Cycle systems in the complete bipartite graph minus a one-factor

Dan Archdeacon ${ }^{\text {a }}$, Marisa Debowsky ${ }^{\text {a }}$, Jeff Dinitz ${ }^{\text {a }}$, Heather Gavlas ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Illinois State University, Campus Box 4520, Normal, IL 61790-4520, USA

Received 9 December 2002; received in revised form 3 June 2003; accepted 21 November 2003
Dedicated to Curt Lindner on the occasion of his 65th birthday

Abstract

Let $K_{n, n}-I$ denote the complete bipartite graph with n vertices in each part from which a 1 -factor I has been removed. An m-cycle system of $K_{n, n}-I$ is a collection of m-cycles whose edges partition $K_{n, n}-I$. Necessary conditions for the existence of such an m-cycle system are that $m \geqslant 4$ is even, $n \geqslant 3$ is odd, $m \leqslant 2 n$, and $m \mid n(n-1)$. In this paper, we show these necessary conditions are sufficient except possibly in the case that $m \equiv 0(\bmod 4)$ with $n<m<2 n$. (c) 2004 Elsevier B.V. All rights reserved.

Keywords: Decomposition; Cycle; Complete bipartite graph

1. Introduction

Throughout this paper, $K_{n, n}$ will denote the complete bipartite graph with n vertices in each partite set; $K_{n, n}-I$ will denote the complete bipartite graph with a 1 -factor I removed; and C_{m} will denote the m-cycle $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$. An m-cycle system of a graph G is set T of m-cycles whose edges partition the edge set of G. Several obvious necessary conditions for an m-cycle system T of a graph G to exist are immediate: $m \leqslant|V(G)|$, the degrees of the vertices of G must be even, and m must divide the number of edges in G.

There have been many results regarding the existence of m-cycle systems of the complete graph K_{v} (see, for example, [8]). In this case, the necessary conditions imply that $m \leqslant v, v$ is odd, and that m divides $v(v-1) / 2$. In [1,9], it is shown that these necessary conditions are also sufficient. In the case that v is even, m-cycle systems of $K_{v}-I$, where I denotes a 1 -factor, have been studied. Here, the necessary conditions are that $m \leqslant v$ and that m divides $v(v-2) / 2$. These conditions are also known to be sufficient $[1,9]$.

Cycle systems of complete bipartite graphs have also been studied. The necessary conditions for the existence of an m-cycle system of $K_{n, k}$ are that m, n, and k are even, $n, k \geqslant m / 2$, and m must divide $n k$. In [10], these necessary conditions were shown to be sufficient. To study m-cycle systems of $K_{n, k}$ when n and k are odd, it is necessary to remove a 1-factor and hence $n=k$. Then, the necessary conditions are that m is even, $n \geqslant m / 2$ with n odd, and m must divide $n(n-1)$. As a consequence of the main result of [6], it is known that ($2 n$)-cycle systems of $K_{n, n}-I$ exist. Other results involving cycle systems of $K_{n, n}-I$ are given in [4], and other authors have considered cycle systems of complete multipartite graphs [2,3,5-7].

[^0]The main result of this paper is the following.
Theorem 1. Let m and n be positive integers with $m \geqslant 4$ even and $n \geqslant 3$ odd. If $m \equiv 0(\bmod 4)$ and $m \leqslant n$, or if $m \equiv 2(\bmod 4)$ and $m \leqslant 2 n$, then the graph $K_{n, n}-I$ has an m-cycle system if and only if the number of edges in $K_{n, n}-I$ is a multiple of m.

Our methods involve Cayley graphs and difference constructions. In Section 2, we give some basic definitions while the proof of Theorem 1 is given in Section 3 . We shall see that the case $m \equiv 2(\bmod 4)$ is fairly easy to handle using known results, but the case $m \equiv 0(\bmod 4)$ is more involved.

2. Notation and preliminaries

Let us begin with a few basic definitions. We write $G=H_{1} \oplus H_{2}$ if G is the edge-disjoint union of the subgraphs H_{1} and H_{2}. If $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, where $H_{1} \cong H_{2} \cong \cdots \cong H_{k} \cong H$, then the graph G can be decomposed into subgraphs isomorphic to H and we say that G is H-decomposable. We also shall write $H \mid G$.

The proof of Theorem 1 uses Cayley graphs, which we now define. Let S be a subset of a finite group Γ satisfying
(1) $1 \notin S$, where 1 denotes the identity of Γ, and
(2) $S=S^{-1}$; that is, $s \in S$ implies that $s^{-1} \in S$.

A subset S satisfying the above conditions is called a Cayley subset. The Cayley graph $X(\Gamma ; S)$ is defined to be that graph whose vertices are the elements of Γ, with an edge between vertices g and h if and only if $h=g s$ for some $s \in S$. We call S the connection set and say that $X(\Gamma ; S)$ is a Cayley graph on the group Γ.

The graph $K_{n, n}$ is a Cayley graph by selecting the appropriate group; that is, $K_{n, n}=X\left(\mathbb{Z}_{n} \times \mathbb{Z}_{2} ;\{(0,1),(1,1),(2,1), \ldots\right.$, $(n-1,1)\})$. Equivalently, for a positive integer n, let $S \subseteq\{0,1,2, \ldots, n-1\}$ and let $X(n ; S)$ denote the graph whose vertices are $u_{0}, u_{1}, \ldots, u_{n-1}$ and $v_{0}, v_{1}, \ldots, v_{n-1}$ with an edge between u_{i} and v_{j} if and only if $j-i \in S$. Clearly, $K_{n, n}=$ $X(n ;\{0,1, \ldots, n-1\})$, and we will often write $-s$ for $n-s$ when n is understood.

Many of our decompositions arise from the action of a permutation on a fixed subgraph. Let ρ be a permutation of the vertex set V of a graph G. For any subset U of V, ρ acts as a function from U to V by considering the restriction of ρ to U. If H is a subgraph of G with vertex set U, then $\rho(H)$ is a subgraph of G provided that for each edge $x y \in E(H)$, $\rho(x) \rho(y) \in E(G)$. In this case, $\rho(H)$ has vertex set $\rho(U)$ and edge set $\{\rho(x) \rho(y): x y \in E(H)\}$. Note that $\rho(H)$ may not be defined for all subgraphs H of G since ρ is not necessarily an automorphism. In this paper, however, ρ will be an automorphism, so $\rho(H)$ will be defined for all subgraphs H.

For a set D of integers and an integer x, we define the sets $\pm D=\{ \pm d \mid d \in D\}, D+x=\{d+x \mid d \in D\}$, and $x-D=\{x-d \mid d \in D\}$.

3. The proof of the main theorem

In this section, we shall prove Theorem 1. It turns out that when $m \equiv 2(\bmod 4)$, an m-cycle system of $K_{n, n}-I$ can be found from an ($m / 2$)-cycle system of K_{n} as we now show.

Lemma 2. For positive integers m and n with $m \equiv 2(\bmod 4)$, n odd, and $6 \leqslant m \leqslant 2 n$, the graph $K_{n, n}$ has a decomposition into m-cycles and $a 1$-factor if and only if $m \mid n(n-1)$.

Proof. Let m and n be integers with $m \equiv 2(\bmod 4), n$ odd, and $6 \leqslant m \leqslant 2 n$. Let the partite sets of $K_{n, n}$ be denoted by $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ and $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. Since $m \equiv 2(\bmod 4)$, we have $m=2 k$ for some odd integer k. Then $k \leqslant n$ and $k \mid n(n-1) / 2$. Hence, by $[1,9], K_{n}$ has a decomposition into k-cycles. Let the vertices of K_{n} be labelled with $w_{0}, w_{1}, \ldots, w_{n-1}$ and let T be a decomposition of K_{n} into k-cycles. Suppose that $C=\left(w_{i_{0}}, w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, \ldots, w_{i_{k-1}}\right)$ is a k-cycle in T. Then the cycle

$$
C^{\prime}=\left(u_{i_{0}}, v_{i_{1}}, u_{i_{2}}, v_{i_{3}} \ldots, u_{i_{k-1}}, v_{i_{0}}, u_{i_{1}}, v_{i_{2}}, u_{i_{3}}, \ldots, v_{i_{k-1}}\right)
$$

is of length $2 k$ in $K_{n, n}$. Furthermore, for each edge $w_{i} w_{j}$ of C, the edges $u_{i} v_{j}$ and $v_{i} u_{j}$ appear on C^{\prime}. Thus, the collection

$$
T^{\prime}=\left\{\left(u_{i_{0}}, v_{i_{1}}, u_{i_{2}}, v_{i_{3}} \ldots, u_{i_{k-1}}, v_{i_{0}}, u_{i_{1}}, v_{i_{2}}, u_{i_{3}}, \ldots, v_{i_{k-1}}\right) \mid\left(w_{i_{0}}, w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, \ldots, w_{i_{k-1}}\right) \in T\right\}
$$

together with $\left\{u_{i} v_{i} \mid 0 \leqslant i \leqslant n-1\right\}$ is a decomposition of $K_{n, n}$ into m-cycles and a 1-factor.

The case $m \equiv 0(\bmod 4)$ cannot be obtained by using a similar argument as in Lemma 2 . Suppose that $m \equiv 0(\bmod 4)$, say $m=2 k$ with k even and let $n \geqslant 3$ be odd with $m \leqslant 2 n$ and $m \mid n(n-1)$. As before, $k \mid n(n-1) / 2$ and $k \leqslant n$ so that a k-cycle system T of K_{n} exists. However, for each cycle $C=\left(w_{i_{0}}, w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, \ldots, w_{i_{k-1}}\right)$ in T, we obtain the two k-cycles

$$
C^{\prime}=\left(u_{i_{0}}, v_{i_{1}}, u_{i_{2}}, v_{i_{3}} \ldots, v_{i_{k-1}}\right)
$$

and

$$
C^{\prime \prime}=\left(v_{i_{0}}, u_{i_{1}}, v_{i_{2}}, u_{i_{3}}, \ldots, u_{i_{k-1}}\right)
$$

in $K_{n, n}$ rather than one $2 k$-cycle. Thus, we need more elaborate constructions for the case $m \equiv 0(\bmod 4)$.
To help guide the reader, we will now give a rough outline of these constructions. Suppose that $m<n$ and $n(n-1)$ is a multiple of m. Let $n=q m+r$. The first construction, given in Lemma 3, generates n cycles, each of length m. Collectively, these cycles contain all edges $u_{i} v_{j}$ where $j-i \in \pm D$ for a given set D of $m / 2$ nonzero differences. This construction will be applied q times, leaving r differences. If $r=1$, then this will give the required 1-factor, while if $r>2$, we proceed as follows. In Lemma 6, we show that $r-1=s(m / g)$, where $g=\operatorname{gcd}(m, n)$. Lemma 4 generates $2 n / g$ cycles where these cycles contain all edges $u_{i} v_{j}$ where $j-i \in \pm(D \cup(D+n / g))$ for a given set D of $m /(2 g)$ differences. This construction will be applied $\lfloor s / 2\rfloor$ times, leaving either 1 difference (the missing 1 -factor) or $m / g+1$ differences. In the latter case, we apply the construction of Lemma 5. The details of how the difference sets are chosen are given in Lemma 6.

Lemma 3. Let m and n be positive integers with $m \equiv 0(\bmod 4)$, n odd, and $4 \leqslant m<n$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{m / 2}\right\}$, where $d_{1}, d_{2}, \ldots, d_{m / 2}$ are positive integers satisfying $d_{1}<d_{2}<\cdots<d_{m / 2} \leqslant(n-1) / 2$, then $C_{m} \mid X(n ; \pm D)$.

Proof. Label the vertices of $X(n ; \pm D)$ with $u_{0}, u_{1}, \ldots, u_{n-1}$ and $v_{0}, v_{1}, \ldots, v_{n-1}$. We have $u_{i} v_{j} \in E(X(n ; \pm D))$ if and only if $j-i \in \pm D$. Let ρ denote the permutation

$$
\left(u_{0} u_{1} \cdots u_{n-1}\right)\left(v_{0} v_{1} \cdots v_{n-1}\right)
$$

Observe that $\rho \in \operatorname{Aut}(X(n ; \pm D))$, so for any subgraph L of $X(n ; \pm D), \rho(L)$ is also a subgraph. Similarly, let τ denote the permutation $\left(u_{0} v_{0}\right)\left(u_{1} v_{1}\right) \cdots\left(u_{n-1} v_{n-1}\right)$. Let $e_{k}=\sum_{i=1}^{k}(-1)^{i+1} d_{i}$, and let P be the trail of length $(m-2) / 2$ given by

$$
P: u_{e_{1}}, v_{e_{2}}, u_{e_{3}}, v_{e_{4}}, \ldots, u_{e_{(m-2) / 2}}, v_{e_{m / 2}}
$$

Now, the lengths of the edges of P, in the order that they are encountered, are $-d_{2},-d_{3}, \ldots,-d_{m / 2}$. Since $e_{1}, e_{3}, \ldots, e_{(m-2) / 2}$ is a strictly increasing sequence while $n+e_{2}, n+e_{4}, \ldots, n+e_{m / 2}$ is a strictly decreasing sequence, it follows that the vertices of P are distinct so that P is a path. Let $P^{\prime}=\rho^{-d_{1}}(\tau(P))$ so that P^{\prime} begins at v_{0} and ends at $u_{e_{m / 2}-d_{1}}$ and the edges of P^{\prime} have lengths $d_{2}, d_{3}, \ldots, d_{m / 2}$. Since $d_{1}, d_{m / 2} \leqslant(n-1) / 2$, we see that $u_{e_{(m-2) / 2}} \neq u_{e_{m / 2}-d_{1}}$ and $v_{e_{(m-2) / 2}} \neq v_{e_{m / 2}-d_{1}}$. Therefore, the vertices of P^{\prime} are distinct from the vertices of P.

Next, we form a cycle C of length m by taking

$$
C=\left\{u_{e_{1}} v_{0}, u_{e_{m / 2}-d_{1}} v_{e_{m / 2}}\right\} \cup P \cup P^{\prime}
$$

Observe that these two additional edges have difference $\pm d_{1}$. From the above remarks, it follows that

$$
C, \rho(C), \rho^{2}(C), \ldots, \rho^{n-1}(C)
$$

is a partition of the edge set of $X(n ; \pm D)$ into m-cycles.
Suppose n is odd, $m \equiv 0(\bmod 4)$ with $4 \leqslant m<n$ and $D=\left\{d_{1}, d_{2}, \ldots, d_{m / 2}\right\}$ is a set of positive integers with $n-1 \geqslant d_{1}>d_{2}>\cdots>d_{m / 2}>(n-1) / 2$. Then, applying Lemma 3 to $-D$, we find a decomposition of $X(n ; \pm D)$ into m-cycles. Another consequence of Lemma 3 is the following. Suppose that A is a set of $m q / 2$ distinct positive integers for some positive integer q, such that all elements of A are either at most $(n-1) / 2$ or at least $(n+1) / 2$. Then, applying Lemma $3 q$ times, we have that $X(n ; \pm A)$ decomposes into m-cycles.

In Lemma 3, we found a cycle with m distinct differences, and used ρ to create n cycles that collectively covered all edges with those differences. We now consider cycles that have repeated differences.

Lemma 4. Let m and n be positive integers with $m \equiv 0(\bmod 4), n$ odd, $4 \leqslant m<n$, and let $g=\operatorname{gcd}(m, n)>1$. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{m /(2 g)}\right\}$ be a set of $m /(2 g)$ positive integers, and let $\bar{d}_{i} \equiv d_{i}(\bmod (n / g))$. Suppose either
(1) $0<d_{1}<d_{2}<\cdots<d_{m /(2 g)} \leqslant(n-1) / 2-n / g$ and $0<\bar{d}_{1}<\bar{d}_{2}<\cdots<\bar{d}_{m /(2 g)} \leqslant(n-g) /(2 g)$, or
(2) $(n-1) / 2-n / g \geqslant d_{1}>d_{2}>\cdots>d_{m /(2 g)}>0$ and $n / g-1 \geqslant \bar{d}_{1}>\bar{d}_{2}>\cdots>\bar{d}_{m /(2 g)}>(n-g) /(2 g)$.

Then $C_{m} \mid X(n ; \pm(D \cup(D+n / g)))$.

Proof. Label the vertices of $X(n ; \pm(D \cup(D+n / g)))$ as in Lemma 3 and let ρ, τ be as defined in Lemma 3. Suppose first $0<d_{1}<d_{2}<\cdots<d_{m /(2 g)} \leqslant(n-1) / 2-n / g$ and $0<\bar{d}_{1}<\bar{d}_{2}<\cdots<\bar{d}_{m /(2 g)} \leqslant(n-g) /(2 g)$. Let $e_{k}=\sum_{i=1}^{k}(-1)^{i+1} d_{i}$. Let P_{1} be the trail of length $m /(2 g)-1$ given by

$$
P_{1}: u_{e_{1}}, v_{e_{2}}, u_{e_{3}}, v_{e_{4}}, \ldots, u_{e_{m /(2 g)-1}}, v_{e_{m /(2 g)}}
$$

Letting $\bar{e}_{k}=\sum_{i=1}^{k}(-1)^{i+1} \bar{d}_{i}$, we have that $\bar{e}_{1}, \bar{e}_{3}, \ldots, \bar{e}_{m /(2 g)-1}$ is a strictly increasing sequence while $n / g+\bar{e}_{2}, n / g+$ $\bar{e}_{4}, \ldots, n / g+\bar{e}_{m /(2 g)}$ is a strictly decreasing sequence. Hence, the subscripts of vertices in P_{1} lie in different nonzero congruence classes modulo n / g so that P_{1} is a path. Let $P_{1}^{\prime}=\rho^{-d_{1}}\left(\tau\left(P_{1}\right)\right)$ and note that the vertices of P_{1}^{\prime} are distinct from P_{1} as in the proof of Lemma 3.

Form a path W_{1} of length m / g by taking

$$
W_{1}=\left\{u_{e_{1}} v_{-n / g}, u_{e_{m /(2 g)}-d_{1}} v_{e_{m /(2 g)}}\right\} \cup P_{1} \cup P_{1}^{\prime} .
$$

Observe that these two additional edges have differences d_{1} and $-\left(d_{1}+n / g\right)$, so W_{1} is a path from v_{0} to $v_{-n / g}$. Moreover, the first and last vertices are the only ones whose subscripts are congruent modulo n / g. It follows that

$$
C_{1}=W_{1} \cup \rho^{n / g}\left(W_{1}\right) \cup \rho^{2 n / g}\left(W_{1}\right) \cup \cdots \cup \rho^{(g-1) n / g}\left(W_{1}\right)
$$

is a cycle of length m. Each difference occurs exactly g times, and the subscripts of the u_{i} s incident with edges of difference k are all congruent modulo n / g. From the above remarks, it follows that

$$
C_{1}, \rho\left(C_{1}\right), \rho^{2}\left(C_{1}\right), \ldots, \rho^{n / g-1}\left(C_{1}\right)
$$

is a partition of the edge set of $X\left(n ; \pm D \cup\left\{-\left(d_{1}+n / g\right)\right\} \backslash\left\{-d_{1}\right\}\right)$ into m-cycles.
We form a second set of cycles in a similar manner. We define P_{2} analogously to P_{1}, except that, d_{i} is replaced by $d_{i}+n / g$ and $-d_{i}$ by $-\left(d_{i}+n / g\right)$ in e_{k}. Let $P_{2}^{\prime}=\rho^{-\left(d_{1}+n / g\right)}\left(\tau\left(P_{2}\right)\right)$. Form W_{2} by adding the edges $u_{e_{1}+n / g} v_{n / g}$ and $u_{e_{m / 2 g)}-\left(d_{1}+n / g\right)} v_{e_{m / 2 g)}}$ with differences $-d_{1}$ and $d_{1}+n / g$.

The cycles

$$
C_{2}, \rho\left(C_{2}\right), \rho^{2}\left(C_{2}\right), \ldots, \rho^{n / g-1}\left(C_{2}\right)
$$

are a partition of the edge set of $X\left(n ; \pm(D+n / g) \cup\left\{-d_{1}\right\} \backslash\left\{-\left(d_{1}+n / g\right)\right\}\right)$ into m-cycles. Taken with the first set of cycles, we have our desired partition of $X(n ; \pm(D \cup(D+n / g)))$ into m-cycles.

Now suppose $(n-1) / 2-n / g \geqslant d_{1}>d_{2}>\cdots>d_{m /(2 g)}>0$ and $n / g-1 \geqslant \bar{d}_{1}>\bar{d}_{2}>\cdots \geq \bar{d}_{m /(2 g)}>(n-g) /(2 g)$. In this case, let $e_{k}=\sum_{i=1}^{k}(-1)^{i} d_{i}$. Let P_{1} be as defined above and note that if $\bar{e}_{k}=\sum_{i=1}^{k}(-1)^{i} \bar{d}_{i}$, again $\bar{e}_{1}, \bar{e}_{3}, \ldots, \bar{e}_{m /(2 g)-1}$ is a strictly increasing sequence while $n / g+\bar{e}_{2}, n / g+\bar{e}_{4}, \ldots, n / g+\bar{e}_{m / 2 g)}$ is a strictly decreasing sequence. Hence, the subscripts of vertices in P_{1} lie in different nonzero congruence classes modulo n / g so that P_{1} is a path. Let $P_{1}^{\prime}=\rho^{d_{1}}\left(\tau\left(P_{1}\right)\right)$ and note that the vertices of P_{1}^{\prime} are distinct from P_{1} as in the proof of Lemma 3.

Form a path W_{1} of length m / g by taking

$$
W_{1}=\left\{u_{e_{1}} v_{n / g}, u_{e_{m / 2 g}+}+d_{1} v_{e_{m / 2 g)}}\right\} \cup P_{1} \cup P_{1}^{\prime}
$$

where these two additional edges have differences $-d_{1}$ and $d_{1}+n / g$, so W_{1} is a path from v_{0} to $v_{n / g}$. Again, the first and last vertices are the only ones whose subscripts are congruent modulo n / g so that

$$
C_{1}=W_{1} \cup \rho^{n / g}\left(W_{1}\right) \cup \rho^{2 n / g}\left(W_{1}\right) \cup \cdots \cup \rho^{(g-1) n / g}\left(W_{1}\right)
$$

is a cycle of length m and

$$
C_{1}, \rho\left(C_{1}\right), \rho^{2}\left(C_{1}\right), \ldots, \rho^{n / g-1}\left(C_{1}\right)
$$

is a partition of the edge set of $X\left(n ; \pm D \cup\left\{d_{1}+n / g\right\} \backslash\left\{d_{1}\right\}\right)$ into m-cycles.
Form a second set of cycles as before, defining P_{2} analogously to P_{1} by replacing d_{i} with $d_{i}+n / g$ and $-d_{i}$ with $-\left(d_{i}+n / g\right)$ in e_{k}. Let $P_{2}^{\prime}=\rho^{d_{1}+n / g}\left(\tau\left(P_{2}\right)\right)$. Form W_{2} by adding the edges $u_{e_{1}-n / g} v_{-n / g}$ and $u_{e_{m /(2 g)}+d_{1}+n / g} v_{e_{m / 2 g)}}$ with differences d_{1} and $-\left(d_{1}+n / g\right)$.

The cycles

$$
C_{2}, \rho\left(C_{2}\right), \rho^{2}\left(C_{2}\right), \ldots, \rho^{n / g-1}\left(C_{2}\right)
$$

are a partition of the edge set of $X\left(n ; \pm(D+n / g) \cup\left\{d_{1}\right\} \backslash\left\{d_{1}+n / g\right\}\right)$ into m-cycles. As in the previous case, we have our desired partition of $X(n ; \pm(D \cup(D+n / g)))$ into m-cycles.

The previous lemma used $2 \mathrm{~m} / \mathrm{g}$ differences. The following lemma will use m / g differences and will give a 1 -factor.

Lemma 5. Let m and n be positive integers with $m \equiv 0(\bmod 4), n$ odd, $4 \leqslant m<n$, and let $g=\operatorname{gcd}(m, n)>1$. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{m /(2 g)-1}\right\}$ be a set of positive integers and let $\bar{d}_{i} \equiv d_{i}(\bmod (n / g))$. Suppose either
(1) $0<d_{1}<d_{2}<\cdots<d_{m /(2 g)-1} \leqslant(n-1) / 2$ and $0<\bar{d}_{1}<\bar{d}_{2}<\cdots<\bar{d}_{m /(2 g)-1} \leqslant(n-g) /(2 g)$; or
(2) $(n-1) / 2 \geqslant d_{1}>d_{2}>\cdots>d_{m /(2 g)-1}>0$ and $n / g-1 \geqslant \bar{d}_{1}>\bar{d}_{2}>\cdots>\bar{d}_{m /(2 g)-1}>(n-g) /(2 g)$.

Then $X(n ; \pm D \cup\{0, \pm n / g\})$ decomposes into m-cycles and a 1-factor.
Proof. The proof is similar to that of Lemma 4 and uses the same notation. Suppose first that $0<d_{1}<d_{2}<\cdots$ $<d_{m /(2 g)-1} \leqslant(n-1) / 2$ and $0<\bar{d}_{1}<\bar{d}_{2}<\cdots<\bar{d}_{m /(2 g)-1} \leqslant(n-g) /(2 g)$. Let $e_{k}=\sum_{i=1}^{k}(-1)^{i} d_{i}$. Let P be the trail of length $m /(2 g)-1$ given by

$$
P: u_{0}, v_{e_{1}}, u_{e_{2}}, v_{e_{3}}, \ldots, u_{e_{m /(2 g)-2}}, v_{e_{m /(2 g)-1}} .
$$

Clearly, P is a path and the lengths of the edges of P, in the order they are encountered and reduced modulo n / g, are $-\bar{d}_{1},-\bar{d}_{2}, \ldots,-\bar{d}_{m /(2 g)-1}$. Hence, as in Lemma 4, the subscripts of vertices in P lie in different nonzero congruence classes modulo n / g.

Form a path W of length m / g by taking

$$
W=\left\{u_{0} v_{n / g}, u_{e_{m / 2 g)-1}} v_{e_{m / 2 g)-1}}\right\} \cup P \cup \tau(P)
$$

Observe that these two additional edges have differences n / g and 0 , respectively, so W is a path from v_{0} to $v_{n / g}$. Moreover, the first and last vertices are the only ones whose subscripts are congruent modulo n / g. As before,

$$
C=W \cup \rho^{n / g}(W) \cup \rho^{2 n / g}(W) \cup \cdots \cup \rho^{(g-1) n / g}(W)
$$

is a cycle of length m, and

$$
C, \rho(C), \rho^{2}(C), \ldots, \rho^{n / g-1}(C)
$$

is a partition of the edge set of $X(n ; \pm D \cup\{0, n / g\})$ into m-cycles. The edges with difference $-n / g$ form the 1 -factor, completing the construction.

Now suppose $(n-1) / 2 \geqslant d_{1}>d_{2}>\cdots>d_{m /(2 g)-1}>0$ and $n / g-1 \geqslant \bar{d}_{1}>\bar{d}_{2}>\cdots>\bar{d}_{m /(2 g)-1}>(n-g) /(2 g)$. Let $e_{k}=\sum_{i=1}^{k}(-1)^{i+1} d_{i}$. Let P, W, and C be defined as above so that

$$
C, \rho(C), \rho^{2}(C), \ldots, \rho^{n / g-1}(C)
$$

is a partition of the edge set of $X(n ; \pm D \cup\{0, n / g\})$ into m-cycles. As before, let the edges with difference $-n / g$ form the 1 -factor.

We now have all of the constructions needed for the proof of Theorem 1 in the case $m \equiv 0(\bmod 4)$ and $m<n$.

Lemma 6. For positive integers m and n with $m \equiv 0(\bmod 4)$ and n odd with $4 \leqslant m<n$, the graph $K_{n, n}$ can be decomposed into m-cycles and a 1-factor if and only if $m \mid n(n-1)$.

Proof. Let m and n be positive integers with $m \equiv 0(\bmod 4), n$ odd, $4 \leqslant m<n$, and $m \mid n(n-1)$, say $n(n-1)=m t$. If t is even, then $m \mid n(n-1) / 2$. Thus, since $m<n$, an m-cycle system T of K_{n} exists [9]. We have already noted that T will give rise to a collection T^{\prime} of m-cycles in $K_{n, n}$ so that what remains when T^{\prime} is removed from $K_{n, n}$ is a 1-factor. Therefore, it suffices to consider the case when t is odd.

Let $n=q m+r$, where $q \geqslant 1$ and $0 \leqslant r<m$ with r odd. Let $S=\{1,2, \ldots,(n-1) / 2\}$ so that $K_{n, n}=X(n ; \pm S \cup\{0\})$, and let $g=\operatorname{gcd}(m, n)$. Suppose first that $g=1$, and observe that this implies that $m \mid(n-1)$ so that $n-1=q m$. Thus $|S|=m q / 2$, and by Lemma 3, the graph $X(n ; \pm S)$ decomposes into m-cycles. Since the edges of difference 0 form a 1 -factor, this completes the construction when $g=1$.

We may now assume that $g>1$ and let $r-1=s(\mathrm{~m} / \mathrm{g})$ for some positive integer s, say $s=2 k+\varepsilon$ for some nonnegative integer k and with $\varepsilon=0$ or $\varepsilon=1$. If $s=1$, then let $D=\{1,2, \ldots, m /(2 g)-1\}$. Now $X(n ; \pm D \cup\{0, \pm n / g\})$ decomposes into m-cycles and 1-factor by Lemma 5 . Next, the set $A=S \backslash(D \cup\{n / g\})$ consists of $m q / 2$ positive integers and thus $X(n ; \pm A)$ decomposes into m-cycles by Lemma 3. Therefore, we have found the required decomposition of $K_{n, n}$ in this case.

Now suppose that $s>1$. Let

$$
D_{1}=\left\{1,2, \ldots, \frac{m}{2 g}\right\} \text { and } D_{2}=\frac{n}{g}-D_{1}
$$

For a positive integer i, let

$$
D_{2 i+1}=D_{1}+2 i\left(\frac{n}{g}\right) \text { and } D_{2 i+2}=D_{2}+2 i\left(\frac{n}{g}\right)
$$

Suppose first that k is even. Consider the sets $D_{1}, D_{2}, \ldots, D_{k}$ (so $i=1, \ldots, k / 2-1$). Note that

- for each $j=1,2, \ldots, k$, the set $D_{j}=\left\{d_{j, 1}, d_{j, 2}, \ldots, d_{j, m /(2 g)}\right\}$ consists of $m /(2 g)$ positive integers, and if $\bar{d}_{j, i} \equiv d_{j, i}(\bmod (n / g))$, then either
(1) $0<d_{j, 1}<d_{j, 2}<\cdots<d_{j, m /(2 g)}$ and $0<\bar{d}_{j, 1}<\bar{d}_{j, 2}<\cdots<\bar{d}_{j, m /(2 g)} \leqslant(n-g) /(2 g)$, or
(2) $d_{j, 1}>d_{j, 2}>\cdots>d_{j, m /(2 g)}>0$ and $n / g-1 \geqslant \bar{d}_{j, 1}>\bar{d}_{j, 2}>\cdots>\bar{d}_{j, m /(2 g)}>(n-g) /(2 g)$;
- the sets $D_{1}, D_{2}, \ldots, D_{k}$ are pairwise disjoint;
- if $d \in D_{1} \cup D_{2} \cup \cdots \cup D_{k}$, then $d+n / g \notin D_{1} \cup D_{2} \cup \cdots \cup D_{k}$;
- $\left(D_{1} \cup\left(D_{1}+n / g\right)\right) \cup\left(D_{2} \cup\left(D_{2}+n / g\right)\right) \cup \cdots \cup\left(D_{k} \cup\left(D_{k}+n / g\right)\right) \subset\{1,2, \ldots, n k / g\}$.

Let

$$
D=\left\{1+\frac{n k}{g}, 2+\frac{n k}{g}, \ldots, \frac{m}{2 g}-1+\frac{n k}{g}\right\}
$$

and let

$$
S^{\prime}=\left(D_{1} \cup\left(D_{1}+\frac{n}{g}\right)\right) \cup\left(D_{2} \cup\left(D_{2}+\frac{n}{g}\right)\right) \cup \cdots \cup\left(D_{k} \cup\left(D_{k}+\frac{n}{g}\right)\right)
$$

Now $D \cap S^{\prime}=\emptyset$ and the largest difference in $D \cup S^{\prime}$ is $m /(2 g)-1+n k / g$. We now show $m /(2 g)-1+n k / g \leqslant(n-1) / 2$ so that these difference sets satisfy the hypotheses of Lemmas 4 and 5. Since $r<m$, we have $r-1=s(m / g)<g(m / g)-1$, so that $s<g-g / m$. Since s is an integer, it follows that $s \leqslant g-1$. Hence

$$
\begin{aligned}
\frac{m}{2 g}-1+\frac{n k}{g} & \leqslant \frac{m}{2 g}-1+\frac{n}{g}\left(\frac{s}{2}\right) \\
& \leqslant \frac{m}{2 g}-1+\frac{n}{g}\left(\frac{g-1}{2}\right) \\
& =\frac{n}{2}-\left(\frac{n}{2 g}-\frac{m}{2 g}\right)-1 \\
& \leqslant \frac{n-1}{2}
\end{aligned}
$$

For each j with $1 \leqslant j \leqslant k$, the graph $X\left(n ; \pm\left(D_{j} \cup\left(D_{j}+n / g\right)\right)\right.$) has a decomposition into m-cycles by Lemma 4. If $\varepsilon=1$, then $X(n ; \pm D \cup\{0, \pm n / g\})$ decomposes into m-cycles and a 1 -factor by Lemma 5 . Let $A=S \backslash S^{\prime}$ if $\varepsilon=0$ or let $A=S \backslash\left(D \cup S^{\prime}\right)$ if $\varepsilon=1$. Then, A consists of $m q / 2$ differences and Lemma 3 gives a decomposition of $X(n ; \pm A)$ into m-cycles, completing the construction in the case that k is even.

Now suppose that k is odd. Consider the sets $D_{1}, D_{2}, \ldots, D_{k+1}$ (so $i=1, \ldots,(k-1) / 2$). As before, the sets $D_{1}, D_{2}, \ldots, D_{k+1}$ satisfy the same properties as in the case when k is even except that

$$
\left(D_{1} \cup\left(D_{1}+\frac{n}{g}\right)\right) \cup \cdots \cup\left(D_{k} \cup\left(D_{k}+\frac{n}{g}\right)\right) \cup D_{k+1} \subset\left\{1,2, \ldots, \frac{m}{2 g}+\frac{n k}{g}\right\}
$$

Let $D=D_{k+1} \backslash\{n k / g-m /(2 g)\}$. Let S^{\prime} be defined as above and note that the largest positive integer in $D \cup S^{\prime}$ is $m /(2 g)+n k / g$, and we have seen that $m / 2 g+n k / g<n / 2-(n-m) /(2 g)$. Since $m /(2 g)+n k / g$ is an integer, it follows that $m /(2 g)+n k / g \leqslant(n-1) / 2$. Thus, as was done in the case when k is even, the graph $X\left(n ; \pm\left(D_{j} \cup\left(D_{j}+n / g\right)\right)\right)$ has a decomposition into m-cycles by Lemma 4 for each $j=1,2, \ldots, k$. If $\varepsilon=1$, then $X(n ; \pm D \cup\{0, \pm n / g\})$ decomposes into m-cycles and a 1 -factor by Lemma 5. Thus, letting A be defined as in the case when k is even, we have that $X(n ; \pm A)$ decomposes into m-cycles by Lemma 3, completing the construction in the case that k is odd.

Theorem 1 now follows from Lemmas 2 and 6, and we have shown that the necessary conditions for an m-cycle system of $K_{n, n}-I$ are sufficient for many values of m and n. The remaining open case is to show that an m-cycle system exists when $m \equiv 0(\bmod 4)$ and $n<m<2 n$.

Acknowledgements

Portions of the work of the second author were supported by NASA under Grant number NGT5-40110. The authors would also like to thank the referees for pointing out several technical errors in the earlier version of this paper.

References

[1] B. Alspach, H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001) 77-99.
[2] N.J. Cavenagh, Decompositions of complete tripartite graphs into k-cycles, Australas. J. Combin. 18 (1998) $193-200$.
[3] N.J. Cavenagh, E.J. Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs. Combin. 16 (2000) 49-65.
[4] M. Debowsky, Results on planar hypergraphs and on cycle decompositions, Master's Thesis, University of Vermont, 2002.
[5] A.J.W. Hilton, C.A. Rodger, Hamiltonian decompositions of complete regular s-partite graphs, Discrete Math. 58 (1986) 63-78.
[6] R. Laskar, B. Auerback, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976) 265-268.
[7] J.L. Ramírez-Alfonsín, Cycle decompositions of complete and complete multipartite graphs, Australas. J. Combin. 11 (1995) 233-238.
[8] C.A. Rodger, Cycle systems, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton FL, 1996.
[9] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Designs 10 (2002) $27-78$.
[10] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 29 (1981) 75-81.

[^0]: E-mail addresses: dan.archdeacon@uvm.edu (D. Archdeacon), marisa.debowsky@uvm.edu (M. Debowsky), jeff.dinitz@uvm.edu (J. Dinitz), hgavlas@ilstu.edu (H. Gavlas).

