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Abstract

Let Kn;n− I denote the complete bipartite graph with n vertices in each part from which a 1-factor I has been removed.
An m-cycle system of Kn;n − I is a collection of m-cycles whose edges partition Kn;n − I . Necessary conditions for the
existence of such an m-cycle system are that m¿ 4 is even, n¿ 3 is odd, m6 2n, and m | n(n − 1). In this paper, we
show these necessary conditions are su7cient except possibly in the case that m ≡ 0 (mod 4) with n¡m¡ 2n.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, Kn;n will denote the complete bipartite graph with n vertices in each partite set; Kn;n − I will
denote the complete bipartite graph with a 1-factor I removed; and Cm will denote the m-cycle (v1; v2; : : : ; vm). An m-cycle
system of a graph G is set T of m-cycles whose edges partition the edge set of G. Several obvious necessary conditions
for an m-cycle system T of a graph G to exist are immediate: m6 |V (G)|, the degrees of the vertices of G must be
even, and m must divide the number of edges in G.
There have been many results regarding the existence of m-cycle systems of the complete graph Kv (see, for example,

[8]). In this case, the necessary conditions imply that m6 v, v is odd, and that m divides v(v− 1)=2. In [1,9], it is shown
that these necessary conditions are also su7cient. In the case that v is even, m-cycle systems of Kv − I , where I denotes a
1-factor, have been studied. Here, the necessary conditions are that m6 v and that m divides v(v−2)=2. These conditions
are also known to be su7cient [1,9].

Cycle systems of complete bipartite graphs have also been studied. The necessary conditions for the existence of an
m-cycle system of Kn;k are that m; n; and k are even, n; k¿m=2, and m must divide nk. In [10], these necessary conditions
were shown to be su7cient. To study m-cycle systems of Kn;k when n and k are odd, it is necessary to remove a 1-factor
and hence n=k. Then, the necessary conditions are that m is even, n¿m=2 with n odd, and m must divide n(n−1). As a
consequence of the main result of [6], it is known that (2n)-cycle systems of Kn;n − I exist. Other results involving cycle
systems of Kn;n − I are given in [4], and other authors have considered cycle systems of complete multipartite graphs
[2,3,5–7].
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The main result of this paper is the following.

Theorem 1. Let m and n be positive integers with m¿ 4 even and n¿ 3 odd. If m ≡ 0 (mod 4) and m6 n, or if
m ≡ 2 (mod 4) and m6 2n, then the graph Kn;n− I has an m-cycle system if and only if the number of edges in Kn;n− I
is a multiple of m.

Our methods involve Cayley graphs and di)erence constructions. In Section 2, we give some basic deGnitions while
the proof of Theorem 1 is given in Section 3. We shall see that the case m ≡ 2 (mod 4) is fairly easy to handle using
known results, but the case m ≡ 0 (mod 4) is more involved.

2. Notation and preliminaries

Let us begin with a few basic deGnitions. We write G = H1 ⊕ H2 if G is the edge-disjoint union of the subgraphs H1

and H2. If G=H1 ⊕H2 ⊕· · ·⊕Hk , where H1 ∼= H2 ∼= · · · ∼= Hk ∼= H , then the graph G can be decomposed into subgraphs
isomorphic to H and we say that G is H -decomposable. We also shall write H |G.
The proof of Theorem 1 uses Cayley graphs, which we now deGne. Let S be a subset of a Gnite group � satisfying

(1) 1 �∈ S, where 1 denotes the identity of �, and
(2) S = S−1; that is, s∈ S implies that s−1 ∈ S.
A subset S satisfying the above conditions is called a Cayley subset. The Cayley graph X (�; S) is deGned to be that
graph whose vertices are the elements of �, with an edge between vertices g and h if and only if h= gs for some s∈ S.
We call S the connection set and say that X (�; S) is a Cayley graph on the group �.
The graph Kn;n is a Cayley graph by selecting the appropriate group; that is, Kn;n = X (Zn ×Z2; {(0; 1); (1; 1); (2; 1); : : : ;

(n − 1; 1)}). Equivalently, for a positive integer n, let S ⊆ {0; 1; 2; : : : ; n − 1} and let X (n; S) denote the graph whose
vertices are u0; u1; : : : ; un−1 and v0; v1; : : : ; vn−1 with an edge between ui and vj if and only if j − i∈ S. Clearly, Kn;n =
X (n; {0; 1; : : : ; n− 1}), and we will often write −s for n− s when n is understood.
Many of our decompositions arise from the action of a permutation on a Gxed subgraph. Let � be a permutation of the

vertex set V of a graph G. For any subset U of V , � acts as a function from U to V by considering the restriction of �
to U . If H is a subgraph of G with vertex set U , then �(H) is a subgraph of G provided that for each edge xy∈E(H),
�(x)�(y)∈E(G). In this case, �(H) has vertex set �(U ) and edge set {�(x)�(y) : xy∈E(H)}. Note that �(H) may not
be deGned for all subgraphs H of G since � is not necessarily an automorphism. In this paper, however, � will be an
automorphism, so �(H) will be deGned for all subgraphs H .
For a set D of integers and an integer x, we deGne the sets ±D = {±d |d∈D}, D + x = {d + x |d∈D}, and

x − D = {x − d |d∈D}.

3. The proof of the main theorem

In this section, we shall prove Theorem 1. It turns out that when m ≡ 2 (mod 4), an m-cycle system of Kn;n − I can be
found from an (m=2)-cycle system of Kn as we now show.

Lemma 2. For positive integers m and n with m ≡ 2 (mod 4), n odd, and 66m6 2n, the graph Kn;n has a decomposition
into m-cycles and a 1-factor if and only if m | n(n− 1).

Proof. Let m and n be integers with m ≡ 2 (mod 4), n odd, and 66m6 2n. Let the partite sets of Kn;n be denoted by
{u0; u1; : : : ; un−1} and {v0; v1; : : : ; vn−1}. Since m ≡ 2 (mod 4), we have m = 2k for some odd integer k. Then k6 n and
k|n(n−1)=2. Hence, by [1,9], Kn has a decomposition into k-cycles. Let the vertices of Kn be labelled with w0; w1; : : : ; wn−1

and let T be a decomposition of Kn into k-cycles. Suppose that C = (wi0 ; wi1 ; wi2 ; wi3 ; : : : ; wik−1 ) is a k-cycle in T . Then
the cycle

C′ = (ui0 ; vi1 ; ui2 ; vi3 : : : ; uik−1 ; vi0 ; ui1 ; vi2 ; ui3 ; : : : ; vik−1 )

is of length 2k in Kn;n. Furthermore, for each edge wiwj of C, the edges uivj and viuj appear on C′. Thus, the collection

T ′ = {(ui0 ; vi1 ; ui2 ; vi3 : : : ; uik−1 ; vi0 ; ui1 ; vi2 ; ui3 ; : : : ; vik−1 )|(wi0 ; wi1 ; wi2 ; wi3 ; : : : ; wik−1 )∈ T}

together with {uivi|06 i6 n− 1} is a decomposition of Kn;n into m-cycles and a 1-factor.
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The case m ≡ 0 (mod 4) cannot be obtained by using a similar argument as in Lemma 2. Suppose that m ≡ 0 (mod 4),
say m=2k with k even and let n¿ 3 be odd with m6 2n and m | n(n− 1). As before, k | n(n− 1)=2 and k6 n so that a
k-cycle system T of Kn exists. However, for each cycle C = (wi0 ; wi1 ; wi2 ; wi3 ; : : : ; wik−1 ) in T , we obtain the two k-cycles

C′ = (ui0 ; vi1 ; ui2 ; vi3 : : : ; vik−1 )

and

C′′ = (vi0 ; ui1 ; vi2 ; ui3 ; : : : ; uik−1 )

in Kn;n rather than one 2k-cycle. Thus, we need more elaborate constructions for the case m ≡ 0 (mod 4).
To help guide the reader, we will now give a rough outline of these constructions. Suppose that m¡n and n(n − 1)

is a multiple of m. Let n = qm + r. The Grst construction, given in Lemma 3, generates n cycles, each of length m.
Collectively, these cycles contain all edges uivj where j − i∈ ± D for a given set D of m=2 nonzero di)erences. This
construction will be applied q times, leaving r di)erences. If r = 1, then this will give the required 1-factor, while if
r ¿ 2, we proceed as follows. In Lemma 6, we show that r − 1 = s(m=g), where g= gcd(m; n). Lemma 4 generates 2n=g
cycles where these cycles contain all edges uivj where j− i∈ ± (D ∪ (D+ n=g)) for a given set D of m=(2g) di)erences.
This construction will be applied �s=2� times, leaving either 1 di)erence (the missing 1-factor) or m=g + 1 di)erences.
In the latter case, we apply the construction of Lemma 5. The details of how the di)erence sets are chosen are given in
Lemma 6.

Lemma 3. Let m and n be positive integers with m ≡ 0 (mod 4), n odd, and 46m¡n. If D= {d1; d2; : : : ; dm=2}, where
d1; d2; : : : ; dm=2 are positive integers satisfying d1¡d2¡ · · ·¡dm=26 (n− 1)=2, then Cm|X (n;±D).

Proof. Label the vertices of X (n;±D) with u0; u1; : : : ; un−1 and v0; v1; : : : ; vn−1. We have uivj ∈E(X (n;±D)) if and only
if j − i∈ ± D. Let � denote the permutation

(u0u1 · · · un−1)(v0v1 · · · vn−1):

Observe that �∈Aut(X (n;±D)), so for any subgraph L of X (n;±D), �(L) is also a subgraph. Similarly, let % denote the
permutation (u0 v0)(u1 v1) · · · (un−1vn−1). Let ek =

∑k
i=1 (−1)i+1di, and let P be the trail of length (m− 2)=2 given by

P : ue1 ; ve2 ; ue3 ; ve4 ; : : : ; ue(m−2)=2 ; vem=2 :

Now, the lengths of the edges of P, in the order that they are encountered, are −d2;−d3; : : : ;−dm=2. Since e1; e3; : : : ; e(m−2)=2

is a strictly increasing sequence while n+e2; n+e4; : : : ; n+em=2 is a strictly decreasing sequence, it follows that the vertices
of P are distinct so that P is a path. Let P′ =�−d1 (%(P)) so that P′ begins at v0 and ends at uem=2−d1 and the edges of P′

have lengths d2; d3; : : : ; dm=2. Since d1; dm=26 (n− 1)=2, we see that ue(m−2)=2 �= uem=2−d1 and ve(m−2)=2 �= vem=2−d1 . Therefore,
the vertices of P′ are distinct from the vertices of P.

Next, we form a cycle C of length m by taking

C = {ue1v0; uem=2−d1vem=2} ∪ P ∪ P′:

Observe that these two additional edges have di)erence ±d1. From the above remarks, it follows that

C; �(C); �2(C); : : : ; �n−1(C)

is a partition of the edge set of X (n;±D) into m-cycles.

Suppose n is odd, m ≡ 0 (mod 4) with 46m¡n and D = {d1; d2; : : : ; dm=2} is a set of positive integers with
n− 1¿d1¿d2¿ · · ·¿dm=2¿ (n− 1)=2. Then, applying Lemma 3 to −D, we Gnd a decomposition of X (n;±D) into
m-cycles. Another consequence of Lemma 3 is the following. Suppose that A is a set of mq=2 distinct positive integers
for some positive integer q, such that all elements of A are either at most (n− 1)=2 or at least (n+ 1)=2. Then, applying
Lemma 3 q times, we have that X (n;±A) decomposes into m-cycles.
In Lemma 3, we found a cycle with m distinct di)erences, and used � to create n cycles that collectively covered all

edges with those di)erences. We now consider cycles that have repeated di)erences.

Lemma 4. Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 46m¡n, and let g = gcd(m; n)¿ 1. Let
D = {d1; d2; : : : ; dm=(2g)} be a set of m=(2g) positive integers, and let Kdi ≡ di (mod(n=g)). Suppose either

(1) 0¡d1¡d2¡ · · ·¡dm=(2g)6 (n− 1)=2 − n=g and 0¡ Kd1¡ Kd2¡ · · ·¡ Kdm=(2g)6 (n− g)=(2g), or
(2) (n− 1)=2 − n=g¿d1¿d2¿ · · ·¿dm=(2g)¿ 0 and n=g− 1¿ Kd1¿ Kd2¿ · · ·¿ Kdm=(2g)¿ (n− g)=(2g).

Then Cm|X (n;±(D ∪ (D + n=g))).
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Proof. Label the vertices of X (n;±(D∪ (D+ n=g))) as in Lemma 3 and let �; % be as deGned in Lemma 3. Suppose Grst
0¡d1¡d2¡ · · ·¡dm=(2g)6 (n− 1)=2 − n=g and 0¡ Kd1¡ Kd2¡ · · ·¡ Kdm=(2g)6 (n− g)=(2g). Let ek =

∑k
i=1 (−1)i+1di.

Let P1 be the trail of length m=(2g) − 1 given by

P1 : ue1 ; ve2 ; ue3 ; ve4 ; : : : ; uem=(2g)−1 ; vem=(2g) :

Letting Kek =
∑k

i=1 (−1)i+1 Kdi, we have that Ke1; Ke3; : : : ; Kem=(2g)−1 is a strictly increasing sequence while n=g + Ke2; n=g+
Ke4; : : : ; n=g + Kem=(2g) is a strictly decreasing sequence. Hence, the subscripts of vertices in P1 lie in di)erent nonzero
congruence classes modulo n=g so that P1 is a path. Let P′

1 = �−d1 (%(P1)) and note that the vertices of P′
1 are distinct

from P1 as in the proof of Lemma 3.
Form a path W1 of length m=g by taking

W1 = {ue1v−n=g; uem=(2g)−d1vem=(2g)} ∪ P1 ∪ P′
1:

Observe that these two additional edges have di)erences d1 and −(d1 +n=g), so W1 is a path from v0 to v−n=g. Moreover,
the Grst and last vertices are the only ones whose subscripts are congruent modulo n=g. It follows that

C1 =W1 ∪ �n=g(W1) ∪ �2n=g(W1) ∪ · · · ∪ �(g−1)n=g(W1)

is a cycle of length m. Each di)erence occurs exactly g times, and the subscripts of the uis incident with edges of
di)erence k are all congruent modulo n=g. From the above remarks, it follows that

C1; �(C1); �
2(C1); : : : ; �

n=g−1(C1)

is a partition of the edge set of X (n;±D ∪ {−(d1 + n=g)} \ {−d1}) into m-cycles.
We form a second set of cycles in a similar manner. We deGne P2 analogously to P1, except that, di is replaced

by di + n=g and −di by −(di + n=g) in ek . Let P′
2 = �−(d1+n=g)(%(P2)). Form W2 by adding the edges ue1+n=gvn=g and

uem=(2g)−(d1+n=g)vem=(2g) with di)erences −d1 and d1 + n=g.
The cycles

C2; �(C2); �
2(C2); : : : ; �

n=g−1(C2)

are a partition of the edge set of X (n;±(D + n=g) ∪ {−d1} \ {−(d1 + n=g)}) into m-cycles. Taken with the Grst set of
cycles, we have our desired partition of X (n;±(D ∪ (D + n=g))) into m-cycles.
Now suppose (n− 1)=2 − n=g¿d1¿d2¿ · · ·¿dm=(2g)¿ 0 and n=g− 1¿ Kd1¿ Kd2¿ · · ·¿ Kdm=(2g)¿ (n− g)=(2g). In

this case, let ek =
∑k

i=1 (−1)idi. Let P1 be as deGned above and note that if Kek =
∑k

i=1 (−1)i Kdi, again Ke1; Ke3; : : : ; Kem=(2g)−1

is a strictly increasing sequence while n=g + Ke2; n=g + Ke4; : : : ; n=g + Kem=(2g) is a strictly decreasing sequence. Hence, the
subscripts of vertices in P1 lie in di)erent nonzero congruence classes modulo n=g so that P1 is a path. Let P′

1=�
d1 (%(P1))

and note that the vertices of P′
1 are distinct from P1 as in the proof of Lemma 3.

Form a path W1 of length m=g by taking

W1 = {ue1vn=g; uem=(2g)+d1vem=(2g)} ∪ P1 ∪ P′
1;

where these two additional edges have di)erences −d1 and d1 + n=g, so W1 is a path from v0 to vn=g. Again, the Grst and
last vertices are the only ones whose subscripts are congruent modulo n=g so that

C1 =W1 ∪ �n=g(W1) ∪ �2n=g(W1) ∪ · · · ∪ �(g−1)n=g(W1)

is a cycle of length m and

C1; �(C1); �
2(C1); : : : ; �

n=g−1(C1)

is a partition of the edge set of X (n;±D ∪ {d1 + n=g} \ {d1}) into m-cycles.
Form a second set of cycles as before, deGning P2 analogously to P1 by replacing di with di + n=g and −di with

−(di + n=g) in ek . Let P′
2 = �d1+n=g(%(P2)). Form W2 by adding the edges ue1−n=gv−n=g and uem=(2g)+d1+n=gvem=(2g) with

di)erences d1 and −(d1 + n=g).
The cycles

C2; �(C2); �
2(C2); : : : ; �

n=g−1(C2)

are a partition of the edge set of X (n;±(D + n=g) ∪ {d1} \ {d1 + n=g}) into m-cycles. As in the previous case, we have
our desired partition of X (n;±(D ∪ (D + n=g))) into m-cycles.

The previous lemma used 2m=g di)erences. The following lemma will use m=g di)erences and will give a 1-factor.
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Lemma 5. Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 46m¡n, and let g = gcd(m; n)¿ 1. Let
D = {d1; d2; : : : ; dm=(2g)−1} be a set of positive integers and let Kdi ≡ di (mod(n=g)). Suppose either

(1) 0¡d1¡d2¡ · · ·¡dm=(2g)−16 (n− 1)=2 and 0¡ Kd1¡ Kd2¡ · · ·¡ Kdm=(2g)−16 (n− g)=(2g); or
(2) (n− 1)=2¿d1¿d2¿ · · ·¿dm=(2g)−1¿ 0 and n=g− 1¿ Kd1¿ Kd2¿ · · ·¿ Kdm=(2g)−1¿ (n− g)=(2g).

Then X (n;±D ∪ {0;±n=g}) decomposes into m-cycles and a 1-factor.

Proof. The proof is similar to that of Lemma 4 and uses the same notation. Suppose Grst that 0¡d1¡d2¡ · · ·
¡dm=(2g)−16 (n − 1)=2 and 0¡ Kd1¡ Kd2¡ · · ·¡ Kdm=(2g)−16 (n − g)=(2g). Let ek =

∑k
i=1 (−1)idi. Let P be the trail

of length m=(2g) − 1 given by

P : u0; ve1 ; ue2 ; ve3 ; : : : ; uem=(2g)−2 ; vem=(2g)−1 :

Clearly, P is a path and the lengths of the edges of P, in the order they are encountered and reduced modulo n=g, are
− Kd1;− Kd2; : : : ; − Kdm=(2g)−1. Hence, as in Lemma 4, the subscripts of vertices in P lie in di)erent nonzero congruence classes
modulo n=g.

Form a path W of length m=g by taking

W = {u0vn=g; uem=(2g)−1vem=(2g)−1} ∪ P ∪ %(P):

Observe that these two additional edges have di)erences n=g and 0, respectively, so W is a path from v0 to vn=g. Moreover,
the Grst and last vertices are the only ones whose subscripts are congruent modulo n=g. As before,

C =W ∪ �n=g(W ) ∪ �2n=g(W ) ∪ · · · ∪ �(g−1)n=g(W )

is a cycle of length m, and

C; �(C); �2(C); : : : ; �n=g−1(C)

is a partition of the edge set of X (n;±D ∪ {0; n=g}) into m-cycles. The edges with di)erence −n=g form the 1-factor,
completing the construction.

Now suppose (n− 1)=2¿d1¿d2¿ · · ·¿dm=(2g)−1¿ 0 and n=g− 1¿ Kd1¿ Kd2¿ · · ·¿ Kdm=(2g)−1¿ (n− g)=(2g). Let
ek =

∑k
i=1 (−1)i+1di. Let P, W , and C be deGned as above so that

C; �(C); �2(C); : : : ; �n=g−1(C)

is a partition of the edge set of X (n;±D ∪ {0; n=g}) into m-cycles. As before, let the edges with di)erence −n=g form
the 1-factor.

We now have all of the constructions needed for the proof of Theorem 1 in the case m ≡ 0 (mod 4) and m¡n.

Lemma 6. For positive integers m and n with m ≡ 0 (mod 4) and n odd with 46m¡n, the graph Kn;n can be
decomposed into m-cycles and a 1-factor if and only if m | n(n− 1).

Proof. Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 46m¡n, and m | n(n− 1), say n(n− 1) = mt. If
t is even, then m | n(n − 1)=2. Thus, since m¡n, an m-cycle system T of Kn exists [9]. We have already noted that T
will give rise to a collection T ′ of m-cycles in Kn;n so that what remains when T ′ is removed from Kn;n is a 1-factor.
Therefore, it su7ces to consider the case when t is odd.

Let n = qm + r, where q¿ 1 and 06 r ¡m with r odd. Let S = {1; 2; : : : ; (n− 1)=2} so that Kn;n = X (n;±S ∪ {0}),
and let g = gcd(m; n). Suppose Grst that g = 1, and observe that this implies that m |(n − 1) so that n − 1 = qm. Thus
|S| = mq=2, and by Lemma 3, the graph X (n;±S) decomposes into m-cycles. Since the edges of di)erence 0 form a
1-factor, this completes the construction when g= 1.

We may now assume that g¿ 1 and let r−1= s(m=g) for some positive integer s, say s=2k+ , for some nonnegative
integer k and with , = 0 or , = 1. If s = 1, then let D = {1; 2; : : : ; m=(2g) − 1}. Now X (n;±D ∪ {0;±n=g}) decomposes
into m-cycles and 1-factor by Lemma 5. Next, the set A = S \ (D ∪ {n=g}) consists of mq=2 positive integers and thus
X (n;±A) decomposes into m-cycles by Lemma 3. Therefore, we have found the required decomposition of Kn;n in this
case.

Now suppose that s¿ 1. Let

D1 =
{
1; 2; : : : ;

m
2g

}
and D2 =

n
g

− D1:
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For a positive integer i, let

D2i+1 = D1 + 2i
(
n
g

)
and D2i+2 = D2 + 2i

(
n
g

)
:

Suppose Grst that k is even. Consider the sets D1; D2; : : : ; Dk (so i = 1; : : : ; k=2 − 1). Note that

• for each j=1; 2; : : : ; k, the set Dj={dj;1; dj;2; : : : ; dj;m=(2g)} consists of m=(2g) positive integers, and if Kdj; i ≡ dj; i (mod(n=g)),
then either

(1) 0¡dj;1¡dj;2¡ · · ·¡dj;m=(2g) and 0¡ Kdj;1¡ Kdj;2¡ · · ·¡ Kdj;m=(2g)6 (n− g)=(2g), or
(2) dj;1¿dj;2¿ · · ·¿dj;m=(2g)¿ 0 and n=g− 1¿ Kdj;1¿ Kdj;2¿ · · ·¿ Kdj;m=(2g)¿ (n− g)=(2g);

• the sets D1; D2; : : : ; Dk are pairwise disjoint;
• if d∈D1 ∪ D2 ∪ · · · ∪ Dk , then d+ n=g �∈ D1 ∪ D2 ∪ · · · ∪ Dk ;
• (D1 ∪ (D1 + n=g)) ∪ (D2 ∪ (D2 + n=g)) ∪ · · · ∪ (Dk ∪ (Dk + n=g)) ⊂ {1; 2; : : : ; nk=g}.

Let

D =
{
1 +

nk
g
; 2 +

nk
g
; : : : ;

m
2g

− 1 +
nk
g

}
;

and let

S′ =
(
D1 ∪

(
D1 +

n
g

))
∪

(
D2 ∪

(
D2 +

n
g

))
∪ · · · ∪

(
Dk ∪

(
Dk +

n
g

))
:

Now D∩ S′ =∅ and the largest di)erence in D∪ S′ is m=(2g)− 1+ nk=g. We now show m=(2g)− 1+ nk=g6 (n− 1)=2 so
that these di)erence sets satisfy the hypotheses of Lemmas 4 and 5. Since r ¡m, we have r − 1 = s(m=g)¡g(m=g)− 1,
so that s¡g− g=m. Since s is an integer, it follows that s6 g− 1. Hence

m
2g

− 1 +
nk
g
6

m
2g

− 1 +
n
g

( s
2

)

6
m
2g

− 1 +
n
g

(
g− 1
2

)

=
n
2

−
(
n
2g

− m
2g

)
− 1

6
n− 1
2

:

For each j with 16 j6 k, the graph X (n;±(Dj ∪ (Dj + n=g))) has a decomposition into m-cycles by Lemma 4. If
, = 1, then X (n;±D ∪ {0;±n=g}) decomposes into m-cycles and a 1-factor by Lemma 5. Let A = S \ S′ if , = 0 or let
A = S \ (D ∪ S′) if , = 1. Then, A consists of mq=2 di)erences and Lemma 3 gives a decomposition of X (n;±A) into
m-cycles, completing the construction in the case that k is even.

Now suppose that k is odd. Consider the sets D1, D2, : : :, Dk+1 (so i=1; : : : ; (k−1)=2). As before, the sets D1; D2; : : : ; Dk+1

satisfy the same properties as in the case when k is even except that(
D1 ∪

(
D1 +

n
g

))
∪ · · · ∪

(
Dk ∪

(
Dk +

n
g

))
∪ Dk+1 ⊂

{
1; 2; : : : ;

m
2g

+
nk
g

}
:

Let D = Dk+1 \ {nk=g − m=(2g)}. Let S′ be deGned as above and note that the largest positive integer in D ∪ S′is
m=(2g) + nk=g; and we have seen that m=2g + nk=g¡n=2 − (n − m)=(2g). Since m=(2g) + nk=g is an integer, it follows
that m=(2g) + nk=g6 (n− 1)=2: Thus, as was done in the case when k is even, the graph X (n;±(Dj ∪ (Dj + n=g))) has a
decomposition into m-cycles by Lemma 4 for each j = 1; 2; : : : ; k. If , = 1, then X (n;±D ∪ {0;±n=g}) decomposes into
m-cycles and a 1-factor by Lemma 5. Thus, letting A be deGned as in the case when k is even, we have that X (n;±A)
decomposes into m-cycles by Lemma 3, completing the construction in the case that k is odd.

Theorem 1 now follows from Lemmas 2 and 6, and we have shown that the necessary conditions for an m-cycle system
of Kn;n − I are su7cient for many values of m and n. The remaining open case is to show that an m-cycle system exists
when m ≡ 0 (mod 4) and n¡m¡ 2n.
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