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Abstract

This paper presents explicit algorithms for computations over a finite subspectroid of the
bounded derived category of a finite spectroid. We will demonstrate methods for the construc-
tion of a projective resolution of a module and for finding the quiver of a finite spectroid given
in terms of its radical spaces. This enables us to compute the endomorphism algebra of a tilting
complex – or, in fact, any finite complex – in the derived category. In order to carry out these
computations, we have to restrict to a finite base field or the field of rational numbers. We will
show that it is possible to transfer the results to any extension of the base field, in particular to
the algebraic closure.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let k be a field and let A = kQ/I be a finite-dimensional k-algebra with quiver
Q and ideal of relations I. We are interested in the bounded derived category Db(A)

of A and derived equivalences of algebras.
By Rickard [7], if T is a tilting complex in Db(A) then the endomorphism algebra

of T is derived equivalent to A. This paper is devoted to a presentation of explicit
algorithms for the computation of a finite subspectroid of Db(A). Based on the con-
cept of noncommutative Gröbner bases we present an algorithm for the construction
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of a projective resolution of a module. Such resolutions allow us to treat modules
as objects of the homotopy category of complexes of projectives which is a full
subcategory of the derived category.

If the endomorphism algebra of a tilting complex is again a factor of a path alge-
bra modulo a so-called admissible ideal we are interested in the construction of the
quiver with relations associated to it. We develop a general algorithm for finding the
quiver with relations of a finite spectroid given by its radical spaces and show how it
can be applied to tilting complexes or, more generally, to a finite subspectroid of the
homotopy category. In order to do so, we provide various methods for dealing with
chain complexes and their morphism spaces in the homotopy category.

The presented algorithms were implemented in a MuPAD 1 library pathalg 2.
Thus the computer provides a fast and reliable way to check examples in a short
time. This helps to develop a good intuition and allows the researcher to support or
contradict conjectures.

The base fields we consider are finite fields or the field of rational numbers be-
cause these fields allow for exact computations without rounding errors. Unfortu-
nately, this means we cannot compute examples with an algebraically closed base
field. However, this does not need to be a restriction since we will prove that it is
possible to transfer results found by pathalg over a certain ground field to any field
extension. In particular, our result states that if we have found a quiver with relations
of the endomorphism algebra of a tilting complex, extension of the base field neither
changes the quiver nor affects the relations.

We will first fix the notations and basic definitions used throughout this paper and
recall some important facts about Gröbner bases, module categories and their derived
categories. We show how an algorithm for finding the radical of a matrix algebra due
to Cohen et al. [1] can be adapted for our purpose.

Section 3 is devoted to the construction of projective resolutions using Gröbner
bases.

Then we turn to algebraic computations in the category of chain complexes and
in the corresponding homotopy category. In Section 4 it is described how we can
determine the morphism space of two complexes in those categories.

By then we have collected all necessary tools to complete in Section 5 the algo-
rithm for finding the quiver with relations of the endomorphism algebra of a bounded
complex in the homotopy category.

In Section 6 the we are concerned with the effect the extension of the base field
of an algebra may have on the quiver with relations.

For further documentation of the library we refer the reader to the pathalg manual
[4].

1 “The Open Computer Algebra System”, cf. [5,6] and www.mupad.de.
2 The library is available at www.mathematik.uni-bielefeld.de/∼akrause/PATHALG.



A. Krause / Linear Algebra and its Applications 365 (2003) 247–266 249

2. Preliminaries

2.1. Modules and chain complexes

Let k be an arbitrary field. In the following A is always a finite dimensional
factor of a path algebra over k, i.e., A is isomorphic to kQ/I for some finite quiver Q
and an admissible ideal I of kQ. The set of points of a quiver Q will be denoted
by Q0 and the set of arrows by Q1. For basic notations we refer the reader to
[2,8].

We can view A also as finite k-spectroid (here, we denote the set of objects in A
as A0). By definition, a k-spectroid is a k-category such that no two distinct objects
are isomorphic, the morphism spaces are finite dimensional k-vector spaces and the
endomorphism rings of all objects are local.

The space of non-invertible morphisms x → y, where x and y are objects of A, is
called the (Jacobson) radical of A(x, y) and will be denoted by RadA(x, y).

In the categorical context, left A-modules are covariant functors from A to k-mod,
the category of finite dimensional k-vector spaces. Here and in the following, an A-
module will always be a finite dimensional left module over A. The category of finite
dimensional left A-modules is denoted by A-mod.

The indecomposable projective modules over A = kQ/I are the representable
functors. Hence they are in bijective correspondence with the objects of A (as a spect-
roid). We denote an indecomposable projective by Px := A(x,−) for x ∈ A0.

Throughout this paper a chain complex C of A-modules is a family {Cn}n∈Z

of A-modules together with module morphisms dCn = dn : Cn → Cn+1 such that
dndn−1 = 0.

A chain complex C is called bounded if almost all Cn are zero. In this case, the
bounds of C /= 0 are defined as the pair (i, j) where i is the smallest integer such that
Ci is non-zero and j is the largest integer such that Cj is non-zero. For convenience,
the bounds of the zero complex are defined to be (0, 0). Denote the category of
bounded chain complexes of A-modules by Cb(A-mod).

For an interval [i, j ] ⊂ Z and a complex C we define the truncated complex
C[i,j ] to be the complex with (C[i,j ])n := Cn if n ∈ [i, j ] and (C[i,j ])n := 0 other-
wise; the differential in degree n is given by dCn for n ∈ [i, j − 1] and zero other-
wise.

A chain map f : C −→ D is called null homotopic if there is a sequence of
morphisms sn : Cn −→ Dn+1 such that f = ds + sd . Two chain maps f and g are
homotopic if f − g is null homotopic. The factor category of Cb(A-mod) modulo
chain homotopy is denoted by Kb(A-mod). For details we refer the reader to [9,
10.1].

For a chain complex C we define the homology modules of C as the subquo-
tients Hn(C) := Ker dn/Im dn−1 for n ∈ Z. A morphism of chain complexes
is called a quasi-isomorphism if it induces an isomorphism on the homology
modules.
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2.2. Derived categories and tilting complexes

The bounded derived category Db(A) of chain complexes of A-modules is given
by the localization of Kb(A-mod) with respect to the set of quasi-isomorphisms.
Together with the shift functor – [1] it is equipped with the structure of a triangulated
category.

Note that A-mod is a full subcategory of Db(A) if we consider an A-module as a
complex concentrated in degree zero.

Bounded chain complexes over A-proj, the category of finite dimensional pro-
jective modules over A, will be called complexes of projectives. They form the full
subcategory Cb(A-proj) of Cb(A-mod). Its homotopy category is denoted by
Kb(A-proj) which is a full subcategory of Db(A) (cf. [9,10.4]).

We say that two algebras A and B are derived equivalent if the derived categories
Db(A) and Db(B) are equivalent as triangulated categories.

Definition 2.2.1. Let C be a complex in Kb(A-proj) ↪→ Db(A). Then C is called a
tilting complex or tilting object if

(i) Db(A)(C,C[i]) = 0 for all i /= 0 and
(ii) addC generates Db(A) as a triangulated category.

Here, addC is the set of summands of finite direct sums of copies of C.
Let T = ⊕n

i=1 Ti be a tilting complex where Ti is indecomposable for all i ∈
{1, . . . , n} and Ti � Tj for i /= j . Then we can also consider T as a tilting spectroid
with objects T1, . . . , Tn. The set of morphisms Ti → Tj is given by the homomor-
phism space Db(A)(Ti, Tj ).

Tilting objects were introduced by Rickard in [7] to establish an analogue to the
Morita theory of module categories. He showed the following result.

Theorem 2.2.2 [7]. Let A be an algebra and Db(A) its derived category. If T is a
tilting complex in Db(A), then the opposite endomorphism algebra End(T )op of T
is derived equivalent to A.

2.3. Noncommutative Gröbner bases

For basic definitions and an introduction to Gröbner bases we refer the reader to
[3].

A k-basis B of kQ is given by the (possibly infinite) set of paths in Q. Hence,
B ∪ {0} is a pointed semigroup with set of generators the arrows of Q and the
paths of length 0 which correspond to the points of Q. Choose total orders on the
points {x1, . . . , xn} = Q0 and on the arrows {α1, . . . , αm} = Q1. Then we equip B
with the length-lexicographic order generated by x1 < x2 < · · · < xn < α1 < · · · <
αm.
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The tip of an element a ∈ kQ is the largest basis element occurring in an expan-
sion a = ∑

λibi . The set of nontips of an ideal I of kQ is the set of basis elements
which do not appear as the tip of some element of I. It is denoted by NonTip(I). The
nontips of I form a k-basis of kQ/I . Since kQ∼= I ⊕ NonTip(I) as a k-vector space,
every element a ∈ kQ can be written uniquely as a sum of some ia ∈ I and some
N(a) ∈ NonTip(I). We call N(a) the normal form of a. It can be computed using the
division algorithm [3,2.3.2].

Remark 2.3.1. We have N(f ) + N(g) = N(f + g). Moreover, the multiplication
of elements in kQ/I is given by N(f · g) = N(N(f ) · N(g)). In particular, this
means that N(N(f )) = N(f ).

The following theorem shows that in our setting there always exists a finite Gröb-
ner basis of an ideal I and that it can be computed using Buchberger’s algorithm.

Theorem 2.3.2 [3, 2.3]. Let kQ/I be finite dimensional with I generated by a finite
set of uniform, tip reduced elements. Then Buchberger’s algorithm yields a finite
Gröbner basis of I.

2.4. The radical of an endomorphism algebra

An endomorphism f of a module M is a natural transformation M → M , i.e., it is
given by a collection of linear maps fxi : M(xi) → M(xi) (for xi ∈ A0) subject to a
certain compatibility condition. If we fix bases of the k-vector spaces M(xi), the map
fxi can be represented by a matrix fxi . Since M∼= ⊕

xi∈A0
M(xi) as a k-vector space,

f can be represented by a block diagonal matrix with fxi on the diagonal. In this way,
we can view EndA(M) as a subalgebra of Md(k), the algebra of d × d-matrices over
k (where d = dimk M).

Moreover, an endomorphism of a chain complex can also be represented in this
fashion. Let C be a chain complex in Cb(A-mod) and f = (f i)i∈Z an endomorphism
of C. If (r, s) are the bounds of C then we can write f as a diagonal block matrix with
blocks f i

xj
for i ∈ {r, . . . , s} and j ∈ {1, . . . , n}. Thus we can view f as a square

matrix of size d, where d = ∑s
i=r dimk Ci .

This point of view allows us to apply known methods for computing the radical
of a subalgebra of Md(k). The algorithm we used in the implementation is described
in [1].

3. Projective resolutions

3.1. Indecomposable projective modules

In the following let us view A as a finite k-spectroid. The indecomposable projec-
tive modules over A are the representable functors Px = A(x,−) for x ∈ A0.
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Assume that a finite Gröbner basis G of I and the set NonTip(I) have been con-
structed using the noncommutative analogue of Buchberger’s algorithm [3,2.4.1].

An arbitrary module M is determined up to isomorphism by its dimension vector
dimM = (dimk M(x))x∈A0 and a list of matrices (M(α))α∈Q1 . In the following we
will show how one can compute this data for Px = A(x,−) explicitly.

For any y ∈ A0, a k-basis of Px(y) = A(x, y) is given by all b in NonTip(I) which
(as paths in Q) have starting point x and target point y. We will denote this subset of
NonTip(I) by NonTip(I)(x, y).

Next, we want to determine the matrices which represent the linear maps Px(α) =
A(x, α) : Px(z) → Px(y) for α : y → z in Q1. Such a map P(α) is given by left
multiplication by α. The image of a basis element b of Px(y) under left multiplication
by α : y → z is the path α b. We now consider α · b as a product of elements of A.
Then Remark 2.3.1 tells us that the normal form N(α b) is the product α · b written
as a linear combination of elements in NonTip(I )(x, z). This yields the image of the
basis vector b in Px(z). Of course the images of the basis elements determine the
linear maps Px(α) for each arrow α.

3.2. Top and Rad

The Jacobson radical rad M of an A-module M is the submodule given by the
intersection of all maximal submodules of M. It is the minimal submodule such that
the quotient M/radM is semisimple.

The Jacobson radical of the algebra A coincides with the radical of A as a left mod-
ule over itself. It can be shown that a k-basis of the radical of A is the set of all paths
of length � 1 in NonTip(I). Moreover, it is well known that radM = (RadA)M . It
follows that radM(y) is the k-space spanned by

{M(n)(m) | n ∈ NonTip(I )(x, y), l(n) � 1, m ∈ M(x)}.

We assume that an A-module M is given by its dimension vector and linear maps
represented by matrices. This means that we have fixed a k-basis for M. Therefore,
when computing radM(y) for y ∈ A0, we run through all x ∈ A0 and apply to each
basis element bx of M(x) the image M(n) of each element n of NonTip(I)(x, y) with
length at least 1. In this way we obtain elements M(n)(bx) ∈ M(y) which span the
vector space radM(y).

The top of M is the factor module topM := M/radM . It is a semisimple mod-
ule, i.e., a direct sum of simple modules. For each x ∈ A0 we have topM(x) =
M(x)/radM(x). This means that we can compute topM explicitly.

If Px is an indecomposable projective module corresponding to some x ∈ A0,
then topPx is the simple module Sx given by Sx(x) = k and zero otherwise. More-
over, Px is a projective cover of Sx , hence a projective module is up to isomorphism
determined by its top.
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3.3. Construction of a projective resolution

We will determine a minimal projective resolution of an A-module M inductively:
First we have to find the projective cover P0 of M together with an epimorphism
π0 : P0 → M . The kernel of π0 is the first syzygy module �0(M) of M. Then we
proceed in this fashion, i.e., in step i we construct a projective cover Pi of �i−1(M)

together with the epimorphism πi and we obtain �i (M) as the kernel of πi . One may
visualize the construction by the following diagram:

The procedure stops when �n(M) is the zero module for some n ∈ N0 in which
case the projective dimension of M is n. If the procedure does not stop we say that M
has infinite projective dimension.

Let us consider the construction of a projective cover of a module M. If P
π−→ M

is a projective cover, then π restricts to an isomorphism of topP and topM . We
will use this to determine P. Recall that topM is a semisimple module, and topPx is
the simple module Sx corresponding to x ∈ A0, if Px is indecomposable projective.
On the other hand, a projective module is uniquely determined by its top. We now
decompose topM as a direct sum of simple modules

topM =
⊕
x∈A0

Smx
x

with mx ∈ N0. It follows that the projective cover of M is

P =
⊕
x∈A0

Pmx
x .

By Yoneda’s lemma, Hom(Px,M) is isomorphic to M(x) via f �→ fx(idx) and
the projection π :P →M is determined by its restriction, the isomorphism topP −→
top M . Since A0 is finite, we have

HomA


⊕

x∈A0

Pmx
x ,M


∼=

⊕
x∈A0

(HomA(Px,M))mx .

This provides us with a recipe to compute π by its restrictions to each of the
direct summands of P. Fix a direct summand Px of P and denote the restriction of
π to Px by π̃ . Sx is a direct summand of topM . Let {b} be the k-basis of Sx(x)∼= k

which is contained in our given basis of topM . Then the isomorphism of topPx and
Sx ↪→ topM is given by Px(x) � idx �→ b ∈ Sx(x) and by Yoneda’s lemma this
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determines the map Px → M . Explicitly, this means that π̃y maps an element v of
Px(y) to M(v)(b) ∈ M(y). This yields the module homomorphism π̃ = (π̃y)y∈A0 :
Px → M .

Once we have computed the projective cover P of M together with the projection
π , we can compute the kernel K of π together with an inclusion ι : K ↪→ P by
solving systems of linear equations as follows.

The kernel map ι : K → P is a natural transformation and thus for each α ∈
A(x, y) the following diagram is commutative with exact rows:

Each row is a split exact sequence of k-vector spaces and thus we can compute
ιx for all x ∈ A0 by solving the matrix equation πxιx = 0. With this information we
can calculate matrices K(α) making the left square of the diagram commutative, by
solving another matrix equation ιyK(α) = P(α)ιx .

As we have seen before, K = �0(M) and we can proceed with the construction
of the projective resolution inductively by computing a projective cover of K.

4. Homomorphisms and homotopy

4.1. Computing the homomorphism space of two modules

Let M, N be A-modules. Our aim is to compute the homomorphism space of M
and N. A homomorphism f : M → N is a natural transformation (here, we consider
M and N as functors A → k-mod). Since M(x) and N(x) are k-vector spaces for
every x ∈ A0, the linear map fx can be represented as a matrix and also M(α) and
N(α) are given by matrices. Thus we can calculate all homomorphisms M → N in
A-mod as the solutions (fx)x∈A0 to the system of matrix equations

fyM(α) = N(α)fx

for all arrows α : x → y in Q1.
If M = A(x,−) is an indecomposable projective module, we can use a less time

consuming method which avoids solving a system of linear equations. By Yoneda’s
lemma, every morphism f : M → N is uniquely determined by the image M(x) �
idx �→ fx(idx) ∈ N(x). So we can find a basis of HomA(M,N) by mapping idx
successively to each basis element of N(x) and extending to morphisms of modules
f : M → N in the following way:

Let z ∈ A0. The paths in NonTip(I) (x, z) form a basis of M(z) since M =
A(x,−) is an indecomposable projective module. On the other hand, a path
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p ∈ NonTip(I)(x, z) is a morphism x → z in A, and hence induces a map M(p) :
M(x) → M(z) which is given by left multiplication with p. Thus we have M(p) ×
(idx) = p ◦ idx = p and by naturality of f it then follows that

fz(p) = fzM(p)(idx) = N(p)fx(idx).

So when the image b = fx(idx) of idx in N(x) is fixed we can find the images of
the basis of M(z) by computing N(p)(b) for all paths p in NonTip(I)(x, z). Obvi-
ously, this provides us with the linear map fz : M(z) → N(z) and finally with the
morphism of modules f = (fz)z∈A0 .

An easier method applies to the case of M and N both being indecomposable
projective A-modules, M :=Px and N := Py , say. Then a basis of HomA(Px, Py) ∼=
Py(x) = A(y, x) (by Yoneda’s lemma) is given by all paths in NonTip(I)(y, x). For
the composition of two morphisms f : Px → Py and g : Py → Pz, we do not need
to compute the matrix product gvfv for each v ∈ A0 but it suffices to compute the
product gy(idy) · fx(idx) as elements in A.

If M is a decomposable projective module, say M = ⊕s
i=1 Mi with Mi inde-

composable, we can decompose the homomorphism space accordingly. Thus, HomA

(
⊕s

i=1 Mi,N) = ⊕s
i=1 HomA(Mi,N) and we can compute a k-basis for HomA(Mi,

N) for each i as shown above. This yields a k-basis for HomA(M,N).

4.2. The homomorphism space of two complexes

By definition, a chain map f : C → D of two complexes C and D in Cb(A-mod)
is given by a sequence of maps fn : Cn → Dn compatible with the boundary maps.

We use the fact that C and D are bounded complexes. Let (mC, nC) and (mD, nD)

be the bounds of C and D, respectively. Then Cb(A-mod)(C,D) is zero, if mC > nD
or mD > nC .

Let m=max(mC,mD) and n = min(nC, nD). If m > n, then we have Cb(A-mod)
(C,D) = 0. Otherwise it suffices to compute the homomorphism space of the trun-
cated complexes C[m−1,n+1] and D[m−1,n+1].

Algorithm 4.2.1. Let C and D be chain complexes. We compute a k-basis of
Cb(A-mod)(C,D).

Let m and n be defined as above. If m > n we return ∅. If m � n, then we
will proceed by induction on the degree and start by determining a basis Bm of
HomA(Cm,Dm) as described in Section 4.1. Since HomA(Cm−1,Dm−1) = 0 by
definition of m, compatibility with the boundary maps yields the equation

 ∑
b∈Bm

λbb


 dCm−1 = 0

which is in fact a system of matrix equations. Let � be a k-basis of the solution space.
In the following we will denote a sequence (ti)i∈{m,...,n} of maps ti : Ci → Di by

the vector (tm, . . . , tn). Let
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Tm :=




 ∑

b∈Bm

λbb, 0, . . . , 0




∣∣∣∣∣∣
λ ∈ �


 .

For the induction step m < i � n we compute a basis Bi of HomA(Ci,Di). The
compatibility with the boundary maps again yields a system of matrix equations

∑
b∈Bi

λbb


 dCi−1 − dDi−1


 ∑

t∈Ti−1

λt ti−1


 = 0,

where ti−1 is the (i − 1)th entry of a sequence t ∈ Ti−1 and therefore a module
morphism Ci−1 −→ Di−1. Let � be a k-basis of the solution space to this equation.
Then we define

Ti :=



∑
b∈Bi

(0, . . . , 0, λbb, 0, . . . , 0) +
∑

t∈Ti−1

λt t

∣∣∣∣∣∣
λ ∈ �


 ,

where (0, . . . , 0, λbb, 0, . . . , 0) is the sequence with the only non-zero entry at po-
sition i. One may think of Ti as a set of “chain maps” C → D which are compatible
with the boundary maps in the degrees m − 1, . . . , i.

Finally, we have to compute one last step: here, we have the equation

dDn


∑

t∈Tn
λt tn


 = 0,

where tn is the nth entry of the sequence t. Let � be a k-basis of the solution space.
Then we define

Tn+1 :=



∑
t∈Tn

λt t

∣∣∣∣∣∣
λ ∈ �


 .

After this step we return Tn+1 which is a k-basis of Cb(A-mod)(C,D). An
element of T is a sequence (tj )j=m,...,n, where tj ∈ HomA(Cj ,Dj ) such that
t = (tj )j∈Z with tj = 0 for j /∈ {m, . . . , n} is a chain map.

4.3. Null homotopic chain maps

For chain complexes C and D we need to compute Kb(A-proj)(C,D) which,
by definition, is Cb(A-proj)(C,D) modulo null homotopic morphisms. We start by
giving a useful characterization of null homotopic maps.

A projective complex in Cb(A-proj) is a complex whose indecomposable direct
summands are of the form P i for an indecomposable projective P defined by P i

i :=
P , P i

i+1 := P , and zero in all other degrees; the differential is di := idP and dj = 0
for j /= i. So P i is the chain complex 0 → P = P → 0 in degrees i and i + 1.
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The proof of the following lemma will be left to the reader.

Lemma 4.3.1. A morphism f in Cb(A-proj) is null homotopic if and only if f factors
through a projective complex in Cb(A-proj).

Thus we can compute the homomorphism space of two complexes in Kb(A-proj)
in the following way.

Algorithm 4.3.2. Let C, D be chain complexes in Kb(A-proj). We compute a
k-basis of Kb(A-proj)(C,D).

As a first step we determine a k-basis of the space Cb(A-proj)(C,D) using Algo-
rithm 4.2.1.

Next, we have to find the set S of all indecomposable projective complexes P
such that Cb(A-proj)(P,D) /= 0 and all indecomposable projective complexes Q
with Cb(A-proj)(C,Q) /= 0. This is a finite set since C and D are bounded and there
are only finitely many indecomposable projective complexes in these bounds.

Let (mC, nC) and (mD, nD) be the bounds of C and D, respectively. As before,
we define m := max(mC,mD) and n := min(nC, nD). If m > n then Kb(A-proj)
(C,D) = 0 and we are finished. Otherwise we compute for each indecomposable
projective complex P i (where P is an indecomposable projective module and i ∈
{m − 1, . . . , n}) a k-basis V (P i) of Cb(A-proj)(C, P i) and a k-basis W(P i)

of Cb(A-proj)(P i,D) using Algorithm 4.2.1. Thus S is the set of all P i where V (P i)

or W(P i) is not empty.
Then we determine the subspace P(C,D) of Cb(A-proj)(C,D) which contains

all morphisms which factor through some projective complex. This is the k-vector
space spanned by all compositions gf where f ∈ V (P ) and g ∈ W(P ), and P runs
through all elements of S. We compute a basis of P(C,D) and then determine the
factor space Kb(A-proj)(C,D).

5. The quiver of an endomorphism algebra

5.1. The quiver of a spectroid

Let S be a finite k-spectroid. By a theorem of Gabriel (cf. [8,2.1]), if k is algebra-
ically closed, we know that S is isomorphic to the path spectroid of a finite quiver
modulo an admissible ideal.

Our aim is to construct this quiver and a set of generators of the ideal in the case
that S is given by its radical spaces Rad S(x, y) for all objects x and y of S.

If k is not algebraically closed we cannot be sure that S is isomorphic to a path
spectroid modulo an admissible ideal. In this case, the method described below will
fail. This happens if and only if there exists an object x in S such that the k-dimen-
sion of the space Rad(End(x)) is not equal to dimk End(x) − 1. We will test for this
criterion and stop the computations if it is not satisfied.
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So assume S is isomorphic to kQS/IS . The points of the quiver QS are cor-
responding to the objects of S. Let {x1, . . . , xn} be the objects of S. The arrows
α1, . . . , αr : xi → xj of QS correspond to a k-basis b1, . . . , br of the space Rad S/
Rad2S(xi, xj ). So the number of arrows xi → xj is given by the dimension of
Rad S/Rad2S(xi, xj ).

This determines the quiver QS uniquely. In the following we describe how
we find k-bases of the vector spaces Rad S/Rad2S(xi, xj ) for each pair of objects
of S.

Let xi , xj be objects of S. Then Rad2S(xi, xj ) is the space of all elements in
Rad S(xi, xj ) which are linear combinations of morphisms factoring through another
object xs ∈ S0. Thus, Rad2S(xi, xj ) is the vector space generated by all compo-
sitions gf where f ∈ Hom(xi, xs) and g ∈ Hom(xs, xj ) for some xs ∈ S0. It suf-
fices to consider only those f and g which are elements of a (fixed) basis of the
respective spaces. Their compositions gf span the vector space Rad2S(xi, xj ). Given
a basis of Rad2S(xi, xj ) we can compute a basis of a vector space complement in
Rad S(xi, xj ).

For later use, we define a map � which sends an arrow α : xi → xj of QS to
its corresponding basis element in Rad S/Rad2S(xi, xj ). We can extend � to a map
from the set of finite paths in QS to the set of morphisms in S by defining �(p) =
�(αm) · · ·�(α1) for a path p = αm · · ·α1 in QS .

Once we have found the quiver of S we want to compute an ideal IS such that
S ∼= kQS/IS . For this we have to find all linear combinations of paths in QS which
lie in IS , meaning that they are zero in S. But if QS has cycles there exists an infinite
number of paths. On the other hand, IS is an admissible ideal, so IS contains all paths
of length � l for some l ∈ N.

This allows us to determine IS even if QS is not directed.

Algorithm 5.1.1 Relations. The input is a quiver QS of a spectroid S and the map �
from the set of paths in QS to the set of morphisms in S. A generating set G for the
ideal IS is returned.

First, we check for zero relations, i.e., paths which lie in IS and thus are zero in S.
Initialize Z := ∅. We proceed by induction on the length of the paths in Q. We start
with paths of length 2 since IS does not contain shorter paths.

Length 2: Initialize P2 := ∅. Let {p1, . . . , pr} be the set of paths with length 2
in QS . For each pi we determine �(pi) and check if �(pi) is zero in S. If so, we
replace Z by Z ∪ {pi}. If not we extend P2 by {pi}.

Length i: Initialize Pi := ∅. By induction, Pi−1 contains all non-zero paths in
(QS, IS) of length i − 1. We will go through the following procedure for each p ∈
Pi−1.

For each arrow α in QS which can be appended to the path p we determine �(αp).
If �(αp) is zero then we enlarge Z by the path αp. If �(αp) is not zero, then replace
Pi by Pi ∪ {αp}.
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Fig. 1. Finding the ideal of a spectroid.

This procedure must stop because IS is an admissible ideal and so Pl will be empty
for some l ∈ N. We have constructed a set Z of generators for the zero-relations in S
and we obtained P := ⋃l

i=2 Pi , the finite set of non-zero paths in S.
We now partition P as P = ⋃

i,j∈S0
Pij , where Pij contains all paths in P which

start in i and end in j. For each Pij we solve the linear equation
∑

p∈Pij
λp�(p) = 0

and obtain a k-basis Bij of the solution space. We define

R :=



∑
p∈Pij

λpp

∣∣∣∣∣∣
(λp)p∈Pij

∈ Bij


 .

Finally we obtain G := R ∪ Z as the required set of generators for IS .

For a description of this algorithm in pseudo-code see Fig. 1.

5.2. Finding the quiver of an endomorphism algebra

We now apply the algorithms described in the previous section to a special case:
Given an object in the homotopy category Kb(A-proj), we want to find the quiver
with relations of its endomorphism algebra.
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Let T be a complex in Kb(A-proj) which decomposes as T = ⊕n
i=1 Ti with

Ti indecomposable for i = 1, . . . , n and Ti � Tj for i /= j . We will view T in the
following as a full subspectroid of Kb(A-proj) with the objects T1, . . . , Tn and
try to construct a quiver Q and an admissible ideal I of kQ such that T ∼= kQ/I .

First we compute the quiver Q as explained in the previous section.

Algorithm 5.2.1 Quiver of a full subspectroid of Kb(A-proj). We take as input a
full subspectroid of Kb(A-proj) given by its objects T1, . . . , Tn. The quiver of the
spectroid is returned.

We label the points of Q by 1, . . . , n corresponding to the objects T1, . . . , Tn of T.
Following Algorithm 4.3.2 we compute a k-basis of the homomorphism space

Kb(A-proj)(Ti, Tj ) for any pair of summands Ti , Tj of T. These give us the mor-
phism spaces T (Ti, Tj ) of the spectroid T. As a by-product we are also supplied with
a basis for each space of null homotopic chain maps Ti → Tj .

To determine the number of arrows i → j of Q, we have to compute a k-
basis of the space Rad T/Rad2T (Ti, Tj ). If Ti /= Tj , then Rad T (Ti, Tj ) is equal
to Kb(A-proj)(Ti, Tj ). Otherwise Kb(A-proj)(Ti, Ti) = End(Ti) is a local algebra
because Ti is indecomposable. We compute a k-basis of Rad(End(Ti)) using [1] as
described in Section 2.4.

At this point we can decide if T is a factor of a path spectroid: for all i ∈ {1, . . . , n}
let di := dimk End(Ti); if dimk Rad(End(Ti)) < di − 1 for some i then we cannot
determine a quiver Q and ideal I such that T ∼= kQ/I and hence we stop the compu-
tations. If, however, we have dimk Rad(End(Ti)) = di − 1 for all i ∈ {1, . . . , n}, we
know that T is a factor of a path spectroid and we can proceed with our calculations.

For all pairs Ti, Tj ∈ T0 we fix a k-basis Bij of the space Rad T (Ti, Tj ). Then
Rad2T (Ti, Tj ) is the subspace generated by all compositions gf where f is an element
of Bis and g an element of Bsj for s = 1, . . . , n. We compute a basis Rij of a k-vector
space complement of Rad2T (Ti, Tj ) in Rad T (Ti, Tj ). The number of arrows i → j

in Q is the number of elements in Rij .
So, by definition of Q, the elements of Rij are in correspondence with the ar-

rows i → j of Q, thus we can define a bijection � : Q1 → ⋃
i,j∈Q0

Rij . We extend
� to arbitrary paths of Q by mapping a path αr · · ·α1 to the composition of maps
�(αr) · · ·�(α1).

Finally, we have to determine I. As described in Algorithm 5.1.1, we start with
searching for zero relations, by induction on the length of paths in Q.

Since T is a full subcategory of Kb(A-proj) a morphism in T is zero if and only
if it is null homotopic as a chain map. For a path p in Q we can easily determine
if �(p) is zero as a chain map, so we test for this first. Only if this is not the case
we must do further (and more time-consuming) checks to determine if �(p) is null
homotopic.

Although the basis sets Rij (i, j ∈ Q0) do not contain null homotopic morphisms
it may happen that the composition of two basis elements is null homotopic without
being zero. This is due to the fact that we had to choose a complement of each sub-
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space Rad2T (Ti, Tj ) in Rad T (Ti, Tj ), and the product fg of two elements f ∈ Rsj

and g ∈ Ris may not be an element of the vector space spanned by Rij .
But we have already computed a k-basis of the space of null homotopic chain

maps Ti → Tj when we determined Kb(A-proj)(Ti, Tj ). Hence we can decide if
�(p) is an element of this subspace. In fact, this amounts to solving a system of
linear equations.

As described in Algorithm 5.1.1 we determine a set Z of zero relations in I as well
as the finite set P of non-zero paths in kQ/I .

It remains to decide which linear combinations of elements of P are zero in S and
therefore elements of I. Following Algorithm 5.1.1 we partition P into subsets Pij

containing the paths starting in i and ending in j. For each pair i, j ∈ Q0 we must solve
the linear equation

∑
p∈Pij

λp�(p) = 0 in T meaning that we have to determine the
null homotopic chain maps in the k-vector space spanned by {�(p) |p ∈ Pij }.

Let Bij be a basis of the intersection of span{�(p) |p ∈ Pij } and the space of null
homotopic morphisms Ti → Tj which we computed by solving a system of linear
equations. Then we define

R :=



∑
p∈Pij

λpp

∣∣∣∣∣∣
∑
p∈Pij

λp�(p) ∈ Bij




and obtain G := Z ∪ R as a set of generators for I.
We remark that G may not be minimal if Q has cycles, so it might be advisable to

apply Buchberger’s algorithm to G to get rid of redundant generators.

6. Extensions of the base field

In this chapter we will show that the quiver with relations of a k-algebra “remains
the same” over any field extension of k. Moreover, this is also true for the quiver
of the endomorphism algebra of a chain complex considered over k and over a field
extension of k, respectively. Therefore it is possible to derive results over an algebra-
ically closed base field from computations over a suitable subfield.

Throughout this chapter, L will be a field extension of k. Let A be a k-algebra. In
this section, by an A-module we mean an arbitrary left A-module which may have
infinite k-dimension. The category of all left A-modules is denoted by A-Mod.

6.1. The quiver of an algebra

The tensor product yields an endofunctor L⊗k – of k-Mod, the category of k-vec-
tor spaces. Moreover, L⊗k – is exact since L is free and therefore flat as a k-module.

Let M be an A-module. If k is central in A (this is obviously true if A is a factor of a
path algebra) then L ⊗k M carries a left A-module structure given by a · (l ⊗ m) :=
l ⊗ (a · m) for a ∈ A, l ∈ L and m ∈ M . Therefore L⊗k – can also be considered as
a functor A-Mod −→ A-Mod. We note the following fact.
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Lemma 6.1.1. If k is central in A then L⊗k – is an exact endofunctor of A-Mod.

Let A = kQ/I . We are concerned with the question if the quiver of A stays the
same if we change the base field of A to an extension field L of k, i.e., we want to
know the quiver with relations of the L-algebra L ⊗k A. Note that A is a subalgebra
of L ⊗k A via the inclusion A∼= k ⊗k A ↪→ L ⊗k A.

Proposition 6.1.2. Let A = kQ/I. Then L ⊗k A∼=LQ/(L ⊗k I ) as L-algebras.

Proof. We have the following short exact sequence:

0 −→ I −→ kQ −→ kQ/I −→ 0

Since L⊗k—is an exact functor by Lemma 6.1.1, the sequence

0 −→ L ⊗ I −→ L ⊗ kQ −→ L ⊗ kQ/I −→ 0

is still exact. Therefore L ⊗ (kQ/I) is isomorphic to (L ⊗ kQ)/(L ⊗ I ) as an
A-module. Moreover, this isomorphism respects the L-algebra structure.

It remains to show that L ⊗ kQ∼=LQ. We define a map L ⊗ kQ → LQ by∑
i (li ⊗ ∑

j µjpj ) �→ ∑
j

∑
i (liµj )pj . One easily verifies that this is an isomor-

phism of L-algebras. �

This lemma shows that the quiver with relations of an algebra (if it exists) does
not change when we extend the base field.

6.2. The endomorphism algebra of a chain complex

Lemma 6.2.1. Let A be a k-algebra and let M, N be (not necessarily finite dimen-
sional) A-modules. Then

L ⊗k HomA(M,N)−→HomL⊗kA(L ⊗k M,L ⊗k N)

l ⊗ f �−→ l · (L ⊗ f )

is an isomorphism of L-vector spaces if M or L has finite k-dimension.

Proof. We have the following isomorphisms of L-vector spaces:

HomL⊗kA(L ⊗k M,L ⊗k N)∼= HomL⊗kA(L ⊗k A ⊗A M,L ⊗k N)

∼= HomA(M,L ⊗k N).

The last isomorphism follows from (L ⊗A A) ⊗k − being left adjoint to the forget-
ful functor (L ⊗k A)-Mod → (k ⊗k A)-Mod ∼=A-Mod. So it suffices to show that
L ⊗k HomA(M,N) is isomorphic to HomA(M,L ⊗k N).
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Let (lj )j∈J be a k-basis of L. Then

L ⊗ N ∼=

⊕

j∈J
lj · k


 ⊗ N ∼=

⊕
j∈J

(lj · k ⊗ N)∼=
⊕
j∈J

N

as A-modules. Now we define a morphism

� : L ⊗ HomA(M,N)−→HomA(M,L ⊗ N)∼= HomA


M,

⊕
j∈J

N




l ⊗ f �−→(m �→ l ⊗ f (m)).

Then an inverse of � is given by the map which sends g : M −→ ⊕
j∈J N to

∑
j∈J lj ⊗ gj (where gj is the composition of g with the jth projection

⊕
j∈J N

πj−→
N). We remark that the sum

∑
j∈J lj ⊗ gj is finite if dimk L < ∞ (so J is finite) or

if M has finite k-dimension. In the latter case the image g(M) in
⊕

j∈J N is finite
dimensional over k. Therefore almost all maps gj must be zero. �

Let m and n be integers. We define a new quiver Q[m,n] by gluing together n − m

copies Q(i) of Q, indexed by i = m, . . . , n.
We have two types of arrows in Q[m,n]: All arrows α(i) of Q(i) for i = m, . . . , n,

and arrows β(i)
x : x(i) → x(i+1) for all x ∈ Q0 and i = m, . . . , n − 1 which connect

two copies Q(i) and Q(i+1).
The relations are given by all relations in Q(i) for i = m, . . . , n together with

all relations α2 = 0 and all relations βα = αβ. We denote the ideal of relations by
I [m,n].

Let C, D be two complexes in Cb(A-mod) and let (mC, nC) and (mD, nD) be the
bounds of C and D respectively. We define m :=min(mC,mD) and n :=max(nC, nD).
Then we can view C and D as finite dimensional modules over Ā = kQ[m,n]/I [m,n].
Hence, Cb(A-mod)(C,D) and HomĀ(C,D) are isomorphic as k-vector spaces.

Corollary 6.2.2. Let A = kQ/I and let C, D be chain complexes over A-mod. Then

� : L ⊗k C
b(A − mod)(C,D)−→Cb((L ⊗k A) − mod(L ⊗k C,L ⊗k D)

λj ⊗ fj �−→λj · (L ⊗ fj )

is an isomorphism of L-vector spaces.

Proof. Let Ā := kQ[m,n]/I [m,n] as defined above. Now we can apply proposition
6.2.1 to the finite dimensional Ā-modules C and D: It follows that L ⊗ HomĀ(C,

D)∼= HomL⊗Ā(L ⊗ C,L ⊗ D).
By Lemma 6.1.2 we have L ⊗ Ā∼=LQ̄/(L ⊗ Ī ) as well as L ⊗ A∼=LQ/(L ⊗ I ),

thus L ⊗ C and L ⊗ D can be considered as chain complexes in Cb((L ⊗ A))-mod.
This yields the required isomorphism of L-vector spaces. �
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6.3. The endomorphism algebra of a complex in Kb(A-proj)

We remark that L ⊗k − maps projective A-modules to projective (L ⊗ A)-mod-
ules: If we decompose A = ⊕

Pi as an A-module then

L ⊗k A = L ⊗k

(⊕
Pi

)∼=
⊕

(L ⊗k Pi).

Therefore L ⊗k − is also a functor Cb(A-proj) → Cb((L ⊗k A)-proj).

Lemma 6.3.1. Let A = kQ/I and let C and D be complexes in Cb(A-proj). Let

� : L ⊗k C
b(A-proj)(C,D) −→ Cb((L ⊗k A)-proj)(L ⊗k C,L ⊗k D)

be the isomorphism given by Corollary 6.2.2. If h ∈ L ⊗k C
b(A-proj)(C,D) such

that �(h) is null homotopic, then there exist null homotopic chain maps fj ∈
Cb(A-proj)(C,D) and elements λj ∈ L (j ∈ J ) with h = ∑

j∈J λj ⊗ fj .

Proof. We write h = ∑
s∈S µs ⊗ hs for some µs ∈ L and hs ∈ Cb(A-proj)(C,D).

Let (lj )j∈J be a k-basis of L. Then µs = ∑
j∈J µ′

sj lj for some µ′
sj ∈ k and an easy

calculation shows that we can write h as
∑

j∈J lj ⊗ fj , where fj = ∑
s∈S µ′

sj hs .
By assumption �(h) is null homotopic, so it induces the zero map on the homo-

logy modules. For any n ∈ Z we infer

0 = Hn(�(h)) = Hn


∑

j∈J
lj (L ⊗ fj )




=
∑
j∈J

ljHn(L ⊗ fj )

=
∑
j∈J

lj (L ⊗ Hn(fj )). (1)

The last equality follows by exactness of L ⊗k −. Now
∑

j∈J lj (L ⊗ Hn(fj )) is
an element of HomL⊗A(L ⊗ Hn(C), L ⊗ Hn(D)) which is, by Lemma 6.2.1, iso-
morphic to L ⊗ HomA(Hn(C),Hn(D)). Thus (1) is equivalent to

0 =
∑
j∈J

lj ⊗ Hn(fj ).

Let (bt )t∈T be a k-basis of HomA(Hn(C),Hn(D)). We write each Hn(fj ) as a
linear combination

∑
t∈T νtj bt and obtain

0 =
∑
j∈J

lj ⊗ Hn(fj )

=
∑
j∈J

lj ⊗
∑
t∈T

νtj bt

=
∑
j∈J

∑
t∈T

νtj (lj ⊗ bt ).
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But (lj ⊗ bt )j∈J,t∈T is a k-basis for L ⊗ HomA(Hn(C),Hn(D)) and thus νtj = 0
for all t ∈ T and all j ∈ J . Since Hn(fj ) = ∑

t∈T νtj bj it follows that Hn(fj ) = 0
for all j ∈ J .

Finally, we conclude from Hn(fj ) = 0 that fj is null homotopic: This is true
since Kb(A-proj)(C,D)∼=Db(A)(C,D) for the bounded complexes of projectives
C and D. Then Hn(fj ) = 0 means that fj is mapped to zero under this isomorphism.
Therefore fj must be zero in Kb(A-proj)(C,D), so fj is null homotopic as a chain
map. �

Lemma 6.3.2. Let A = kQ/I and let C and D be complexes in Cb(A-proj). Then
L ⊗k K

b(A-mod)(C,D) and Kb((L ⊗k A)-mod)(L ⊗k C,L ⊗k D) are isomor-
phic as L-vector spaces.

Proof. By Corollary 6.2.2 we know that L ⊗ Cb(A-proj)(C,D) is isomorphic to
Cb((L ⊗ A)-proj)(L ⊗ C,L ⊗ D) via the isomorphism � which induces the map

�′ : L ⊗ Kb(A-proj)(C,D)−→Kb((L ⊗k A)-proj)(L ⊗ C,L ⊗ D)∑
λj ⊗ [fj ] �−→

∑
λj [L ⊗ fj ].

We check that �′ is well defined. Let f ∈ L ⊗k C
b(A-mod)(C,D) with f =∑

λj ⊗ fj such that all fj are null homotopic. Then �′(
∑

λj ⊗ [fj ]) = ∑
λj [L ⊗

fj ]. By exactness of L ⊗k − we have

Hn

(∑
λj (L ⊗ fj )

)
=

∑
λj (L ⊗ Hn(fj )) = 0

and a similar argument as in the Proof of Lemma 6.3.1 shows that
∑

λj (L ⊗ fj ) is
null homotopic.

Lemma 6.3.1 implies that �′ is injective. So it remains to show that �′ is surjec-
tive. This follows from the commutative diagram

since the composition of maps π� is surjective. �

Theorem 6.3.3. Let A = kQ/I and let T be a chain complex in Kb(A-proj). If
Kb(A-proj)(T , T )∼= kQ′/I ′ as k-algebras then Kb((L ⊗k A)-proj)(L ⊗k T , L ⊗k

T ) is isomorphic to LQ′/(L ⊗k I
′) as an L-algebra.

In other words, if the k-algebra End(T ) has the quiver with relations (Q′, I ′) then
the L-algebra End(L ⊗k T ) is given by the same quiver with the same relations.
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Proof. Application of Lemma 6.3.2 shows that there exists an isomorphism

�′ : Kb((L ⊗k A)-proj)(L ⊗ T ,L ⊗ T ) −→ L ⊗k K
b(A-mod)(T , T )

of L-vector spaces. It is easy to check that �′ respects the L-algebra structure and
therefore is an isomorphism of L-algebras.

Now it follows from Kb(A-proj)(T , T )∼= kQ′/I ′ and proposition 6.1.2 that L ⊗
Kb(A-proj)(T , T ) is isomorphic to LQ′/(L ⊗k I

′) as an L-algebra. Together this
yields

Kb((L ⊗k A)-proj)(L ⊗ T ,L ⊗ T )∼=LQ′/(L ⊗k I
′). �
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