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Abstract

Let K,.,» — I denote the complete bipartite graph with n vertices in each part from which a 1-factor / has been removed.
An m-cycle system of K,, — I is a collection of m-cycles whose edges partition K, , — /. Necessary conditions for the
existence of such an m-cycle system are that m >4 is even, n >3 is odd, m < 2n, and m|n(n — 1). In this paper, we
show these necessary conditions are sufficient except possibly in the case that m = 0 (mod 4) with n < m < 2n.

(© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, K, , will denote the complete bipartite graph with »n vertices in each partite set; K, , — I will
denote the complete bipartite graph with a 1-factor / removed; and C,, will denote the m-cycle (v1,02,...,0n). An m-cycle
system of a graph G is set T of m-cycles whose edges partition the edge set of G. Several obvious necessary conditions
for an m-cycle system T of a graph G to exist are immediate: m < |V(G)|, the degrees of the vertices of G must be
even, and m must divide the number of edges in G.

There have been many results regarding the existence of m-cycle systems of the complete graph K, (see, for example,
[8]). In this case, the necessary conditions imply that m < v, v is odd, and that m divides v(v — 1)/2. In [1,9], it is shown
that these necessary conditions are also sufficient. In the case that v is even, m-cycle systems of K, — I, where / denotes a
1-factor, have been studied. Here, the necessary conditions are that m < v and that m divides v(v —2)/2. These conditions
are also known to be sufficient [1,9].

Cycle systems of complete bipartite graphs have also been studied. The necessary conditions for the existence of an
m-cycle system of K, ; are that m,n, and k are even, n,k > m/2, and m must divide nk. In [10], these necessary conditions
were shown to be sufficient. To study m-cycle systems of K, when n and & are odd, it is necessary to remove a 1-factor
and hence n=k. Then, the necessary conditions are that m is even, n = m/2 with n odd, and m must divide n(n—1). As a
consequence of the main result of [6], it is known that (2n)-cycle systems of K, , — I exist. Other results involving cycle
systems of K,, — I are given in [4], and other authors have considered cycle systems of complete multipartite graphs
[2,3,5-7].
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The main result of this paper is the following.

Theorem 1. Let m and n be positive integers with m =4 even and n =3 odd. If m = 0(mod4) and m < n, or if
m = 2 (mod 4) and m < 2n, then the graph K, , —I has an m-cycle system if and only if the number of edges in K, — I
is a multiple of m.

Our methods involve Cayley graphs and difference constructions. In Section 2, we give some basic definitions while
the proof of Theorem 1 is given in Section 3. We shall see that the case m = 2(mod4) is fairly easy to handle using
known results, but the case m = 0(mod 4) is more involved.

2. Notation and preliminaries

Let us begin with a few basic definitions. We write G = H, @ H, if G is the edge-disjoint union of the subgraphs H,;
and H,. f G=H & H, D - - - ® Hy, where H) =2 H, = - .- = H, = H, then the graph G can be decomposed into subgraphs
isomorphic to H and we say that G is H-decomposable. We also shall write H | G.

The proof of Theorem 1 uses Cayley graphs, which we now define. Let S be a subset of a finite group I" satisfying

(1) 1 €S, where 1 denotes the identity of I', and
(2) S=S57"; that is, s €S implies that s~' € S.

A subset S satisfying the above conditions is called a Cayley subset. The Cayley graph X(I';S) is defined to be that
graph whose vertices are the elements of I', with an edge between vertices g and /4 if and only if & = gs for some s € S.
We call S the connection set and say that X(I';S) is a Cayley graph on the group T.

The graph K, , is a Cayley graph by selecting the appropriate group; that is, K, ,» = X(Z, X Z»;{(0,1),(1,1),(2,1),...,
(n — 1,1)}). Equivalently, for a positive integer n, let S C {0,1,2,...,n — 1} and let X(n;S) denote the graph whose
vertices are uo, Uy, ...,u,—1 and vo,vi,...,v,—1 with an edge between u; and v; if and only if j —i€S. Clearly, K, , =
X(n;{0,1,...,n — 1}), and we will often write —s for n — s when n is understood.

Many of our decompositions arise from the action of a permutation on a fixed subgraph. Let p be a permutation of the
vertex set V' of a graph G. For any subset U of V, p acts as a function from U to V by considering the restriction of p
to U. If H is a subgraph of G with vertex set U, then p(H) is a subgraph of G provided that for each edge xy € E(H),
p(x)p(y) € E(G). In this case, p(H) has vertex set p(U) and edge set {p(x)p(») : xy € E(H)}. Note that p(H) may not
be defined for all subgraphs H of G since p is not necessarily an automorphism. In this paper, however, p will be an
automorphism, so p(H) will be defined for all subgraphs H.

For a set D of integers and an integer x, we define the sets £D = {£d |d €D}, D + x = {d + x|d € D}, and
x—D={x—-d|deD}.

3. The proof of the main theorem

In this section, we shall prove Theorem 1. It turns out that when m = 2 (mod 4), an m-cycle system of K, , — I can be
found from an (m/2)-cycle system of K, as we now show.

Lemma 2. For positive integers m and n with m = 2 (mod 4), n odd, and 6 < m < 2n, the graph K, , has a decomposition
into m-cycles and a 1-factor if and only if m|n(n — 1).

Proof. Let m and n be integers with m = 2(mod4), n odd, and 6 < m < 2n. Let the partite sets of X, , be denoted by
{uo,u1,...,un—1} and {vo,v1,...,0s—1}. Since m = 2 (mod 4), we have m = 2k for some odd integer k. Then k < n and
kln(n—1)/2. Hence, by [1,9], K, has a decomposition into k-cycles. Let the vertices of K, be labelled with wo, wi, ..., w,y—i
and let 7 be a decomposition of K, into k-cycles. Suppose that C = (wj,, Wi , Wiy, Wiy,..., Wi, _,) 18 a k-cycle in 7. Then
the cycle

!
C = (uio,Uz‘I,uiz,Uz’3 covs Uig g5 Vigs Uiy Vigy Uiz o ~7Uik_1)
is of length 2k in K, ,. Furthermore, for each edge wyw; of C, the edges u;v; and v;u; appear on C’. Thus, the collection
/
T" = {(tig> Viys Uiy Ui+« « s Uig_ 1 Vigs Uiy s Vigs Uigs -« - Vi )| (Wigs Wiy s Wiyy Wiys ooy Wi )E T}

together with {u;v;]0 <i < n — 1} is a decomposition of K, , into m-cycles and a 1-factor. [J
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The case m = 0(mod 4) cannot be obtained by using a similar argument as in Lemma 2. Suppose that m = 0 (mod 4),
say m =2k with k even and let n > 3 be odd with m < 2n and m|n(n—1). As before, k| n(n—1)/2 and k < n so that a
k-cycle system T of K, exists. However, for each cycle C = (wj,, wi,, Wiy, Wis,...,w;,_,) in T, we obtain the two k-cycles

!
C" = (tig» Viy» Uiy Vi -+, Vi)
and
C// _
= (Vig, Uiy, Viy» Uiz -+ 5 Ui, )

in K, , rather than one 2k-cycle. Thus, we need more elaborate constructions for the case m = 0 (mod 4).

To help guide the reader, we will now give a rough outline of these constructions. Suppose that m < n and n(n — 1)
is a multiple of m. Let n = gm + r. The first construction, given in Lemma 3, generates n cycles, each of length m.
Collectively, these cycles contain all edges u;u; where j — i€ = D for a given set D of m/2 nonzero differences. This
construction will be applied ¢ times, leaving r differences. If » = 1, then this will give the required 1-factor, while if
r > 2, we proceed as follows. In Lemma 6, we show that » — 1 = s(m/g), where g = gcd(m,n). Lemma 4 generates 2n/g
cycles where these cycles contain all edges u;v; where j —i€ + (DU (D +n/g)) for a given set D of m/(2g) differences.
This construction will be applied |s/2] times, leaving either 1 difference (the missing 1-factor) or m/g + 1 differences.
In the latter case, we apply the construction of Lemma 5. The details of how the difference sets are chosen are given in
Lemma 6.

Lemma 3. Let m and n be positive integers with m = 0(mod 4), n odd, and 4 <m < n. If D={d\,d>,...,du;}, where
di,da,...,dny are positive integers satisfying dy < d, < -+ <dup < (n—1)/2, then Cy,|X(n; £D).

Proof. Label the vertices of X (n; £D) with uo,u,...,u,—1 and vo,v1,...,0,—1. We have u;v; € E(X(n;£D)) if and only
if j—i€ £ D. Let p denote the permutation

(uour + - - Up—1)(VoVY * * + Vp—1).

Observe that p € Aut(X(n; £D)), so for any subgraph L of X(n; D), p(L) is also a subgraph. Similarly, let T denote the
permutation (uo vo)(uy v1) - - (un—105—1). Let ex = S (—1)"'d;, and let P be the trail of length (m — 2)/2 given by

P ite) s ey, Ueys Ueys - - s Uegy 2y Veya-

Now, the lengths of the edges of P, in the order that they are encountered, are —d>, —ds, ..., —d, . Since e, e3,...,em—2)2
is a strictly increasing sequence while n+ez,n+e,...,n+e,. is a strictly decreasing sequence, it follows that the vertices
of P are distinct so that P is a path. Let P’ = p~“1(¢(P)) so that P’ begins at vy and ends at u,,,_4, and the edges of P’
have lengths da,ds,...,d . Since di,dyp < (n—1)/2, we see that e, _,, # Ue,,—a, and v, _,, 7 Ve, ,—a, Therefore,
the vertices of P’ are distinct from the vertices of P.

Next, we form a cycle C of length m by taking

C = {the, V0, U, y—dy Ve, s } U P U P

Observe that these two additional edges have difference +d,. From the above remarks, it follows that
C.p(C). PO, p" 1 (C)

is a partition of the edge set of X(n; £D) into m-cycles. [

Suppose n is odd, m = 0(mod4) with 4 <m <n and D = {d\,d>,...,dn;} is a set of positive integers with
n—1>d, >dy>--->d,n>(n—1)/2. Then, applying Lemma 3 to —D, we find a decomposition of X(n; £D) into
m-cycles. Another consequence of Lemma 3 is the following. Suppose that 4 is a set of mgq/2 distinct positive integers
for some positive integer ¢, such that all elements of A4 are either at most (n — 1)/2 or at least (n+ 1)/2. Then, applying
Lemma 3 ¢ times, we have that X (n; £4) decomposes into m-cycles.

In Lemma 3, we found a cycle with m distinct differences, and used p to create n cycles that collectively covered all
edges with those differences. We now consider cycles that have repeated differences.

Lemma 4. Let m and n be positive integers with m = 0(mod4), n_odd, 4 <m <n, and let g = gcd(m,n) > 1. Let
D={d\,d>,...,dweg} be a set of m/(2g) positive integers, and let d; = d; (mod(n/g)). Suppose either
() 0<di<dr<- <dpogy <(m—1)2—n/gand 0 <di <d> < - < dpg < (n—9)/(29), or

Q) (n=D)2=nlg=d\ >dr > >dpay >0 and nfg—1>d\ >dr > - > dpag > (n — 9)/(29).
Then Cu|X(n; £(D U (D + n/g))).
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Proof. Label the vertices of X (n; 2(DU (D +n/g))) as in Lemma 3 and let p,7 be as defined in Lemma 3. Suppose first
O0<di<dy < <dwogy <(m—1)2—nfgand 0 <d| <dy < -+ <duyjqg <(n—9g)/(29). Let e, = Zf:l (—l)iﬂd,'.
Let P; be the trail of length m/(2g) — 1 given by

Pritte), Vo), tey, Veys - - - Ue,,j0g)—1> Vepyag) -

Letting & = >t , (—1)"'d;, we have that &1,&3,...,Em—1 is a strictly increasing sequence while n/g + é»,n/g+
€4,...,1/g + €m)g) 1s a strictly decreasing sequence. Hence, the subscripts of vertices in P; lie in different nonzero
congruence classes modulo n/g so that P; is a path. Let P| = p~“(z(P1)) and note that the vertices of P, are distinct
from P; as in the proof of Lemma 3.

Form a path W, of length m/g by taking

/
W, = {uelvfn/g,ugm (2g)—d1Vey, (zq)} U P U P

Observe that these two additional edges have differences d; and —(d| +n/g), so W, is a path from vy to v_,). Moreover,
the first and last vertices are the only ones whose subscripts are congruent modulo n/g. It follows that

Cr= W U p" (W)U p™ (U -+ U pl =0

is a cycle of length m. Each difference occurs exactly g times, and the subscripts of the u;s incident with edges of
difference & are all congruent modulo n/g. From the above remarks, it follows that

Cr.p(C1), p*(C1 ). p"07N(C1)

is a partition of the edge set of X(n; =D U {—(d1 + n/g)} \ {—d1}) into m-cycles.

We form a second set of cycles in a similar manner. We define P, analogously to Pj, except that, d; is replaced
by d;i + n/g and —d; by —(d; + n/g) in ex. Let Py = p~ 149 (¢(P;)). Form W, by adding the edges Ue,+n/gUnjg and
Ue, 0 —(d1 +n/g) Venyagy With differences —dy and d + n/g.

The cycles

Co. p(C2), P(C2),... "7 (C2)

are a partition of the edge set of X(n; (D + n/g) U {—di} \ {—(d1 + n/g)}) into m-cycles. Taken with the first set of
cycles, we have our desired partition of X(n; =(D U (D + n/g))) into m-cycles.

Now suppose (n — 1)/2 —njg =di > dr > - > dpjag) >0 and njg — 1 = dy > dr > - > dpjag) > (n — 9)/(29). In
this case, let ¢, = E;‘:l (=1)'d;. Let P; be as defined above and note that if &; = Zﬁ;l (=1)d;, again &1,&,...,Emi29)1
is a strictly increasing sequence while n/g + é2,n/g + é4,...,n/g + €.y2q) is a strictly decreasing sequence. Hence, the
subscripts of vertices in P lie in different nonzero congruence classes modulo n/g so that P; is a path. Let P| =p?'(¢(P1))
and note that the vertices of P] are distinct from P; as in the proof of Lemma 3.

Form a path W, of length m/g by taking

/
/4] :{uelv,,rg,ue +d Ve }U P, U Py,
m/(29) m/(2g)

where these two additional edges have differences —d1 and d1 +n/g, so W1 is a path from vy to v,,. Again, the first and
last vertices are the only ones whose subscripts are congruent modulo n/g so that

Cr =W Up" (W)U p™(wiyu--- U pf= ")
is a cycle of length m and
Cl,[)(C] ),pz(Cl),.-.,pﬂ/g_](CI)

is a partition of the edge set of X(n; =D U {d1 + n/g} \ {d:1}) into m-cycles.

Form a second set of cycles as before, defining P, analogously to P, by replacing d; with d; + n/g and —d; with
—(d; + n/g) in er. Let Py = p'""9(¢(Py)). Form W, by adding the edges w,, _nyv_n, and Ue/agy+iy +nlgVepyag With
differences d, and —(d, + n/g).

The cycles

C2, p(C2), pP(Ca), .., "7 N(C)

are a partition of the edge set of X(n; £(D + n/g) U {d1} \ {d1 + n/g}) into m-cycles. As in the previous case, we have
our desired partition of X (n; £(D U (D + n/g))) into m-cycles. [

The previous lemma used 2m/g differences. The following lemma will use m/g differences and will give a 1-factor.
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Lemma 5. Let m and n be positive integers with m = 0(mod4), n odd, 4 <m <n, and let g = gcd(m,n) > 1. Let
D ={d\,d>,...,dmnag—1} be a set of positive integers and let d; = d; (mod(n/g)). Suppose either

(1) 0<dy <dy <+ <dwag-1 <(n—1)/2and 0 <d\ <ds < -+ < dpjg -1 <(n—g)/(29); or
(2) (n — 1)/2 >d >dy > > dm 2g)—1 > 0 and n/g— 1>dy>dy > > dm/(Zg)—l > (}’l —g)/(2g)

Then X (n; =D U {0,+£n/g}) decomposes into m-cycles and a 1-factor.

Proof. The proof is similar to that of Lemma 4 and uses the same notation. Suppose first that 0 <d; <d» <---
<dwogy-1 <(m—1)/2 and 0 <d) <d> <+ <dug-1 < — g)/(2g). Let e = Zf.‘:l (=1)'d;. Let P be the trail
of length m/(2g) — 1 given by

P 1o, Vey, ey, ey - - Uey2g)—22 Venyagy—1-

Clearly, P is a path and the lengths of the edges of P, in the order they are encountered and reduced modulo n/g, are
—d1,—ds,..., fa_i,,,/(zg),l. Hence, as in Lemma 4, the subscripts of vertices in P lie in different nonzero congruence classes
modulo n/g.

Form a path W of length m/g by taking

W= {UOUn/g,uem (2g)7lvem/(2y)71} Uru up).

Observe that these two additional edges have differences n/g and 0, respectively, so W is a path from vy to v,,,. Moreover,
the first and last vertices are the only ones whose subscripts are congruent modulo n/g. As before,

C=wWu pn/(/(W) U p2n/.t/(W) U---U p(gfl)n/g(W)
is a cycle of length m, and
C.p(C),p (O, p™7H(C)

is a partition of the edge set of X(n; D U {0,n/g}) into m-cycles. The edges with difference —n/g form the 1-factor,
completing the construction.

Now suppose (n —1)/2 =dy >dy > -+ > dyjo9—1 >0 and nfg—1= di>dy>-- > a_lm/(zg)_l > (n—g)/(2g). Let
ep = Zle (—=1)*'d;. Let P, W, and C be defined as above so that

C,p(C),p*(C),....p"" (O)

is a partition of the edge set of X(n;+D U {0,n/g}) into m-cycles. As before, let the edges with difference —n/g form
the 1-factor. [

We now have all of the constructions needed for the proof of Theorem 1 in the case m = 0(mod4) and m < n.

Lemma 6. For positive integers m and n with m = 0(mod4) and n odd with 4 < m <n, the graph K,, can be
decomposed into m-cycles and a 1-factor if and only if m|n(n — 1).

Proof. Let m and n be positive integers with m = 0(mod4), n odd, 4 <m < n, and m|n(n — 1), say n(n — 1) =mt. If
t is even, then m|n(n — 1)/2. Thus, since m < n, an m-cycle system 7 of K, exists [9]. We have already noted that 7'
will give rise to a collection 7’ of m-cycles in K, , so that what remains when 7’ is removed from K, , is a l-factor.
Therefore, it suffices to consider the case when ¢ is odd.

Let n=gm +r, where ¢ > 1 and 0 <r <m with r odd. Let S ={1,2,...,(n — 1)/2} so that K, , = X(n; =S U {0}),
and let g = gcd(m,n). Suppose first that g = 1, and observe that this implies that m|(n — 1) so that n — 1 = gm. Thus
|S| = mgq/2, and by Lemma 3, the graph X(n;+S) decomposes into m-cycles. Since the edges of difference 0 form a
1-factor, this completes the construction when g = 1.

We may now assume that g > 1 and let »r — 1 =s(m/g) for some positive integer s, say s =2k + ¢ for some nonnegative
integer k£ and with e =0 or ¢ = 1. If s =1, then let D = {1,2,...,m/(2g9) — 1}. Now X(n; £D U {0,+n/g}) decomposes
into m-cycles and 1-factor by Lemma 5. Next, the set 4 =S \ (D U {n/g}) consists of mq/2 positive integers and thus
X(n; £A4) decomposes into m-cycles by Lemma 3. Therefore, we have found the required decomposition of K, , in this
case.

Now suppose that s > 1. Let

D :{1,2,..‘,ﬁ} and D, =2 — Dy,
2g g



42 D. Archdeacon et al. | Discrete Mathematics 284 (2004) 3743

For a positive integer i, let
Dajv1 =Dy +2i (7> and Dyiz = Dy +2i (?) :
g g
Suppose first that & is even. Consider the sets Dy, Ds,...,D; (so i=1,...,k/2 — 1). Note that

o for each j=1,2,...,k, the set D;={d;1,d;2,...,d; g} consists of m/(2g) positive integers, and if d;; = d,; (mod(n/g)),
then either

(1) 0< d‘jjl < d‘jjz << dj.m (29) and 0 < d_jﬁl < _di,;z < s < d_j;m/(zg)_g (n — (])/(26]), or
(2) djy>dj2 > >djmag >0 and njg —12>d;1 > dja > -+ > djmg > (n— 9)/(29);

e the sets Di,D,,..., Dy are pairwise disjoint;
e ifdeDyUD U --UDy, then d +n/g € DiUD, U---UDy;
o (D1 U (D1 +n/g))U(D2U(D2+nfg))U---U(Dy U(Dg +n/g)) C{L1,2,....,nk/g}.

Let
D:{1+@,2+ﬁ,...,ﬂ—1+ﬁ},
g g 29 g

and let

= (000 (o1 7)) (0 (022) o0 (o1 (42

Now DNS’ =() and the largest difference in DUS’ is m/(2g) — 1 + nk/g. We now show m/(2g) — 1 +nk/g < (n—1)/2 so
that these difference sets satisfy the hypotheses of Lemmas 4 and 5. Since r < m, we have r — 1 =s(m/g) < g(m/g) — 1,
so that s < g — g/m. Since s is an integer, it follows that s < g — 1. Hence

ﬂ,1+@<ﬂ,1+2(5)
29 g 29 g \2

Y/
&3
|
SYE
7 N

@
0|
—_
~—

I
YRS
|
—
B
|
SE
~
|

<

For each j with 1 <j <k, the graph X(n; =(D; U (D; + n/g))) has a decomposition into m-cycles by Lemma 4. If
¢ =1, then X(n;£D U {0,4n/g}) decomposes into m-cycles and a 1-factor by Lemma 5. Let A =S\ S’ if e=0 or let
A=8\(DUS") if ¢=1. Then, 4 consists of mq/2 differences and Lemma 3 gives a decomposition of X(n;+4) into
m-cycles, completing the construction in the case that & is even.

Now suppose that & is odd. Consider the sets Dy, D, ..., Dii1 (so i=1,...,(k—1)/2). As before, the sets D, Ds, ..., Dii1
satisfy the same properties as in the case when £ is even except that

k
(Dl U <D1 +£)) U---U <Dku <Dk+ﬁ)) UDjs1 C {1,2,...,ﬁ+"—}.
g g 29 g

Let D = Dyy1 \ {nk/lg — m/(2g)}. Let S’ be defined as above and note that the largest positive integer in D U S’is
m/(2g) + nk/g, and we have seen that m/2g + nk/g < n/2 — (n — m)/(2g). Since m/(2g) + nk/g is an integer, it follows
that m/(2g) + nk/g < (n — 1)/2. Thus, as was done in the case when k is even, the graph X (n; =(D; U(D; +n/g))) has a
decomposition into m-cycles by Lemma 4 for each j =1,2,...,k. If ¢ =1, then X(n; £D U {0,£n/g}) decomposes into
m-cycles and a 1-factor by Lemma 5. Thus, letting 4 be defined as in the case when k is even, we have that X (n; £A4)
decomposes into m-cycles by Lemma 3, completing the construction in the case that k is odd. [

Theorem 1 now follows from Lemmas 2 and 6, and we have shown that the necessary conditions for an m-cycle system
of K,., — I are sufficient for many values of m and n. The remaining open case is to show that an m-cycle system exists
when m = 0(mod4) and n < m < 2n.
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