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Abstract

Shi, Y., The number of edges in a maximum cycle-distributed graph, Discrete Mathematics 104
(1992) 205-209.

Let f(n) (f(n)) be the maximum possible number of edges in a graph (2-connected
simple graph) on n vertices in which no two cycles have the same length. In this note, we
prove that, for every integer >3, f(n)=n +k + [5(V8n — 24k* + 8k — 7 — 1)], where k =
[Z(V212 — 26 + 11)], and obtain upper and lower bounds on f(n).

1. Introduction

In this note, we consider finite undirected graphs. All definitions and notations
not given here can be found in [1, 2].

A graph G is said to be a cycle-distributed graph if no two cycles in G have the
same length. In particular, a graph G containing at most one cycle is a
cycle-distributed graph.

Let f(n)(f*(n), i(n)) be the maximum possible number of edges in a
cycle-distributed graph (simple cycle-distributed graph, 2-connected simple cycle-
distributed graph) on n vertices.

In 1975, Erdos raised the question of determining f(n) (see [1, p. 247, Problem
11]). This problem remains unsettled. Till now, we have not known any good
upper bound of f(n). In [2], we obtained the following result:

f(n)y=n+[3(V8n —23+1)] for each n=3

and the equality holds when 3 <<n =< 17. In this note, we improve the lower bound
of f(n). Our main result is
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f(n)=n+k+[3(V8n —24k> + 8k —7—1)], where k = [;(V21n — 26 + 11)].

2. New lower bound on f(n)

Lemma 2.1. For every integer n = 46.

f*(n)=n+k + [3(V8n —24k* + 8k + 1 — 5)),
where k = [3(V21n — 5+ 11)).

Proof. We shall give a constructive proof of this lemma. For every integer
n =46, we can obtain integers k and ¢ from the following equations:

k=[r(V2In—5+11)],  t=[3(V8n —24k” + 8k + 1 — 12k +7)].

Leta,=6(k—1)+t+3—-2k+i,i=0,1,...,2k Let G,, be a graph obtained
by the following method forj=1,2, ..., k.

We first take a cycle C of length ay;_, +2(k +j)+ 1. Let x, y and z be vertices
of C which split C into three paths O, = (y, x), O, =(x, 2), Q:=(z, y). We then
join x to y by a new path P, and join x to z by a new path P, such that:

(1) P, and P, are internally disjoint;

(2) QU P, is a cycle of length a,;_; and Q, U P, is a cycle of length a,;;

3) V()| = [%(aZj—I +1)] and |V(P)| = [%(a2j + 1))

Clearly G, has exactly six cycles of length ay_;, ay, ay_,+2(k+j—1),
Ay +2k+j-1)+1, ay_+2(k+j—1)+2, ay_,+2(k+j—1)+3, respec-
tively. Let

-1 k
m=n—<3+ > i+22(k+j—1)>,
i= j=1

3

and let G,,,, = K, ,,. Let G, be a cycle of length i, i=3,4, ..., a;. We now form
a graph G from the graph sequence Gs, G, ..., G,, G,,, ..., G,, G, by
identifying one vertex of G; and one vertex of G;,, for every integer i, 3<<i < q,.
Since every G, has exactly six cycles, U, G,, has exactly 6k cycles of length
Ay, Ay, ..., Ao, A+ 1, ..., ay + 4k, rtespectively. Also |5 G; has exactly
ao— 2 cycles of length 3,4,...,a,, respectively. Thus G is a simple cycle-
distributed graph.

It is easily seen that G has exactly n vertices and n + 6(k — 1) +¢ + k edges.

Therefore
f¥ny=n+6k—1)+t+k
=n+6(k—1)+k+[3(V8n —24k* + 8k + 1 — 12k +7)]
=n+k+[3(V8n — 24k’ + 8k + 1 - 5)],

where k =[37(V2ln =5+ 11)]. O
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Theorem 2.2. For every integer n =2,
f*(n)=n+k+[3(V8n —24k* + 8k +1—5)]
where k = [31(V21n — 5+ 11)].

Proof. In [2], we proved that, for every n =2,

f*(n)=n+[3(V8n-15-13)). (§))
It is easy to verify that, for every 2=<n <45,
n+[3(V8n —15-3)]=n+k + [3(V8n — 24k*> + 8k + 1 - 5)]. 2

The theorem follows immediately from (1), (2) and Lemma 2.1. O
Theorem 2.3. For every integer n =3,

f(n)=n+k+[3(V8n —24k> + 8k — 7 —1)].
where k = [31(V21n — 26 + 11)].

Proof. This follows directly from Theorem 2.2 and the following result obtained
in [2]: For every n =3, f(n)=f*(n—-1)+3. O

3. Bounds on f(n)

Theorem 3.1. For every integer n =3,

H(n)<sn+[3(V8n —15-13)].

Proof. This follows directly from the following result proved in [2]. Let m be the
number of cycles contained in a 2-connected simple graph G and j = |E(G)| —
[V(G)|, then m=(+1)(j+2)/2. O

Theorem 3.2. For every integer n =3,

f(n)=n+ 1+ [log,((n — 2)/3)].

Proof. For every integer kK =1 and every integer n,3-2*"'4+2<n=<3.2+1,
take a n-cycle C,=(123---n) and let x;=1 and x,,;=x,+2"'+1 for
i=12,...,k Form a graph G(n, k) from C, by joining x; to x,,, for
i=1,2,...,k

Clearly G(n, k) has exactly 2“ + k cycles of length 2 +2 (j=0,1,..., k—1)
and n—t (¢=0,1,...,2—1), respectively. G(n, k) is clearly a 2-connected
simple cycle-distributed graph with n vertices and n + k edges, where k=
1+ [logy((n — 2)/3)]. Thus

Hn)=n+1+[log,((n—2)/3)]. O
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It is easily verified that, for every integer 3<n <11,
n+[2(V8n —15—3)]=n + 1+ [logy((n — 2)/3)].
Thus, by Theorem 3.1 and Theorem 3.2, we have
f(ny=n+[3(V8n —15-3)] for 3=<n=<I1l.

Let u, = ((1+V5)/2)* — (1 - V5)/2)*)/V/5 be a Fibonacci number. The
following theorem gives a better lower bound than Theorem 3.2.

Theorem 3.3. Let k and n be integers such that k=4 and u, <n <uy,,, then
fL(n)=n+k -4

To prove this theorem, we need some properties of Fibonacci numbers (see
[3D:

(@) wye + Uper = Ugaz;

(b) Xy gy = uon;

() Yiruzi=uzuir— 1.

Proof of Theorem 3.3. We consider two cases.

Case 1: n=u, (k=4).

Let t = k — 4. It is convenient to denote by C, the cycle of length u;,, + 2 in the
proof. Also, let 1{C) denote the length of a cycle C.

Let G be a graph drawn on the plane and let C be a cycle of G, then C divides
the plane into two regions. The bounded (unbounded) region is called the interior
(exterior) of C and is denoted by int C (ext C).

Now form a graph G’ by the following method: We first take an n-cycle C*
drawn on the plane such that int C* is a convex polygonal region. We then draw ¢
diagonals meeting a common vertex v and divide int C* into ¢+ 1 regions such

that the boundaries of these regions are cycles Cy, Cy, C,, ..., C, and the t +1
cycles are arranged in the order Cy, C,, Cy, ..., C,, ..., C3, Cy, (see Fig. 1).
Since

t t
1(Co) + 2 UC)=2)=u,+2+ 2 Uisa =Ur F U3 = U= =n=1(C"),
i=1 i=1

R

Fig. 1.

the graph G’ can be formed.
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We proceed by induction on ¢ Clearly, G° G', G* and G> are 2-connected
simple cycle-distributed graphs. Suppose that G (¢=3) is a 2-connected simple
cycle-distributed graph. Let C* be the set of cycles in G*. Let

M={C|CeC"" and int C,,, ¢int C},
N={C|CeC"" and int C,,, cint C}.

Then C*"*'=M UN. Clearly, there are no two cycles in M having the same
length. With each cycle Ce N — {C,,,}, we associate a unique cycle C' € C* such
that 1(C’) = 1(C) — 1(C,+1) + 2= 1(C) — u,.; different cycles of N — {C,,,} are
associated different cycles of C’. Therefore there are no two cycles in N having
the same length. Using properties of Fibonacci numbers, for each C e M, we
obtain easily 1(C) <u,,3+2. On the other hand, for each Ce N, we have
1(C) = u,,3+ 2. Thus there are no two cycles in C**' having the same length.
Consequently, G*' is a 2-connected simple cycle-distributed graph and fo(n) =
n+t=n+k —4 follows.

Case 2: uy<n<u,,(k=4).

Let t = k — 4. Replacing the path C, N C* of G drawn in Fig. 1 by a new path of
length u,,,+ (n — u,) results in a new graph G*. Clearly G* is a 2-connected
simple cycle-distributed graph on n vertices and n +t¢ edges. And hence
p)y=n+t=n+k—-4. O

Let a, =3 -2+ 2, then Theorem 3.2 is equivalent to the following form: For
any integer n, a, <n <a,,,(k=1), i(n)=n+k.

It is easily seen that, for 5=<n <8, Theorem 3.3 is equivalent to Theorem 3.2.
Also,

llm uk+1/uk = 1.618 and llm ak+1/ak = 2.
k—x

k—

Therefore the lower bound of Theorem 3.3 is better than that of Theorem 3.2.
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