrðH�1
t;x

’Ht;x;iÞj

pjTrðH�1
t ð ’Ht;i � ’Ht;x;iÞÞj þ jTrððH�1

t � H�1
t;x Þ ’Ht;x;iÞj

pjjH�1
t jj jj ’Ht;i � ’Ht;x;ijj þ jjH�1

t � H�1
t;x jj jj ’Ht;x;ijj

p
ffiffiffi
d

p
K

@Ht

@yi

� @Ht;x

@yi





þNðH�1

t ÞNðH�1
t;x ÞjjHt � Ht;xjj

@Ht

@yi







p
ffiffiffi
d

p
K

@Ht

@yi

� @Ht;x

@yi





þ K2jjHt � Ht;xjj

@Ht

@yi





: ðB:10Þ

By Lemma A.2, Eðjj@Ht

@yi
jj2ÞoN:Moreover, we saw above that the series with general

term E1=2ðjjHt � Ht;xjj2Þ is summable. For the other term in (B.10), it is easy to see

that

@Ht

@yi

� @Ht;x

@yi

¼ @Bt

@yi

ðH0 �H0;xÞ;

which implies, by using Lemma A.3, that

@Ht

@yi

� @Ht;x

@yi





pC2td0þ1rt�1

0 N
@B

@y

� �
jjH0 �H0;xjj;

which is a convergent series in t: For the second term of (B.9), we write

X 0
t ðH�1

t
’Ht;iH

�1
t � H�1

t;x
’Ht;x;iH

�1
t;x ÞXt

¼ X 0
t ðH�1

t � H�1
t;x Þ ’Ht;iH

�1
t Xt þ X 0

t H
�1
t;x ð ’Ht;i � ’Ht;x;iÞH�1

t Xt

þ X 0
t H

�1
t;x

’Ht;x;iðH�1
t � H�1

t;x ÞX 0
t

and we bound each of the three terms in the same way. For instance,

EjX 0
t ðH�1

t � H�1
t;x Þ ’Ht;iH

�1
t Xtj

¼ EjX 0
t H

�1
t ðHt � Ht;xÞH�1

t;x
’Ht;iH

�1
t Xtj

¼ EjTrðH�1
t;x

’Ht;iH
�1
t XtX

0
t H

�1
t ðHt � Ht;xÞÞj

pEðjj ’Ht;ijjNðH�1
t ÞjjH�1

t;x XtX
0
t H

�1
t jj jjHt � Ht;xjjÞ

pEðjj ’Ht;ijjNðH�1
t ÞNðH�1

t;x H�1
t ÞNðXtX

0
t ÞjjHt � Ht;xjjÞ

pK3E1=4ðNðXtX
0
t Þ
4ÞE1=4ðjj ’Ht;ijj4ÞE1=2ðjjHt � Ht;xjj2Þ

pK3E1=4ðjjXtjj4ÞE1=4
@Ht

@yi






4

 !
E1=2ð2jjHt �Ht;xjj2Þ

pK3Ctd0rt
0E
1=4ðjjXtjj4ÞE1=4

@Ht

@yi






4

 !
E1=2ð2jjH0 �H0;xjj2Þ:
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Thus again, the general term which appears here is summable (as of order constant


td0rt
0). The two other terms can be treated in the same way. Note that our bounds

are uniform on Y:
The same method is suitable for dealing with (B.7), i.e., when looking for a

uniform bound on

E sup
yAY

@2

@yi@yj

ctðyÞ �
@2

@yi@yj

ctðx; yÞ



� �

with the second-order derivatives given by (A.4). &
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