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Abstract

Using Carstensen’s results from 1991 we state a theorem concerning the localization of polynomial zeros and derive two a
posteriori error bound methods with the convergence order 3 and 4. These methods possess useful property of inclusion methods to
produce disks containing all simple zeros of a polynomial. We establish computationally verifiable initial conditions that guarantee
the convergence of these methods. Some computational aspects and the possibility of implementation on parallel computers are
considered, including two numerical examples. A comparison of a posteriori error bound methods with the corresponding circular
interval methods, regarding the computational costs and sizes of produced inclusion disks, were given.
© 2006 Elsevier B.V. All rights reserved.
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1. Localization of zeros and a posteriori error bound methods

Before running any locally convergent iterative method for the simultaneous determination of polynomial zeros, it
is necessary to apply a multi-stage globally convergent composite algorithm that can provide sufficiently close initial
approximations (see, e.g., [3,20,27]). The localization of zeros is an important part of this composite algorithm; a
numerous references have been devoted to this subject, including famous books [16,13, Chapter 6]. One of the most
beautiful results in this topic, connected with Gerschgorin’s theorem and localization of zeros, is due to Carstensen [5]
(Section 1). Adapting this result we can state computationally verifiable initial conditions for a number of simultaneous
methods for finding polynomial zeros (see [24,25]) and construct iterative methods that produce disks in the complex
plane containing the sought zeros (Section 2). The centers of these disks are calculated by some suitable iterative
method with fast convergence and they present approximations to the zeros. The radii are evaluated using a corollary
of Carstensen’s result and give a posteriori error bounds related to these approximations.
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In this paper we combine good properties of iterative methods with fast convergence and a posteriori error bounds to
construct efficient inclusion methods for polynomial complex zeros. Simultaneous determination of both centers and
radii leads to iterative error bound methods which have very convenient inclusion property at each iteration. This class
of methods possesses a high computational efficiency since it requires less numerical operations compared to usual
interval methods realized in interval arithmetic. Numerical experiments demonstrate equal or even better convergence
behavior of these methods than the corresponding interval methods realized in circular complex arithmetic (Section
3). In this paper the main attention is devoted to the construction of inclusion error bound methods together with its
efficient implementation and initial conditions for the guaranteed convergence, and to the study of the convergence rate
of a posteriori error bounds.

Let us return to Carstensen’s result. Let P(z) = zn + a1z
n−1 + · · · + an−1z + an (ai ∈ C) be a monic polynomial

and let

W(zi) = P(zi)∏n
j=1
j �=i

(zi − zj )
(i ∈ In := {1, . . . , n})

be Weierstrass’correction, where z1, . . . , zn are distinct approximations to the simple zeros �1, . . . , �n of P . Sometimes,
we will write W(zi) = Wi . Starting from Carstensen’s result [6] which are concerned with the best Gerschgorin disks
in a class of problems dealing with Weierstrass’ corrections, we obtain the sharpest inclusion disks in the mentioned
class given in the following theorem (see [25, Section 1.2, 29] for more details):

Theorem 1 (Carstensen [5]). Let �i := zi − Wi ∈ C\{z1, . . . , zn} and set

�i := |Wi | · max
j=1,...,n,j �=i

|zj − �i |−1, �i :=
n∑

j=1,j �=i

|Wj |
|zj − �i |

(i ∈ In).

If √
1 + �i >

√
�i + √

�i and �i + 2�i < 1, (1)

then there is exactly one zero of P in the disk with center �i and radius

r∗
i = |Wi |�i + �i

1 − �i

. (2)

Remark 1. The quantity Wi is often called Weierstrass’ correction since it appears in the very familiar Weierstrass’
iterative method for the simultaneous determination of all simple zeros of a polynomial

ẑi = zi − Wi (i ∈ In), (3)

also called the Durand–Kerner method [10,15]. Let us note that �i in Theorem 1 coincides with ẑi .

Studying the problem of calculation of zeros, it is of interest to consider simultaneously the problem of localization
of zeros together with other important topics: distribution of initial approximations z

(0)
1 , . . . , z

(0)
n , their closeness and

the convergence of a posteriori error bounds (shorter PEB) given by the size of inclusion regions containing zeros. An
extensive research performed during the last two decades (see, e.g., [22,24,25,31]) showed that the mentioned study
can be realized by using Theorem 1 and an initial condition of the form

w(0) �cnd
(0), (4)

where

w(m) = max
1� i �n

|W(z
(m)
i )|, d(m) = min

1 � i,j � n
j �=i

|z(m)
i − z

(m)
j | (m = 0, 1, . . .),
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and m=0, 1, 2, . . . is the iteration index. When we omit the iteration index, then we write simply w and d. The quantity
cn depends only on the polynomial degree n. This convenient property explains the importance of results given in
Theorem 1. Apart from the localization of polynomial zeros into separate disks, Theorem 1 points to the quadratic
convergence of PEB corresponding to Weierstrass’ method (3).

Corollary 1. If cn appearing in (4) is not greater than 1/2n, then both inequalities (1) hold and the radii of the
inclusion disks given in Theorem 1 are not greater than n|Wi |w/(d(1 − cn) − (n − 1)w).

Proof. According to the definition of the minimal distance d, we have |zj −�i |=|zj −zi +Wi |� |zj −zi |−|Wi |�d−w

so that, by (4), we estimate

�i �
w

d − w
� w

d(1 − cn)
, �i �

(n − 1)w

d − w
� (n − 1)w

d(1 − cn)
.

Hence, taking w/d �cn �1/(2n), we prove the validity of (1). The radius r∗
i given by (2) becomes

r∗
i = |Wi |�i + �i

1 − �i

� |Wi |
(

w

d(1 − cn)
+ (n − 1)w

d(1 − cn)

)
· 1

1 − (n − 1)w

d(1 − cn)

,

wherefrom

r∗
i � n|Wi |w

d(1 − cn) − (n − 1)w
= : ri . � (5)

Let εi = zi − �i , ε = max1� i �n |εi |. Having in mind that |Wi | = O(ε), from (5) and the fact that �i from Theorem 1
coincides with ẑi given by (3), we conclude that the bounds r

(m)
i (given by (5) for the iteration index m) can be expressed

as a square of ε(m). Since Weierstrass’ method converges quadratically under the condition w(0) < cnd
(0) �d(0)/(2n)

(see [2]), that is, ε(m+1)=O((ε(m))2), it follows that the sequences {r(m)
i } (i ∈ In) of PEB, corresponding to Weierstrass’

method (3), also converge quadratically.
From Corollary 1 we can derive the following useful inclusion which has the main role in our consideration.

Corollary 2. Under the condition (4) each of disks Di defined by

Di =
{
zi; |Wi |

1 − ncn

}
= {zi; �i} (i ∈ In)

contains exactly one zero of P .

The proof follows from Theorem 1 and (5) taking into account the inequality w/d �cn. Indeed,{
zi − Wi; n|Wi |w

d(1 − cn) − (n − 1)w

}
⊆
{
zi − Wi; n|Wi |cn

1 − ncn

}
⊆
{
zi; n|Wi |cn

1 − ncn

+ |Wi |
}

=
{
zi; |Wi |

1 − ncn

}
.

If the centers zi of disks Di are calculated by an iterative method, then we can generate the sequences of disks
D

(m)
i (m = 0, 1, . . .) whose radii �(m)

i converge to 0 under some suitable conditions. It should be noted that only those
methods which use quantities already calculated in the previous iterative step (in our case, the corrections Wi) provide
a high computational efficiency. For this reason, we restrict our choice to the class of derivative free methods which
deal with Weierstrass’ corrections, the so-called W-class. In what follows, aside from Weierstrass’ method (3), we will
consider the following two efficient simultaneous methods:

Börsch-Supan’s method [4], shorter BS method, the convergence order 3:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑
j �=i

W
(m)
j

z
(m)
i −z

(m)
j

(i ∈ In; m = 0, 1, . . .). (6)
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Börsch-Supan’s method with Weierstrass’ correction [18], shorter BSW method, the convergence order 4:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑
j �=i

W
(m)
j

z
(m)
i −W

(m)
i −z

(m)
j

(i ∈ In; m = 0, 1, . . .). (7)

Let us note that W
(m)
i = W(z

(m)
i ).

Let z
(0)
1 , . . . , z

(0)
n be given initial approximations and let

z
(m)
i = �W(z

(m−1)
i ) (i ∈ In; m = 1, 2, . . .) (8)

be one of the derivative free iterative methods based on Weierstrass’ corrections (belonging to W-class), which is
indicated by the subscript index “W”. For example, the methods (3), (6) and (7) belong to the W-class. Another iterative
methods of Weierstrass’ class are given in [11,26,33].

Combining the results of Corollary 2 and (8), we can state the following inclusion method in a general form:
A posteriori error bound method: A posteriori error bound method (shorter PEB method) is defined by the sequences

of disks {D(m)
i } (i ∈ In),

D
(0)
i =

{
z
(0)
i ; |W(z

(0)
i )|

1 − ncn

}
,

D
(m)
i = {z(m)

i ; �(m)
i } (i ∈ In; m = 1, 2, . . .), (9)

z
(m)
i = �W(z

(m−1)
i ), �(m)

i = |W(z
(m)
i )|

1 − ncn

,

assuming that the initial condition (4) (with cn �1/(2n)) holds.

Remark 2. The sequences of disks given by (9) can be regarded as a quasi-interval method, which differs structurally
from typical interval methods that deal with disks as arguments; for instance, let us present the following circular
interval methods which do not use the polynomial derivatives:

Weierstrass-like interval method [32], the order 2:

Z
(m+1)
i = z

(m)
i − P(z

(m)
i )∏n

j=1,j �=i (z
(m)
i − Z

(m)
j )

(i ∈ In; m = 0, 1, . . .). (10)

Börsch-Supan-like interval method [19], the order 3:

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑n
j=1,j �=i

W
(m)
j

Z
(m)
i −z

(m)
j

(i ∈ In; m = 0, 1, . . .). (11)

Börsch-Supan-like interval method with Weierstrass’ correction [21], the order 4 (centered inversion):

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +∑n
j=1,j �=i

W
(m)
j

Z
(m)
i −W

(m)
i −z

(m)
j

(i ∈ In; m = 0, 1, . . .). (12)

All methods (9)–(12) possess the crucial inclusion property: each of the produced disks contains exactly one zero in
each iteration. More about interval methods for solving polynomial equations can be found in [20,28].
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Studying the convergence of error bounds in the case of Weierstrass’ method and having in mind aforementioned
remarks, the following important tasks arise:

(1) Determine the convergence order of a posteriori error bound method when the centers z
(m)
i of disks

D
(m)
i =

{
z
(m)
i ; |W(z

(m)
i )|

1 − ncn

}
(i ∈ In; m = 0, 1, . . .) (13)

are calculated by an iterative method of order k (�2).
(2) State computationally verifiable initial condition that guarantees the convergence of the sequences of radii

{rad D
(m)
i }. We note that this problem, very important in the theory and practice of iterative processes in gen-

eral, is a part of Smale’s “point estimation theory” [30] which has attracted a great attention during the last two
decades (see [25] for details). In the case of algebraic polynomials, initial conditions should depend only on
attainable data—initial approximations, polynomial degree and polynomial coefficients.

(3) Compare the computational efficiencies of the PEB methods and the existing circular interval methods (given, for
instance, by (10)–(12)). Which of these two classes of methods is more efficient?

(4) Using numerical experiments, compare the size of inclusion disks produced by the PEB methods and the corre-
sponding interval methods (10)–(12). Whether the construction of PEB methods is justified?

The study of these subjects is the main goal of this paper.

2. Convergence of PEB methods

Starting from the PEB method (9), where the centers are calculated by the BS method (6) or the BSW method (7), in
this section we study initial conditions for the guaranteed convergence of the sequences of PEB {�(m)

i }. We will present
the convergence analysis of the PEB method based on the BS method (6) in details, while the convergence theorem
concerned with the BSW method (7) will be given without a proof since it uses a similar technique. For simplicity, we
will omit sometimes the iteration index m and denote quantities in the latter (m + 1)st iteration by ˆ(“hat”).

First, we give some necessary estimates.

Lemma 1. If the inequality

w <
d

2n
(14)

holds, then for the iterative method (6) and i ∈ In we have

(i)

∣∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣∣>
n + 1

2n
;

(ii) |ẑi − zi | < 2n

n + 1
|Wi | < d

n + 1
;

(iii) |ẑi − zj | > n

n + 1
d;

(iv) |ẑi − ẑj | > n − 1

n + 1
d;
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(v)

∣∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj

+ 1

∣∣∣∣∣∣<
n − 1

2n2 ;

(vi)
∏
j �=i

∣∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣∣<
(

1 + 1

n − 1

)n−1

.

Proof. Of (i): Using (14) and the definition of d one obtains

∣∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣∣ �1 −
∑
j �=i

|Wj |
|zi − zj | �1 − (n − 1)w

d
> 1 − n − 1

2n
= n + 1

2n
.

Of (ii): By (i) and (14) we get from (6)

|ẑi − zi | =

∣∣∣∣∣∣∣∣
Wi

1 +∑
j �=i

Wj

zi − zj

∣∣∣∣∣∣∣∣
<

|Wi |
n + 1

2n

= 2n

n + 1
|Wi | < d

n + 1
.

Of (iii): Using (ii) we find

|ẑi − zj |� |zi − zj | − |ẑi − zi | > d − d

n + 1
= n

n + 1
d.

Of (iv): By (ii) one gets

|ẑi − ẑj |� |zi − zj | − |ẑi − zi | − |ẑj − zj | > d − 2 · d

n + 1
= n − 1

n + 1
d.

Of (v): From the iterative formula (6) we obtain

Wi

ẑi − zi

= −1 −
∑
j �=i

Wj

zi − zj

so that

∣∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj

+ 1

∣∣∣∣∣∣=
∣∣∣∣∣∣

Wi

ẑi − zi

+
∑
j �=i

Wj

ẑi − zj

+ 1

∣∣∣∣∣∣=
∣∣∣∣∣∣
∑
j �=i

Wj (zi − ẑi )

(ẑi − zj )(zi − zj )

∣∣∣∣∣∣ ,

whence, by (ii), (iii) and (14),

∣∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj

+ 1

∣∣∣∣∣∣ � |ẑi − zi |
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

<
d

n + 1
· (n − 1)w(

n

n + 1
d

)
· d

<
n − 1

2n2 .
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Of (vi): By (ii) and (iv) we estimate

∏
j �=i

∣∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣∣ �
∏
j �=i

(
1 + |ẑj − zj |

|ẑi − ẑj |
)

<
∏
j �=i

⎛
⎜⎜⎝1 +

d

n + 1
(n − 1)d

n + 1

⎞
⎟⎟⎠=

(
1 + 1

n − 1

)n−1

. �

Lemma 2. Let us consider the PEB method (9) based on the Börsch-Supan’s method (6). If the inequality (14) holds,
then for i ∈ In we have

(i) |Ŵi | < �n|Wi |, �n = n − 1

n(n + 1)

(
1 + 1

n − 1

)n−1

;

(ii) ŵ <
d̂

2n
;

(iii) �̂i <
	n

d2 �2
i

∑
j �=i

�j , 	n =
{ 27

16 if n = 3,

e if n�4.

Proof. From (6) we find

Wi

ẑi − zi

= −1 −
∑
j �=i

Wj

zi − zj

,

so that

n∑
j=1

Wj

ẑi − zj

+ 1 = Wi

ẑi − zi

+
∑
j �=i

Wj

ẑi − zj

+ 1 = −(ẑi − zi)
∑
j �=i

Wj

(ẑi − zj )(zi − zj )
. (15)

Now we use the well-known result from the interpolation theory: if z1, . . . , zn are distinct complex numbers, then
the polynomial P can be expressed by the Lagrange interpolation formula

P(z) =
⎛
⎝ n∑

j=1

Wj

z − zj

+ 1

⎞
⎠ n∏

j=1

(z − zj ). (16)

Putting z = ẑi in (16) one gets

P(ẑi) = (ẑi − zi)

⎛
⎝ n∑

j=1

Wj

ẑi − zj

+ 1

⎞
⎠∏

j �=i

(ẑi − zj ).

After dividing P(ẑi) by
∏

j �=i (ẑi − ẑj ), we find

Ŵi = (ẑi − zi)

⎛
⎝ n∑

j=1

Wj

ẑi − zj

+ 1

⎞
⎠∏

j �=i

ẑi − zj

ẑi − ẑj

. (17)
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Using (ii), (v) and (vi) of Lemma 1, we start from (17) and find

|Ŵi | = |ẑi − zi |
∣∣∣∣∣∣

n∑
j=1

Wj

|ẑi − zj

+ 1

∣∣∣∣∣∣
∏
j �=i

|ẑi − zj |
|ẑi − ẑj |

<
2n

n + 1
|Wi |n − 1

2n2

(
1 + 1

n − 1

)n−1

= n − 1

n(n + 1)

(
1 + 1

n − 1

)n−1

|Wi | = �n|Wi |,

which proves the assertion (i).
From Lemma 1 (assertion (iv)) we observe that d̂ > [(n−1)/(n+1)]d. According to this and (i) of Lemma 2, taking

into account that �n � 3
8 we find

|Ŵi | < �n|Wi | < �n · d

2n
<

(n + 1)�n

2n(n − 1)
· d̂ � 3(n + 1)

16n(n − 1)
· d̂ <

d̂

2n
.

This proves the implication

w <
d

2n + 2
⇒ ŵ <

d̂

2n + 2
.

To prove (iii) we use (15) and from (17) we find

Ŵi = −(ẑi − zi)
2
∑
j �=i

Wj

(ẑi − zj )(zi − zj )

∏
j �=i

ẑi − zj

ẑi − ẑj

.

According to the estimates (ii), (iii) and (vi) of Lemma 1, from the last relation we obtain

|Ŵi | = |ẑi − zi |2
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

∏
j �=i

∣∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣∣
<

(
2n

n + 1

)2

|Wi |2
∑
j �=i

|Wj |
n

n + 1
d · d

(
1 + 1

n − 1

)n−1

<
4n

n + 1

(
1 + 1

n − 1

)n−1 1

d2 |Wi |2
∑
j �=i

|Wj |

� 4	n

d2 |Wi |2
∑
j �=i

|Wj |.

Multiplying both sides of the last inequality with 1/(1 − ncn) = 2, we get

�̂i <
	n

d2 �2
i

∑
j �=i

�j (18)

for every n�3. �

The initial disks D
(0)
i for cn = 1/(2n) are given by

D
(0)
i = {z(0)

i ; 2|W(z
(0)
i )|} (i ∈ In).
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By (9) we define the sequences of inclusion disks

D
(m)
i = {z(m)

i ; 2|W(z
(m)
i )|} = {z(m)

i ; �(m)
i } (i ∈ In; m = 1, 2, . . .), (19)

where z
(m)
i is calculated by the Börsch-Supan’s iterative formula (6) and �(m)

i = 2|W(z
(m)
i )|.

Theorem 2. The PEB method (19), based on Börsch-Supan’s method (6), converges cubically if the initial condition

w(0) <
d(0)

2n
(20)

holds.

Proof. As usually in the convergence analysis of interval methods, we have to prove that the sequences of a posteriori
error bounds {�(m)

i } (i ∈ In) converge cubically. The proof is by induction with the argumentation used in the proofs
of Lemmas 1 and 2. The initial condition (20) coincides with (14), which implies that all assertions of Lemmas 1
and 2 hold for the index m = 1. In fact, this is the part of the proof with respect to m = 1. The inequality (ii) of
Lemma 2 again reduces to the condition of the form (14) and, therefore, the assertions of Lemmas 1 and 2 hold for the
next index, and so on. Actually, the implication

w(m) <
d(m)

2n
⇒ w(m+1) <

d(m+1)

2n

plays a key role because it involves the initial condition (20) which leads to the validity of all inequalities given in
Lemmas 1 and 2 for each m = 0, 1, . . . . In particular, we have for every i ∈ In

�(m+1)
i <

	n

(d(m))2 (�(m)
i )2

∑
j �=i

�(m)
j , (21)

d(m)

d(m+1)
<

n + 1

n − 1
, (22)

|W(m+1)
i | < �n|W(m)

i |, (23)

and

|z(m+1)
i − z

(m)
i | < 2n

n + 1
|W(m)

i |. (24)

Substituting

h
(m)
i = �(m)

i

d(m)

√
(n + 1)	n (i ∈ In), (25)

the inequalities (21) become

h
(m+1)
i <

1

n + 1
· d(m)

d(m+1)
(h

(m)
i )2

∑
j �=i

h
(m)
j (i ∈ In). (26)

Applying (22), from (26) one obtains

h
(m+1)
i <

1

n − 1
(h

(m)
i )2

∑
j �=i

h
(m)
j (i ∈ In). (27)

Using (20) we find

h
(0)
i <

�(0)
i

d(0)

√
(n + 1)	n = 2|W(0)

i |
d(0)

√
(n + 1)	n <

1

n

√
(n + 1)	n < 1.
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Starting from the inequality h
(0)
i < 1 (i ∈ In), by successive application of (27) we conclude that the sequences

{h(m)
i } (i ∈ In) monotonically converge to 0. Since d(m) is bounded and tends to minj �=i |�i − �j |, in regard to the

substitution (25) we conclude that the sequences {�(m)
i } (i ∈ In) also converge to 0.

By successive application of (23), (24) and the condition (20), we estimate

d(m) � |z(m)
i − z

(m)
j |� |z(m−1)

i − z
(m−1)
j | − |z(m)

i − z
(m−1)
i | − |z(m)

j − z
(m−1)
j |

> d(m−1) − 2 · 2n

n + 1
w(m−1) > d(m−2) − 2 · 2n

n + 1
w(m−2) − 2 · 2n

n + 1
w(m−1)

...

> d(0) − 4n

n + 1

(
w(0) + w(1) + · · · + w(m−1)

)

> d(0) − 4n

n + 1
w(0)

(
1 + 3

8
+
(

3

8

)2

+ · · · +
(

3

8

)m−1
)

> d(0) − 32n

5(n + 1)
w(0) > d(0) − 32n

5(n + 1)
· d(0)

2n
= 5n − 11

5n + 5
d(0).

Setting the inequality d(m) > [(5n − 11)/(5n + 5)]d(0) in (21) we obtain

�(m+1)
i <

(
5n + 5

5n − 11

)2
e

(d(0))2 (�(m)
i )2

∑
j �=i

�(m)
j (i ∈ In).

Let �(m) = max1� i �n�
(m)
i . From the last inequality we obtain

�(m+1)
i <

(n − 1)e

(d(0))2

(
5n + 5

5n − 11

)2

(�(m))3 (i ∈ In),

which means that the sequences of PEB {�(m)
i } converge cubically. �

An extensive but elementary analysis, similar to that given in the proofs of Lemmas 1, 2 and Theorem 2, allows us
to state computationally verifiable condition for the convergence of the PEB method based on BSW formula (7) in the
form

w(0) <
d(0)

2n + 1
. (28)

In this case PEB is given by

�(m)
i = |W(z

(m)
i )|

1 − ncn

= 2n + 1

n + 1
|W(z

(m)
i )|,

while the centers of disks (9) are now calculated by the Börsch-Supan’s method with Weierstrass’ corrections (7).

Theorem 3. The PEB method

D
(m)
i =

{
z
(m)
i ; 2n + 1

n + 1
|W(z

(m)
i )|

}
(i ∈ In; m = 0, 1, . . .),

based on the Börsch-Supan method with Weierstrass correction (7), converges with the order 4 if the initial condition
(28) is valid.

Remark 3. It is not difficult to prove that the initial conditions (20) and (28) are sufficient to ensure the convergence
of the iterative methods (6) and (7), respectively. Moreover, they improve the initial conditions given in [23].
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We conclude this section emphasizing that the initial conditions (20) and (28) that guarantee the convergence of the
PEB methods (9)–(6) and (9)–(7) (respectively) depend only of attainable data, which is of great practical importance.

3. Computational points

In this section we give practical aspects of the presented theoretical results and some practical procedures in the
implementation of the proposed methods. As mentioned above, the computational cost significantly decreases if the
quantities W

(0)
i , W

(1)
i , . . . (i ∈ In), necessary in the calculation of PEB �(m)

i = |W(m)
i |/(1 − ncn), are applied in the

calculation of the centers z
(m+1)
i defined by the employed iterative formula from the W-class. Regarding the iterative

formulas (3), (6) and (7) we observe that this requirement is satisfied. A general calculating procedure can be described
by the following algorithm:

Calculating procedure (I). Given z
(0)
1 , . . . , z

(0)
n and the tolerance parameter 
;

Set m = 0;

(1) Calculate Weierstrass’ corrections W
(m)
1 , . . . , W

(m)
n at the points z

(m)
1 , . . . , z

(m)
n ;

(2) Calculate the radii �(m)
i = |W(m)

i |/(1 − ncn) (i = 1, . . . , n);

(3) If max1� i �n �(m)
i < 
, then STOP

(3) otherwise, GO TO (4);
(4) Calculate the new approximations z

(m+1)
1 , . . . , z

(m+1)
n by a suitable iterative formula from theW-class (for instance,

by (3), (6) or (7));
(5) Set m := m + 1 and GO TO the step (1).

Following the procedure (I) we realized many numerical examples and, for demonstration, we select the following
one.

Example 1. We considered the polynomial

P(z) = z12 − (2 + 5i)z11 − (1 − 10i)z10 + (12 − 25i)z9 − 30z8

− z4 + (2 + 5i)z3 + (1 − 10i)z2 − (12 − 25i)z + 30

= (z8 − 1)(z2 − 2z + 5)(z − 2i)(z − 3i).

Starting from sufficiently close initial approximations z
(0)
1 , . . . , z

(0)
12 we applied a posteriori error bound method (9)

and obtained the inclusion disks D
(m)
i = {z(m)

i ; �(m)
i } (i ∈ I12). The approximations z

(m)
i (m�1) were calculated by

the iterative formulas (3), (6) and (7) and the corresponding inclusion methods are referred to as (I-W), (I-BS) and
(I-BSW), respectively. For comparison purpose, we also tested the interval methods (10)–(12). The largest radii of the
disks obtained in the first four iterations are presented in Table 1, where A(−q) means A × 10−q .

The size of disks in the first iteration are of the same order for all three PEB methods since we use the formula
�(0) =|W(z

(0)
i )|/(1−ncn), where we used cn =1/(2n) for the methods (3) and (6) and cn =1/(2n+1) for the method

Table 1
The largest radii of disks obtained by procedure (I) and by interval methods (10)–(12)

Methods max �(0)
i max �(1)

i max �(2)
i max �(3)

i

(I-W) (9)–(3) 1.82(−1) 5.20(−2) 3.28(−3) 5.70(−6)

Interval W (10) 1.70(−1) No inclusions No inclusions No inclusions
(I-BS) (9)–(6) 1.82(−1) 4.25(−3) 1.13(−8) 3.29(−25)

Interval BS (11) 1.70(−1) 8.44(−3) 2.29(−7) 6.60(−22)

(I-BSW) (9)–(7) 1.76(−1) 8.54(−4) 1.14(−13) 2.68(−53)

Interval BSW (12) 1.70(−1) 1.01(−2) 4.74(−9) 2.60(−35)
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Table 2
The largest radii of disks obtained by (I-W), (I-BS), (I-BSW)—Procedure (II)

Methods max �(0)
i max �(1)

i max �(2)
i

(I-W) (9)–(3) 1.51(−3) 3.79(−6) 2.27(−11)

(I-BS) (9)–(6) 1.51(−3) 4.10(−9) 8.31(−26)

(I-BSW) (9)–(7) 1.46(−3) 9.64(−12) 1.60(−44)

(7). The initial radii of the applied interval methods (10)–(12) were rounded to 0.17. In our calculation we employed
multi-precision arithmetic since the tested methods converge very fast producing very small disks. From Table 1 we
observe that the PEB methods are equal or better than the corresponding methods (of the same order) (10)–(12) realized
in complex interval arithmetic. A number of numerical experiments showed similar convergence behavior of the tested
methods. The Weierstrass interval method (10) shows poor results since it uses the product of disks which is not an
exact operation in circular arithmetic and gives too large disks.

Calculation procedure (I) assumes the knowledge of initial approximations z
(0)
1 , . . . , z

(0)
n in advance. The determina-

tion of these approximations is usually realized by a slowly convergent multi-stage composite algorithm. Sometimes,
the following simple approach gives good results in practice.

Calculating procedure (II).

(1) Find the disk centered in the origin with the radius

R = 2 max
1�k �n

∣∣∣∣ak

a0

∣∣∣∣
1/k

(see [13, Corollary 6.4k]),

which contains all zeros of the polynomial P(z) = a0z
n + a1z

n−1 + · · · + an−1z + an.
(2) Calculate Aberth’s initial approximations [1]

z(0)
� = −a1

n
+ r0 exp(i��), i = √−1, �� = 


n

(
2� − 3

2

)
(� = 1, . . . , n),

equidistantly distributed along the circle |z + a1/n| = r0, r0 �R.
(3) Apply the simultaneous method (3) or (6) starting with Aberth’s approximations; stop the iterative process

when the condition

max
1� i �n

|W(z
(m)
i )| < cn min

i �=j
|z(m)

i − z
(m)
j | (29)

is satisfied.
(4)–(8) The same as the steps (1)–(5) of procedure (I).

We applied procedure (II) on the following example.

Example 2. To find approximations to the zeros of the polynomial

z15 + z14 + 1 = 0

satisfying the condition (29) (with cn = 1/(2n)), we applied Börsch-Supan’s method (6) with Aberth’s initial approx-
imations taking a1 = 1, n = 15, r0 = 2. The condition (29) was satisfied after seven iterative steps. The obtained
approximations were used to start the inclusion methods (I-W), (I-BS) and (I-BSW). After three iterations we obtained
disks whose largest radii are given in Table 2.

From Tables 1 and 2 we observe that the results obtained by the methods (I-W), (I-BS) and (I-BSW) coincide with
the theoretical results given in Corollary 1 and Theorems 2 and 3; in other words, the order of convergence in practice
matches very well the order derived in the presented theoretical analysis.
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Table 3
The number of operations

AS(n) M(n) D(n)

(I-W) (9)–(3) 8n2 + n 8n2 + 2n 2n
Interval W (10) 22n2 − 6n 25n2 − 6n 8n2 − n

(I-BS) (9)–(6) 15n2 − 6n 14n2 + 2n 2n2 + 2n

Interval BS (11) 23n2 − 4n 23n2 + 2n 7n2 + 2n

(I-BSW) (9)–(7) 15n2 − 4n 14n2 + 2n 2n2 + 2n

Interval BSW (12) 23n2 − 2n 23n2 + 2n 7n2 + 2n

At the beginning of the paper we have mentioned that the PEB methods requires less numerical operations compared
to their counterparts in complex interval arithmetic. In Table 3 we give the total number of numerical operations per
one iteration, reduced to real arithmetic operations. We have used the following abbreviations:

AS(n) (total number of additions and subtractions)

M(n) (multiplications)

D(n) (divisions)

From Table 3 we observe that the PEB methods needs significantly less numerical operations in reference to the
corresponding interval methods. One of the reasons for this advantage is the use of the already calculated Weierstrass
corrections Wi in the evaluation of the radii �i .

Parallel implementation: It is worth noting that the error bound method (9) for the simultaneous determination
of all zeros of a polynomial is very suitable for the implementation on parallel computers since it runs in several
identical versions. In this manner, a great deal of computation can be executed simultaneously. An analysis of total
running time of a parallel iteration and the determination of the optimal number of processors points to some undoubted
advantages of the implementation of simultaneous methods on parallel processing computers, see, e.g., [7–9,12,23].
The parallel processing becomes of significantly great interest to speed up the determination of zeros when one should
treat polynomials with degree 100 and higher, appearing in mathematical models in scientific engineering, including
digital signal processing or automatic control [14,17].

The model of parallel implementation is as follows: it is assumed that the number of processors k (�n) is given in
advance. Let W(m) = (W

(m)
1 , . . . , W

(m)
n ), �(m) = (�(m)

1 , . . . , �(m)
n ), z(m) = (z

(m)
1 , . . . , z

(m)
n ) denote vectors in the mth

iterative step, where �(m)
i =|W(z

(m)
i )|/(1−ncn), and z

(m)
i is obtained by the iterative formula z

(m)
i =�W(z

(m−1)
i ) (i ∈

In). The starting vector z(0) is computed by all processors C1, . . . , Ck using some suitable globally convergent method
based on a subdivided procedure and the inclusion annulus {z : r � |z|�R} which contains all zeros, where

r = 1

2
min

1�k �n

∣∣∣∣ an

an−k

∣∣∣∣
1/k

, R = 2 max
1�k �n

∣∣∣∣ak

a0

∣∣∣∣
1/k

(see [13, Theorem 6.4b, Corollary 6.4k]).
In the next stage, each step of the algorithm consists in sharing the calculation of W

(m)
i , �(m)

i , z
(m+1)
i among the

processors and in updating their data through a broadcast procedures (shorter BCAST(W(m), �(m)), BCAST(z(m+1))).
As in [8], let I1, . . . , Ik be disjunctive partitions of the set {1, . . . , n} where ∪Ij = {1, . . . , n}. To provide good load
balancing between the processors, the index sets I1, . . . , Ik are chosen so that the number of their components N(Ij )

(j = 1, . . . , k) is determined as N(Ij )�[n/k]. At the mth iterative step the processor Cj (j = 1, . . . , k) computes

W
(m)
i , �(m)

i and, if necessary, z
(m+1)
i for all i ∈ Ij and then it transmits these values to all other processors using a

broadcast procedure. The program terminates when some stopping criterion is satisfied, say, if for a given tolerance 
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the inequality

max
1� i �n

|�(m)
i | < 


holds. A program written in pseudocode (following [8]) for a parallel implementation of the error bound method (9) is
given below:

Program A Posteriori Error Bound Method

begin
for all j = 1, . . . , k do determination of the approximations z (0);
m := 0
C := false
do

for all j = 1, . . . , k do in parallel
begin

Compute W
(m)
i , i ∈ Ij ;

Compute �(m)
i , i ∈ Ij ;

Communication: BCAST(W(m), �(m));
end
if max

1� i �n
�(m)

i < 
; C :=true

else
m := m + 1
for all j = 1, . . . , k do in parallel
begin

Compute z
(m)
i , i ∈ Ij , by (8);

Communication: BCAST(z (m));
end

endif
until C
OUTPUT z(m), �(m)

end

4. Conclusions

Using Carstensen’s results [5] concerning Gerschgorin’s theorem and localization of polynomial zeros, we construct
an array of nonintersecting inclusion disks, each of them containing one and only one simple zero of a given polynomial.
The centers of these disks are calculated by derivative free iterative methods for the simultaneous determination of
polynomial zeros, based on Weierstrass’ corrections Wi. These corrections are also used for the calculation of the radii
|Wi |/(1 − ncn) of the produced disks, which is efficient from the practical point of view.

The stated methods can be regarded as a posteriori error bound methods that possess very important property—
inclusion of zeros, giving automatically the upper error bounds of the calculated approximations, actually, the radii of
disks. We have shown that these methods require significantly less numerical operations compared to the corresponding
interval methods realized in circular interval arithmetic and even better convergence behavior in most of the tested
polynomial equations.

We consider two efficient simultaneous derivative free methods of the third and fourth order and establish the
convergence theorems under computationally verifiable conditions of the form

max
1� i �n

|W(0)
i | < cn min

1 � j � n
j �=i

|z(0)
i − z

(0)
j |,

depending only on attainable data. These conditions guarantee the convergence of the stated a posteriori error bound
methods.
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Two calculating procedures of practical importance are given and illustrated on numerical examples. A possibility
of implementation on parallel computers is also considered.
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[27] M.S. Petković, D. Milošević, A higher order family for the simultaneous inclusion of multiple zeros of polynomials, Numer. Algorithms 39

(2005) 415–435.
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[29] M.S. Petković, L.D. Petković, On the convergence of the sequences of Gerschgorin-like disks, Numerical Algorithms, to appear.
[30] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981) 1–35.
[31] D. Wang, F. Zhao, The theory of Smale’s point estimation and its application, J. Comput. Appl. Math. 60 (1995) 253–269.
[32] X. Wang, S. Zheng, The quasi-Newton method in parallel circular iteration, J. Comput. Math. 4 (1984) 305–309.
[33] S. Zheng, F. Sun, Some simultaneous iterations for finding all zeros of a polynomial with high order of convergence, Appl. Math. Comput. 99

(1999) 233–240.


	A posteriori error bound methods for the inclusion ofpolynomial zeros62626262
	Localization of zeros and a posteriori error bound methods
	Convergence of PEB methods
	Computational points
	Conclusions
	References


