Andrzej T. Slominski ${ }^{1}$, Wei Li ${ }^{2}$, Syamal K. Bhattacharya ${ }^{3}$, Richard A. Smith ${ }^{4}$, Patti L. Johnson ${ }^{3}$, Jianjun Chen ${ }^{2}$, Kathleen E. Nelson ${ }^{5}$, Robert C. Tuckey ${ }^{6}$, Duane Miller ${ }^{2}$, Yan Jiao ${ }^{4}$, Weikuan Gu ${ }^{4}$ and Arnold E. Postlethwaite ${ }^{3,7,8}$
${ }^{1}$ Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA; ${ }^{2}$ Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA; ${ }^{3}$ Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
${ }^{4}$ Orthopedic Surgery, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
${ }^{5}$ Department of Biology, Christian Brothers University, Memphis, Tennessee, USA;
${ }^{6}$ School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia; ${ }^{7}$ Division of Connective Tissue Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA and ${ }^{8}$ Department of Veterans Affairs Medical Center, Christian Brothers University, Memphis, Tennessee, USA
E-mail: aslominski@uthsc.edu

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES

Bhattacharya SK (1977) Simultaneous determination of calcium and magnesium in human blood serum by atomic absorption spectrophotometer. Anal Lett 10:817-30
Bikle DD (2010) Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab 21:375-84
Holick MF, Garabedian M, Schnoes HK et al. (1975) Relationship of 25-hydroxyvitamin D3 side chain structure to biological activity. J Biol Chem 250:226-30
Liu S, Tang W, Zhou J et al. (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305-15
Moro JR, Iwata M, von Andriano UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8:685-98
Postlethwaite AE, Smith GN, Lachman LB et al. (1989) Stimulation of glycosaminoglycan synthesis in cultured human dermal fibroblasts by interleukin 1. J Clin Invest 83:629-36
Raghow R, Postlethwaite AE, Keski-Oja J et al. (1987) Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest 79:1285-8
Saito H, Maeda A, Ohtomo S et al. (2005) Circulating FGF-23 is regulated by 1alpha,

25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543-9
Shackleton C, Roitman E, Guo LW et al. (2002) Identification of $7(8)$ and $8(9)$ unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-delta7-reductase deficiency (Smith-Lemli-Opitz syndrome). J Steroid Biochem Mol Biol 82:225-32
Slominski A, Zjawiony J, Wortsman J et al. (2004) A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur J Biochem/FEBS 271:4178-88
Slominski AT, Janjetovic Z, Fuller BE et al. (2010) Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS One 5:e9907
Slominski AT, Zmijewski MA, Semak I et al. (2009) Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS One 4:e4309
Szodoray P, Nakken B, Gaal J et al. (2008) The complex role of vitamin D in autoimmune diseases. Scand J Immunol 68:261-9
Zmijewski MA, Li W, Zjawiony JK et al. (2009) Photo-conversion of two epimers (20R and 20S) of pregna-5,7-diene-3beta, 17alpha, 20triol and their bioactivity in melanoma cells. Steroids 74:218-28

Genetic Variants in CTLA4 Are Strongly Associated with Alopecia Areata

Journal of Investigative Dermatology (2011) 131, 1169-1172; doi:10.1038/jid.2010.427; published online 24 February 2011

TO THE EDITOR

Alopecia areata (AA) is a common hairloss disorder that affects approximately $1-2 \%$ of the general population (Safavi et al., 1995). The occurrence of familial AA is well established (Blaumeiser et al., 2006), and the pattern of familiality strongly suggests that its genetic basis is multifactorial. Our current understanding of the etiopathogenesis of AA is incomplete, but the condition is thought to be a tissuespecific autoimmune disease directed against the hair follicle (Tobin, 2003).

Numerous studies in the past decade have reported an association
between variants of the gene coding for the cytotoxic T lymphocyte antigen-4 (CTLA4) and some of the autoimmune diseases, including Graves' disease, antineutrophil cytoplasmic antibo-dy-associated vasculitis, type 1 diabetes, and rheumatoid arthritis (Kristiansen et al., 2000; Ueda et al., 2003). CTLA4 is a costimulatory molecule that is expressed on activated T cells and is involved in the negative regulation of T-cell activation (Brunet et al., 1987). Given the autoimmune component shared by the various autoimmune diseases, we aimed to investigate the role of CTLA4 in the

[^0]development of AA. We performed a high-resolution association analysis of the CTLA4 gene locus using 22 tagging single-nucleotide polymorphisms (SNPs) in a sample of 1,196 unrelated AA patients and 1,280 controls of Central European origin. During the final preparation of this report, a genome-wide association study was published by Petukhova et al. (2010) that implicates several new gene loci for AA, including CTLA4.

In our study, eight variants showed nominal significance in the combined sample (Table 1). The strongest association was found for rs3087243, which is located 236 bp downstream of CTLA4 (Figure 1). This had a nominal P-value ($P_{\text {nom }}$) of 4.66×10^{-7} and an odds ratio

Figure 1. Details of the investigated genomic region (204 402 596-204 498096 bp; NCBI reference sequence build 36) on chromosome 2. (a) Transcript information for the investigated cytotoxic T lymphocyte antigen-4 (CTLA4) locus (UCSC Genome Browser, build 36), with arrows indicating the direction of transcription. (b) Negative $\log _{10}$ association P-values of markers analyzed in the case-control study. (c) Linkage disequilibrium (LD) at the CTLA4 locus is displayed by r^{2}. LD and haplotype blocks were analyzed using Haploview software (version 4.1).
(OR) of 1.34 (95% confidence interval: 1.20-1.50) (Table 1). In total, six of the eight nominally significant SNPs withstood Bonferroni correction for multiple testing (Table 1). Genotype distributions are shown in Supplementary Table S1 online.

In the subgroup analyses, the highest ORs were observed among the following groups of cases: (i) severe, (ii) early age at onset, and (iii) positive family history (Table 1). The highest OR was observed in the severe group for rs1427678, which is located approximately 20 kb downstream of CTLA4 ($P_{\text {nom }}=6.38 \times 10^{-10} ; \mathrm{OR}=1.55$ (1.35$1.78)$). In the analysis of only mild cases, one marker (rs3087243) showed a significant ($P_{\text {nom }}=0.03$) association, although this result did not withstand correction for multiple testing (data not shown).

We then performed a conditional association analysis of the combined sample to test whether the most strongly
associated marker (rs1427678) alone was able to explain the association signal observed at this locus. In this analysis, one additional SNP (rs11571290) showed nominal significance ($P_{\text {nom }}=0.017$) after accounting for rs1427678. However, when the conditional analysis was restricted to the severely affected cases, rs1427678 explained the whole association signal, with no additional effect from other SNPs.

We also investigated which of the clinical covariates contributed independently to the association. Severity, in combination with rs1427678, significantly improved the fit of a logistic model ($P=5.98 \times 10^{-7}$). The other covariates did not improve the model fit (e.g., $P=0.15$ for early age at onset). A haplotype analysis did not significantly improve the association findings (data not shown).

Our findings and the findings by Petukhova et al. (2010) provide strong
evidence for the association of CTLA4 with AA, and indicate that the CTLA4 locus might be a genetic factor that is shared between AA and other autoimmune diseases. We observed the strongest effect in patients with severe disease, as observed previously for other AA susceptibility genes (Betz et al., 2007, 2008; Redler et al., 2010). The usefulness of the severity criterion in defining the group of patients that drives the association is demonstrated by the results of the logistic regression analysis. In this analysis, inclusion of other covariates, such as age at onset and familiality, yielded no significant improvement in the association finding (Table 1).

Our results revealed that rs3087243 was the best of the 21 analyzed SNPs in the combined sample, with a corrected P-value of 4.89×10^{-5} ($\mathrm{OR}=1.34$ (1.20-1.50)). This is the most consistently implicated SNP in other autoimmune diseases. The size of the genetic effect observed in our sample is comparable to that observed for other autoimmune diseases (Ueda et al., 2003; Plenge et al., 2005). However, the functional impact of this variant, which is located in the 3^{\prime} untranslated region of CTLA4, remains unclear. It has been suggested that this variant may affect the expression of CTLA4, given that decreased levels of soluble CTLA4 have been observed in carriers of the susceptibility allele (Ueda et al., 2003; Maier et al., 2007). However, the present findings cannot exclude the possibility that a variant that is in linkage disequilibrium with rs3087243 is the true causative variant. Petukhova et al. (2010) found the strongest association for rs1024161, a SNP that was not examined in our study. The variant rs3087243 was not genotyped in their study, but, based on imputation, it too showed a highly significant association.

The SNP rs231775 is the only validated nonsynonymous SNP in the coding region of CTLA4. The results of in vitro studies have shown that the amino-acid substitution p.Thr17Ala in the signal peptide of CTLA4 causes defective endoplasmic reticulum processing of a significant portion of the susceptibility allele molecules
Table 1. Case-control association analysis between selected SNPs at the CTLA4 locus and alopecia areata, with subgroup analyses for severe cases, early-age-at-onset cases, and cases with a positive family history

SNP	Position ${ }^{2}$	Allele (A/B)	$\text { MAF }^{1}$		P Armitage	P corr. ${ }^{3}$	$\begin{gathered} \text { Allelic OR }{ }^{4} \\ (95 \% \text { CI) } \end{gathered}$	Severe cases			Early age of onset			Positive family history		
			Ca	Co				MAF ${ }^{1} \mathrm{Ca}$	P Armitage	$\begin{gathered} \text { OR } \\ (95 \% \mathrm{Cl})^{4} \end{gathered}$	MAF ${ }^{1} \mathrm{Ca}$	P Armitage	$\begin{gathered} \text { OR } \\ (95 \% \mathrm{Cl})^{4} \end{gathered}$	MAF ${ }^{1} \mathrm{Ca}$	P Armitage	$\begin{gathered} \text { OR } \\ (95 \% \mathrm{Cl})^{4} \end{gathered}$
rs11571308	204402596	C/T	0.134 (T)	0.120 (T)	0.145	1	1.13 (0.96-1.34)	0.143 (T)	0.052	1.22 (1.00-1.49)	0.134 (T)	0.257	1.13 (0.91-1.41)	0.126 (T)	0.671	1.06 (0.82-1.36)
rs12990970	204408934	C/T	0.373 (T)	0.439 (T)	1.92×10^{-6}	2.02×10^{-4}	1.32 (1.18-1.48)	0.341 (T)	1.39×10^{-8}	1.51 (1.31-1.74)	0.358 (T)	6.57×10^{-6}	1.41 (1.21-1.64)	0.368 (T)	7.10×10^{-4}	1.34 (1.13-1.59)
rs1 1903660	204419833	C / T	0.057 (T)	0.055 (T)	0.769	1	1.04 (0.81-1.32)	0.051 (T)	0.635	1.08 (0.80-1.46)	0.048 (T)	0.428	1.15 (0.82-1.59)	0.058 (T)	0.726	1.07 (0.75-1.52)
rs6741283	204423055	C / T	0.057 (T)	0.055 (T)	0.784	1	1.04 (0.81-1.32)	0.051 (T)	0.643	1.08 (0.79-1.46)	0.049 (T)	0.443	1.14 (0.82-1.59)	0.059 (T)	0.696	1.07 (0.75-1.53)
rs11571290	204431386	A/G	0.039 (A)	0.046 (A)	0.190	1	1.20 (0.91-1.59)	0.042 (A)	0.547	1.11 (0.79-1.55)	0.041 (A)	0.430	1.15 (0.81-1.65)	0.032 (A)	0.093	1.47 (0.94-2.32)
rs733618	204439189	C / T	0.083 (C)	0.075 (C)	0.353	1	1.10 (0.90-1.36)	0.097 (C)	0.025	1.32 (1.04-1.68)	0.089 (C)	0.162	1.20 (0.93-1.56)	0.085 (C)	0.396	1.14 (0.84-1.54)
rs16840252	204439764	C/T	0.192 (T)	0.173 (T)	0.096	1	1.13 (0.98-1.31)	0.196 (T)	0.093	1.16 (0.98-1.39)	0.185 (T)	0.412	1.08 (0.90-1.31)	0.188 (T)	0.379	1.10 (0.89-1.37)
rs11571317	204440253	C / T	0.070 (T)	0.081 (T)	0.165	1	1.16 (0.94-1.44)	0.060 (T)	0.025	1.37 (1.04-1.80)	0.058 (T)	0.015	1.44 (1.07-1.94)	0.066 (T)	0.187	1.24 (0.90-1.73)
rs231775	204440959	A/G	0.415 (G)	0.361 (G)	9.00×10^{-5}	0.009	1.26 (1.12-1.41)	0.446 (G)	5.84×10^{-7}	1.43 (1.24-1.64)	0.439 (G)	1.38×10^{-5}	1.39 (1.20-1.61)	0.433 (G)	4.78×10^{-4}	1.35 (1.14-1.60)
rs231777	204441833	C / T	0.172 (T)	0.152 (T)	0.052	1	1.16 (1.00-1.35)	0.176 (T)	0.055	1.20 (1.00-1.44)	0.163 (T)	0.406	1.09 (0.89-1.33)	0.164 (T)	0.424	1.10 (0.88-1.37)
rs3087243	204447164	A/G	0.395 (A)	0.466 (A)	4.66×10^{-7}	4.89×10^{-5}	1.34 (1.20-1.50)	0.362 (A)	2.49×10^{-9}	1.54 (1.33-1.77)	0.378 (A)	1.83×10^{-6}	1.43 (1.24-1.66)	0.381 (A)	5.69×10^{-5}	1.42 (1.20-1.68)
rs11571319	204447183	A/G	0.190 (A)	0.174 (A)	0.136	1	1.12 (0.97-1.29)	0.193 (A)	0.144	1.14 (0.96-1.36)	0.183 (A)	0.503	1.07 (0.89-1.29)	0.187 (A)	0.422	1.09 (0.88-1.35)
rs231726	204449111	C/T	0.357 (T)	0.306 (T)	1.11×10^{-4}	0.012	1.26 (1.12-1.42)	0.379 (T)	7.58×10^{-6}	1.38 (1.20-1.60)	0.376 (T)	5.13×10^{-5}	1.36 (1.17-1.59)	0.374 (T)	5.24×10^{-4}	1.36 (1.14-1.61)
rS231731	204452775	C/T	0.222 (C)	0.200 (C)	0.060	1	1.14 (1.00-1.31)	0.233 (C)	0.021	1.21 (1.03-1.43)	0.219 (C)	0.221	1.12 (0.94-1.33)	0.217 (C)	0.330	1.11 (0.90-1.35)
rs13030054	204453672	C / T	0.244 (T)	0.217 (T)	0.027	1	1.16 (1.02-1.33)	0.255 (T)	0.009	1.23 (1.05-1.45)	0.240 (T)	0.137	1.14 (0.96-1.35)	0.244 (T)	0.130	1.16 (0.96-1.41)
rs11571300	204455012	A/G	0.123 (G)	0.141 (G)	0.056	1	1.17 (0.99-1.38)	0.113 (G)	0.015	1.29 (1.05-1.60)	0.120 (G)	0.090	1.21 (0.97-1.50)	0.134 (G)	0.631	1.06 (0.83-1.35)
rs1427678	204466603	A/G	0.443 (A)	0.486 (G)	7.12×10^{-7}	7.48×10^{-5}	1.33 (1.19-1.49)	0.405 (A)	6.38×10^{-10}	1.55 (1.35-1.78)	0.421 (A)	5.74×10^{-7}	1.45 (1.25-1.68)	0.437 (A)	2.83×10^{-4}	1.36 (1.15-1.61)
rs2882974	204468309	C / T	0.477 (T)	0.494 (T)	0.216	1	1.07 (0.96-1.20)	0.463 (T)	0.065	1.13 (0.99-1.30)	0.467 (T)	0.135	1.12 (0.96-1.29))	0.462 (T)	0.125	1.14 (0.96-1.34)
rs12622799	204479323	C/T	0.258 (T)	0.303 (T)	4.04×10^{-4}	0.042	1.25 (1.11-1.42)	0.229 (T)	2.96×10^{-6}	1.46 (1.25-1.71)	0.245 (T)	4.98×10^{-4}	1.34 (1.14-1.58)	0.246 (T)	3.59×10^{-3}	1.33 (1.10-1.61)
rs2217202	204481598	A/G	0.035 (G)	0.029 (G)	0.274	1	1.19 (0.87-1.64)	0.035 (G)	0.360	1.19 (0.81-1.75)	0.034 (G)	0.472	1.16 (0.77-1.75v	0.025 (G)	0.534	1.18 (0.70-1.98)
rs7597297	204486339	G/T	0.219 (G)	0.194 (G)	0.032	1	1.16 (1.01-1.33)	0.233 (G)	0.006	1.26 (1.07-1.48)	0.220 (G)	0.078	1.17 (0.98-1.40)	0.213 (G)	0.266	1.12 (0.91-1.38)
rs1465538	204498096	C / T	Marker not biallelic	-	-	-	-	-	-	-	-	-				

Abbreviations: Ca, cases; CI, confidence interval; Co, controls; CTLA4, cytotoxic T lymphocyte antigen-4; MAF, minor allele frequency; OR, odds ratio; SNP, single-nucleotide polymorphism.
${ }^{2} \operatorname{In}$ bp, NCBI reference sequence build 36 .
${ }^{4}$ Odds ratio calculation based on the risk allele.
(CTLAAla ${ }^{17}$) and that this results in inefficient glycosylation and decreased cell-surface expression (Anjos et al., 2002). Our association results show that rs231775 was also strongly associated with AA in our sample although the P-values were less significant and the ORs were lower than those for rs3087243. Furthermore, conditional analysis revealed that rs1427678 explained the entire association signal at the locus.

In conclusion, our results provide strong support for the hypothesis that CTLA4 is a susceptibility gene for AA, and they also suggest that it has the strongest effect in patients with a severe form of the disorder. Given the low P-values observed in our study and the genome-wide association study by Petukhova et al. (2010), we consider CTLA4 a proven susceptibility gene for AA.

CONFLICT OF INTEREST

The authors state no conflict of interest.

ACKNOWLEDGMENTS

We thank the patients and controls for their participation in this study. Silke Redler is the recipient of a BONFOR fellowship from the Medical Faculty of the University of Bonn. Markus Nöthen is the recipient of a grant from Alfried Krupp von Bohlen und Halbach-Stiftung. Regina C. Betz is a past recipient of an Emmy-Noether fellowship.
Karsten K.-G. John ${ }^{1,12,}$ Felix F. Brockschmidti,2,12, Silke Redler ${ }^{1}$, Christine Herold ${ }^{3}$, Sandra Hanneken ${ }^{4}$, Sibylle Eigelshoven ${ }^{4}$, Kathrin A. Giehl ${ }^{5}$, Jozef De Weert ${ }^{6}$, Gerhard Lutz ${ }^{7}$,

Roland Kruse ${ }^{8}$, Hans Wolff ${ }^{5}$, Bettina Blaumeiser ${ }^{9}$, Markus Böhm ${ }^{10}$, Tim Becker ${ }^{3,11}$, Markus M. Nöthen ${ }^{1,2}$ and Regina C. Betz ${ }^{1}$
${ }^{1}$ Institute of Human Genetics, University of Bonn, Bonn, Germany; ${ }^{2}$ Department of Genomics, Life \& Brain Center, University of Bonn, Bonn, Germany; ${ }^{3}$ Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany;
${ }^{4}$ Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany;
${ }^{5}$ Department of Dermatology, University of Munich, Munich, Germany; ${ }^{6}$ Department of Dermatology, University Hospital of Gent, Gent, Belgium; ${ }^{7}$ Hair \& Nail, Wesseling, Germany; ${ }^{8}$ Dermatological Practice, Paderborn, Germany; ${ }^{9}$ Department of Medical Genetics, University of Antwerp, Antwerp, Belgium; ${ }^{10}$ Department of Dermatology, University of Münster, Münster, Germany and ${ }^{11}$ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
E-mail: regina.betz@uni-bonn.de
${ }^{12}$ These authors contributed equally to this work.

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES

Anjos S, Nguyen A, Ounissi-Benkalha H et al. (2002) A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem 277:46478-86
Betz RC, König K, Flaquer A et al. (2008) The R620W polymorphism in PTPN22 confers general susceptibility for the development of alopecia areata. BrJ Dermatol 158:389-91
Betz RC, Pforr J, Flaquer A et al. (2007) Loss-offunction mutations in the filaggrin gene and alopecia areata: strong risk factor for a
severe course of disease in patients comorbid for atopic disease. J Invest Dermatol 127: 2539-43
Blaumeiser B, van der Goot I, Fimmers R et al. (2006) Familial aggregation of alopecia areata. J Am Acad Dermatol 54:627-32
Brunet JF, Denizot F, Luciani MF et al. (1987) A new member of the immunoglobulin super-family-CTLA-4. Nature 328:267-70
Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases-a general susceptibility gene to autoimmunity? Genes Immun 1:170-84
Maier LM, Anderson DE, De Jager PL et al. (2007) Allelic variant in CTLA4 alters T cell phosphorylation patterns. Proc Natl Acad Sci USA 104:18607-12
Petukhova L, Duvic M, Hordinsky M et al. (2010) Genome-wide association study in alopecia areata implicates both innate adaptive immunity. Nature 466:113-7
Plenge RM, Padyukov L, Remmers EF et al. (2005) Replication of putative candidate-gene associations with rheumatoid arthritis in >4000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 77:1044-60
Redler S, Brockschmidt FF, Forstbauer L et al. (2010) The TRAF1/C5 locus confers risk for familial and severe alopecia areata. Br J Dermatol 162:866-9
Safavi KH, Muller SA, Suman VJ et al. (1995) Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clinic Proc 70: 628-33
Tobin DJ (2003) Characterization of hair follicle antigens targeted by the anti-hair follicle immune response. J Investig Dermatol Symp Proc 8:176-81
Ueda H, Howson JM, Esposito L et al. (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506-11

Erythropoietic Uroporphyria Associated with Myeloid Malignancy Is Likely Distinct from Autosomal Recessive Congenital Erythropoietic Porphyria

Journal of Investigative Dermatology (2011) 131, 1172-1175; doi:10.1038/jid.2011.5; published online 17 February 2011

TO THE EDITOR

Congenital erythropoietic porphyria (CEP; MIM 263700) is a rare autosomal
recessive disease caused by mutations in uroporphyrinogen III synthase (UROS) or, rarely, in GATA1 genes,

[^1]leading to UROS deficiency (Fritsch et al., 1997; de Verneuil et al., 2003; Phillips et al., 2007). The resulting overproduction of type I porphyrin isomers by erythroid cells causes severe photosensitivity and hemolytic anemia.

[^0]: Abbreviations: AA, alopecia areata; CTLA4, cytotoxic T lymphocyte antigen-4; $O R$, odds ratio; SNP, single-nucleotide polymorphism

[^1]: Abbreviations: BFU, burst-forming unit; CEP, congenital erythropoietic porphyria; MDS, myelodysplastic syndrome; UROS, uroporphyrinogen III synthase

