Discrete Mathematics 104 (1992) 205-209 North-Holland

Note

The number of edges in a maximum cycle-distributed graph

Yongbing Shi

Department of Mathematics, Shanghai Teachers' University, Shanghai, China

Received 7 June 1988 Revised 10 January 1990

Abstract

Shi, Y., The number of edges in a maximum cycle-distributed graph, Discrete Mathematics 104 (1992) 205-209.

Let $f(n)$ $(f_2(n))$ be the maximum possible number of edges in a graph (2-connected simple graph) on n vertices in which no two cycles have the same length. In this note, we prove that, for every integer $n \ge 3$, $f(n) \ge n + k + [\frac{1}{2}(\sqrt{8n - 24k^2 + 8k - 7} - 1)]$, where $k =$ $\left[\frac{1}{21}(\sqrt{21n-26}+11)\right]$, and obtain upper and lower bounds on $f_2(n)$.

1. Introduction

In this note, we consider finite undirected graphs. All definitions and notations not given here can be found in $[1, 2]$.

A graph G is said to be a cycle-distributed graph if no two cycles in G have the same length. In particular, a graph G containing at most one cycle is a cycle-distributed graph.

Let $f(n)$ $(f^*(n), f_2(n))$ be the maximum possible number of edges in a cycle-distributed graph (simple cycle-distributed graph, 2-connected simple cycledistributed graph) on n vertices.

In 1975, Erdős raised the question of determining $f(n)$ (see [1, p. 247, Problem 111). This problem remains unsettled. Till now, we have not known any good upper bound of $f(n)$. In [2], we obtained the following result:

 $f(n) \ge n + \frac{3}{2}(\sqrt{8n - 23} + 1)$ for each $n \ge 3$

and the equality holds when $3 \le n \le 17$. In this note, we improve the lower bound of $f(n)$. Our main result is

0012-365X/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

206 Y. Shi

$$
f(n) \ge n + k + \left[\frac{1}{2}(\sqrt{8n} - 24k^2 + 8k - 7 - 1)\right]
$$
, where $k = \left[\frac{1}{21}(\sqrt{21n - 26} + 11)\right]$.

2. New lower bound on $f(n)$

Lemma 2.1. *For every integer* $n \ge 46$ *.*

$$
f^*(n) \ge n + k + \left[\frac{1}{2}(\sqrt{8n-24k^2+8k+1}-5)\right],
$$

where k = $\left[\frac{1}{21}(\sqrt{21n-5}+11)\right]$.

Proof. We shall give a constructive proof of this lemma. For every integer $n \geq 46$, we can obtain integers *k* and *t* from the following equations:

$$
k = \left[\frac{1}{21}(\sqrt{21n-5}+11)\right], \qquad t = \left[\frac{1}{2}(\sqrt{8n-24k^2+8k+1}-12k+7)\right].
$$

Let $a_i = 6(k - 1) + t + 3 - 2k + i$, $i = 0, 1, ..., 2k$. Let G_{a_i} be a graph obtained by the following method for $j = 1, 2, \ldots, k$.

We first take a cycle C of length a_{2i-1} + $2(k + j)$ + 1. Let x, y and z be vertices of C which split C into three paths $Q_1 = (y, x)$, $Q_2 = (x, z)$, $Q_3 = (z, y)$. We then join x to y by a new path P_1 and join x to z by a new path P_2 such that:

- (1) P_1 and P_2 are internally disjoint;
- (2) $Q_1 \cup P_1$ is a cycle of length a_{2i-1} and $Q_2 \cup P_2$ is a cycle of length a_{2i} ;
- (3) $|V(P_1)| = \left[\frac{1}{2}(a_{2j-1} + 1)\right]$ and $|V(P_2)| = \left[\frac{1}{2}(a_{2j} + 1)\right]$.

Clearly G_{a_i} has exactly six cycles of length a_{2j-1} , a_{2j} , $a_{2j-1} + 2(k + j - 1)$, $a_{2i-1} + 2(k + j - 1) + 1$, $a_{2i-1} + 2(k + j - 1) + 2$, $a_{2i-1} + 2(k + j - 1) + 3$, respec tively. Let

$$
m=n-\left(3+\sum_{i=3}^{a_{2k-1}}i+\sum_{j=1}^{k}2(k+j-1)\right),
$$

and let $G_{a_{k+1}} = K_{1,m}$. Let G_i be a cycle of length *i*, $i = 3, 4, \ldots, a_0$. We now form a graph G from the graph sequence $G_3, G_4, \ldots, G_{a_0}, G_{a_1}, \ldots, G_{a_k}, G_{a_{k+1}}$ by identifying one vertex of G_i and one vertex of G_{i+1} for every integer $i, 3 \le i \le a_k$. Since every G_{a_i} has exactly six cycles, $\bigcup_{i=1}^{k} G_{a_i}$ has exactly 6k cycles of length $a_1, a_2, \ldots, a_{2k}, a_{2k}+1, \ldots, a_{2k}+4k$, respectively. Also $\bigcup_{i=3}^{a_0} G_i$ has exactly $a_0 - 2$ cycles of length 3,4, ..., a_0 , respectively. Thus G is a simple cycledistributed graph.

It is easily seen that G has exactly n vertices and $n + 6(k - 1) + t + k$ edges. Therefore

$$
f^*(n) \ge n + 6(k - 1) + t + k
$$

= n + 6(k - 1) + k + $\left[\frac{1}{2}(\sqrt{8n - 24k^2 + 8k + 1} - 12k + 7)\right]$
= n + k + $\left[\frac{1}{2}(\sqrt{8n - 24k^2 + 8k + 1} - 5)\right]$,

where $k = \left[\frac{1}{21}(\sqrt{21n - 5} + 11)\right]$. \Box

Theorem 2.2. For every integer $n \ge 2$,

$$
f^*(n) \ge n + k + \left[\frac{1}{2}(\sqrt{8n - 24k^2 + 8k + 1} - 5)\right]
$$

where k = $\left[\frac{1}{21}(\sqrt{21n} - 5 + 11)\right]$.

Proof. In [2], we proved that, for every $n \ge 2$,

$$
f^*(n) \ge n + \left[\frac{1}{2}(\sqrt{8n-15}-3)\right].\tag{1}
$$

It is easy to verify that, for every $2 \le n \le 45$,

$$
n + \left[\frac{1}{2}(\sqrt{8n - 15} - 3)\right] = n + k + \left[\frac{1}{2}(\sqrt{8n - 24k^2 + 8k + 1} - 5)\right].
$$
 (2)

The theorem follows immediately from (1) , (2) and Lemma 2.1. \Box

Theorem 2.3. For every integer $n \geq 3$,

$$
f(n) \ge n + k + \left[\frac{1}{2}(\sqrt{8n - 24k^2 + 8k - 7} - 1)\right].
$$

where $k = \left[\frac{1}{21}(\sqrt{21n - 26} + 11)\right].$

Proof. This follows directly from Theorem 2.2 and the following result obtained in [2]: For every $n \ge 3$, $f(n) = f^{*}(n-1) + 3$. \Box

3. Bounds on $f_2(n)$

Theorem 3.1. *For every integer* $n \geq 3$ *,*

 $f_2(n) \le n + \left[\frac{1}{2}(\sqrt{8n-15}-3)\right]$.

Proof. This follows directly from the following result proved in [2]. Let m be the number of cycles contained in a 2-connected simple graph G and $j = |E(G)|$ -*IV(G)*, then $m \ge (j + 1)(j + 2)/2$. \Box

Theorem 3.2. For every integer $n \geq 3$,

 $f_2(n) \ge n + 1 + \frac{\log_2((n-2)/3)}{2}$.

Proof. For every integer $k \ge 1$ and every integer $n, 3 \cdot 2^{k-1} + 2 \le n \le 3 \cdot 2^k + 1$, take a *n*-cycle $C_n = (1 \ 2 \ 3 \cdots n)$ and let $x_1 = 1$ and $x_{i+1} = x_i + 2^{i-1} + 1$ for $i=1,2,\ldots, k$. Form a graph $G(n, k)$ from C_n by joining x_i to x_{i+1} for $i = 1, 2, \ldots, k.$

Clearly $G(n, k)$ has exactly $2^k + k$ cycles of length $2^j + 2$ ($j = 0, 1, \ldots, k - 1$) and $n-t$ ($t=0, 1, \ldots, 2^k-1$), respectively. $G(n, k)$ is clearly a 2-connected simple cycle-distributed graph with *n* vertices and $n + k$ edges, where $k =$ $1 + [\log_2((n-2)/3)]$. Thus

 $f_2(n) \ge n + 1 + [\log_2((n-2)/3)]$. \Box

208 Y. Shi

It is easily verified that, for every integer $3 \le n \le 11$,

$$
n + \left[\frac{1}{2}(\sqrt{8n-15}-3)\right] = n + 1 + \left[\log_2((n-2)/3)\right].
$$

Thus, by Theorem 3.1 and Theorem 3.2, we have

$$
f_2(n) = n + \left[\frac{1}{2}(\sqrt{8n-15}-3)\right]
$$
 for $3 \le n \le 11$.

Let $u_k = (((1 + \sqrt{5})/2)^k - ((1 - \sqrt{5})/2)^k)/\sqrt{5}$ be a Fibonacci number. The following theorem gives a better lower bound than Theorem 3.2.

Theorem 3.3. Let k and n be integers such that $k \ge 4$ and $u_k \le n \le u_{k+1}$, then $f_2(n) \geq n + k - 4.$

To prove this theorem, we need some properties of Fibonacci numbers (see **[31):**

(a) $u_k + u_{k+1} = u_{k+2};$

(b)
$$
\sum_{i=1}^{n} u_{2i-1} = u_{2n}
$$
;

(c) $\sum_{i=1}^{n} u_{2i} = u_{2n+1} - 1.$

Proof of Theorem 3.3. We consider two cases.

Case 1: $n = u_k$ ($k \ge 4$).

Let $t = k - 4$. It is convenient to denote by C_i the cycle of length $u_{i+2} + 2$ in the proof. Also, let $1(C)$ denote the length of a cycle C.

Let G be a graph drawn on the plane and let C be a cycle of G , then C divides the plane into two regions. The bounded (unbounded) region is called the interior (exterior) of C and is denoted by int C (ext C).

Now form a graph G^t by the following method: We first take an *n*-cycle C^* drawn on the plane such that int C^* is a convex polygonal region. We then draw t diagonals meeting a common vertex v and divide int C^* into $t + 1$ regions such that the boundaries of these regions are cycles $C_0, C_1, C_2, \ldots, C_t$ and the $t + 1$ cycles are arranged in the order C_0 , C_2 , C_4 , ..., C_t , ..., C_3 , C_1 , (see Fig. 1). Since

$$
1(C_0) + \sum_{i=1}^t (1(C_i) - 2) = u_2 + 2 + \sum_{i=1}^t u_{i+2} = u_{t+2} + u_{t+3} = u_{t+4} = u_k = n = 1(C^*),
$$

the graph G^t can be formed.

We proceed by induction on t. Clearly, G^0 , G^1 , G^2 and G^3 are 2-connected simple cycle-distributed graphs. Suppose that $G'(t \ge 3)$ is a 2-connected simple cycle-distributed graph. Let C' be the set of cycles in G' . Let

$$
M = \{C \mid C \in C^{t+1} \text{ and int } C_{t+1} \nsubseteq \text{ int } C\},
$$

$$
N = \{C \mid C \in C^{t+1} \text{ and int } C_{t+1} \subseteq \text{ int } C\}.
$$

Then $C^{t+1} = M \cup N$. Clearly, there are no two cycles in *M* having the same length. With each cycle $C \in N - \{C_{t+1}\}\$, we associate a unique cycle $C' \in C'$ such that $1(C') = 1(C) - 1(C_{t+1}) + 2 = 1(C) - u_{t+3}$; different cycles of $N - {C_{t+1}}$ are associated different cycles of C^t . Therefore there are no two cycles in N having the same length. Using properties of Fibonacci numbers, for each $C \in M$, we obtain easily $1(C) \le u_{t+3} + 2$. On the other hand, for each $C \in N$, we have $1(C) \ge u_{t+3} + 2$. Thus there are no two cycles in C^{t+1} having the same length. Consequently, G^{t+1} is a 2-connected simple cycle-distributed graph and $f_2(n) \geq$ $n+t=n+k-4$ follows.

Case 2: $u_k < n < u_{k+1}$ $(k \ge 4)$.

Let $t = k - 4$. Replacing the path $C_t \cap C[*]$ of G drawn in Fig. 1 by a new path of length u_{t+2} + $(n - u_k)$ results in a new graph G^* . Clearly G^* is a 2-connected simple cycle-distributed graph on *n* vertices and $n + t$ edges. And hence $f_2(n) \ge n + t = n + k - 4.$

Let $a_k = 3 \cdot 2^{k-1} + 2$, then Theorem 3.2 is equivalent to the following form: For any integer *n*, $a_k \le n \le a_{k+1}$ $(k \ge 1)$, $f_2(n) \ge n + k$.

It is easily seen that, for $5 \le n \le 8$, Theorem 3.3 is equivalent to Theorem 3.2. Also,

$$
\lim_{k \to \infty} u_{k+1}/u_k = 1.618 \text{ and } \lim_{k \to \infty} a_{k+1}/a_k = 2.
$$

Therefore the lower bound of Theorem 3.3 is better than that of Theorem 3.2.

Acknowledgement

The author would like to thank the referee for his valuable comments and suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (Macmillan, New York, 1976).
- **[2] Y. Shi, On maximum cycle-distributed graphs, Discrete Math. 71 (1988) 57-71.**
- **[3] Z. Wu, Fibonacci Sequences (in Chinese) (Liaoning Education Press, 1986) 84-89.**