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Abstract 

Shi, Y., The number of edges in a maximum cycle-distributed graph, Discrete Mathematics 104 

(1992) 205-209. 

Let f(n) (f*(n)) be the maximum possible number of edges in a graph (2-connected 

simple graph) on n vertices in which no two cycles 

prove that, for every integer n > 3, f(n) 3 n + k + [i( 
[~(sG=z + ll)], and obtain upper and lower bounds on fi(n). 

1. Introduction 

In this note, we consider finite undirected graphs. All definitions and notations 

not given here can be found in [ 1,2]. 

A graph G is said to be a cycle-distributed graph if no two cycles in G have the 

same length. In particular, a graph G containing at most one cycle is a 

cycle-distributed graph. 

Let f(n) (f*(n),f*(n)) be the maximum possible number of edges in a 

cycle-distributed graph (simple cycle-distributed graph, 2-connected simple cycle- 

distributed graph) on n vertices. 

In 1975, ErdGs raised the question of determiningf(n) (see [l, p. 247, Problem 

111). This problem remains unsettled. Till now, we have not known any good 

upper bound of f(n). In [2], we obtained the following result: 

f(n) 2 IZ + [4(dm + l)] for each n > 3 

and the equality holds when 3 < n < 17. In this note, we improve the lower bound 

of f(n). Our main result is 
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f(n)an+k+[i(dfh-24k2+8k-7-l)], wherek=[&($%?%+ll)]. 

2. New lower bound on f(n) 

Lemma 2.1. For every integer n 2 46. 

f*(n) > n + k + [&v8n - 24k2 + 8k + 1 - 5)], 

where k = [&(dm + ll)]. 

Proof. We shall give a constructive proof of this lemma. For every integer 

n 2 46, we can obtain integers k and t from the following equations: 

k = [+(vm + ll)], t = [i(d8n - 24k2 + 8k + 1 - 12k + 7)]. 

Let a, = 6(k - 1) + t + 3 - 2k + i, i = 0, 1, . . . , 2k. Let GO, be a graph obtained 

by the following method for j = 1, 2, . . . , k. 
We first take a cycle C of length Uzj_l+ 2(k + j) + 1. Let x, y and z be vertices 

of C which split C into three paths Q, = (y, x), Q2 = (x, z), Q3 = (z, y). We then 

join x to y by a new path PI and join x to z by a new path P2 such that: 

(1) P, and P2 are internally disjoint; 

(2) Q, U PI is a cycle of length a2j-1 and Q2 U P2 is a cycle of length azj; 

(3) Iv(p~)l = [$(a,-, + I)1 and IV(P,)I = [&R, 
Clearly GO, has exactly six cycles of length 

uzj_, + 2(k + j - 1) + 1, Use-, + 2(k + j - 1) + 2, 

tively. Let 

+ l>l. 
u2j-1T Use, u2j-1 + 2(k + j - l), 

a*,-, + 2(k + j - 1) + 3, respec- 

and let G,,+, = K1,,. Let Gi be a cycle of length i, i = 3, 4, . . . , a,. We now form 

a graph G from the graph sequence G3, G4, . . . , G,,,, G,,, . . . , G,,,, Go,+, by 

identifying one vertex of Gi and one vertex of G,,, for every integer i, 3 G i c uk. 
Since every GO, has exactly six cycles, UT=, G, has exactly 6k cycles of length 

al, a2, ’ . ’ , a2k, a2k +1,... , azk + 4k, respectively. Also lJy!!3 G, has exactly 

a, - 2 cycles of length 3,4, . . . , a,,, respectively. Thus G is a simple cycle- 

distributed graph. 

It is easily seen that G has exactly n vertices and n + 6(k - 1) + f + k edges. 

Therefore 

f*(n) 2 rz + 6(k - 1) + t + k 

= n + 6(k - 1) + k + [i(I/8n - 24k2 + 8k + 1 - 12k + 7)] 

= n + k + [i(q8n - 24k2 + 8k + 1 - 5)], 

where k = [3fi(vm + ll)]. 0 



The number of edges in a maximum cycle-distributed graph 207 

Theorem 2.2. For every integer n 2 2, 

f*(n) an + k + [b(d8n - 24k2 + 8k + 1 - 5)] 

where k = [&(vm + ll)]. 

Proof. In [2], we proved that, for every n 2 2, 

f*(n) 2 n + [i(V_ - 3)]. 

It is easy to verify that, for every 2 s n s 45, 

n+[$(v&=i%3)]=n+k+[t(v8n-24k2+8k+1-5)]. 

The theorem follows immediately from (l), (2) and Lemma 2.1. 0 

(1) 

(2) 

Theorem 2.3. For every integer n 2 3, 

f(n) * n + k + [$(d8n - 24k2 + 8k - 7 - l)]. 

where k = [&(v?%?% + ll)]. 

Proof. This follows directly from Theorem 2.2 and the following result obtained 

in [2]: For every n 2 3, f(n) =f*(n - 1) + 3. III 

3. Bounds on fi(n) 

Theorem 3.1. For every integer n 2 3, 

f2(n) S n + [&&PE - 3)]. 

Proof. This follows directly from the following result proved in [2]. Let m be the 
number of cycles contained in a 2-connected simple graph G and j = IE(G)l - 

IV(G)l, then m Z= (j + l)(j + 2)/2. Cl 

Theorem 3.2. For every integer n 3 3, 

h(n) 2 n + 1+ [log2((n - 2)/3)]. 

Proof. For every integer k 2 1 and every integer n, 3. 2k-’ + 2 s n =S 3 - 2k + 1, 
take a n-cycle C,, = (1 2 3 * * * n) and let x1 = 1 and xi+i =xi + 2’-’ + 1 for 
i=l,2,..., k. Form a graph G(n, k) from C,, by joining xi to xi+i for 
i = 1, 2, . . . , k. 

Clearly G(n, k) has exactly 2k + k cycles of length 2j + 2 (j = 0, 1, . . . , k - 1) 
and n-t (t=O,l,..., 2k - l), respectively. G(n, k) is clearly a 2-connected 
simple cycle-distributed graph with n vertices and n + k edges, where k = 

1 + [log,((n - 2)/3)]. Thus 

f2(n) 2 n + 1 + [log,((n - 2)/3)]. 0 



208 Y. Shi 

It is easily verified that, for every integer 3 c n c 11, 

n + [+(j&=% - 3)] = n + 1 + [log,((n - 2)/3)]. 

Thus, by Theorem 3.1 and Theorem 3.2, we have 

f2(n)=n+@(dm-3)] for 3<n==ll. 

Let uk = (((1 + fl)/2)k - ((1 - fi)/2)‘)/fi be a Fibonacci number. The 
following theorem gives a better lower bound than Theorem 3.2. 

Theorem 3.3. Let k and n be integers such that k 2 4 and uk G n < u~+~, then 

f2(n)sn+k-4. 

To prove this theorem, we need some properties of Fibonacci numbers (see 

[31): 
(a) u& +h+l= uk+Z; 

(b) CL 1 Q-1 = u2n; 

(c) cz 1 uzi = U2n+1- 1. 

Proof of Theorem 3.3. We consider two cases. 
Case 1: n = uk (k 2 4). 

Let t = k - 4. It is convenient to denote by Ci the cycle of length ui+2 + 2 in the 
proof. Also, let l(C) denote the length of a cycle C. 

Let G be a graph drawn on the plane and let C be a cycle of G, then C divides 
the plane into two regions. The bounded (unbounded) region is called the interior 
(exterior) of C and is denoted by int C (ext C). 

Now form a graph G’ by the following method: We first take an n-cycle C* 
drawn on the plane such that int C* is a convex polygonal region. We then draw t 

diagonals meeting a common vertex v and divide int C* into t + 1 regions such 
that the boundaries of these regions are cycles CO, Ci, C2, . . . , C, and the t + 1 
cycles are arranged in the order CO, C2, C4, . . . , C,, . . . , C3, Ci, (see Fig. 1). 

Since 

I(&) + i (l(ci) - 2) = u2 + 2 + i u;+2 = ut+2 + ut+3 = ut+4 = uk = n = l(c*), 

i=l i=l 

the graph G’ can be formed. 

Fig. 1. 
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We proceed by induction on t. Clearly, Go, G’, G2 and G3 are 2-connected 

simple cycle-distributed graphs. Suppose that G’ (t 2 3) is a 2-connected simple 

cycle-distributed graph. Let C’ be the set of cycles in G’. Let 

M = {C 1 C E C’+l and int C,,, c$ int C}, 

N = {C 1 C E C’+’ and int C,,, G int C}. 

Then C’+’ - -M UN. Clearly, there are no two cycles in M having the same 

length. With each cycle C E N - {C,,,}, we associate a unique cycle C’ E C’ such 

that l(C’) = l(C) - l(C,+,) + 2 = l(C) - u,+~; different cycles of N - {C,+,} are 

associated different cycles of C’. Therefore there are no two cycles in N having 

the same length. Using properties of Fibonacci numbers, for each C E M, we 

obtain easily l(C) < u,+~ + 2. On the other hand, for each C E N, we have 

I(C) s 4+3 + 2. Thus there are no two cycles in C’+’ having the same length. 

Consequently, G I+’ is a 2-connected simple cycle-distributed graph and f2(n) 2 

n+t=n+k-4follows. 

CU.%? 2: uk <n < uk+l (k 2 4). 

Let t = k - 4. Replacing the path C, rl C* of G drawn in Fig. 1 by a new path of 

length u,+~ + (n - uk) results in a new graph G*. Clearly G* is a 2-connected 

simple cycle-distributed graph on iz vertices and n + t edges. And hence 

f,(n)zn+t=n+k-4. q 

Let ak = 3 . 2k-’ + 2, then Theorem 3.2 is equivalent to the following form: For 

any integer n, ak s n s ak+l (k 2 l), f2(n) 2 n + k. 

It is easily seen that, for 5 < n < 8, Theorem 3.3 is equivalent to Theorem 3.2. 

Also, 

lim uk+i/& = 1.618 and lim ak+r/ak = 2. 
k-m k+= 

Therefore the lower bound of Theorem 3.3 is better than that of Theorem 3.2. 
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