
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 141, 189-194 (1989) 

On Quotient Measures and Induced Representations 

ZOLTAN MAGYAR 

Mathematical Ins&we of the Hungarian Academy of Sciences, 
ReLiltanoda u. 13-15, Budapest, V, Hungary 1053 

Submitted by Ky Fan 

Received October 28, 1987 

We construct continuous positive p-functions on locally compact groups. As a 
corollary, we have “nice” measures on quotient spaces. We give a simple proof to 
Mackey’s intertwining theorem on induced representations. 0 1989 Academic PKSS, 1”~. 

Our aim is to use continuity instead of measurability to make simpler 
some aspects of Mackey’s theory on induced representations. For the 
relations between the present note and earlier works see our various 
remarks. For the convenience of the reader we shall cite several standard 
arguments instead of bare references. 

Notations. Let G be a locally compact group and H be a closed 
subgroup of G. Let X = {Ha; a E G} be the set of right cosets equipped 
with the factor topology and p: G -+X be the canonical mapping, i.e., 
p(g) = Hg. Fix a right invariant Haar measure on G and H, respectively, 
and denote it by jG.. . d and JH.. . d. Let A and 6 be the modular functions 
of G and H, respectively (i.e., JGf(ba) A(b) da = IGf(a) da and similarly 
for W. Then jGf(gpl) A(g-‘)&=j,f(g) dg. 

It T is a locally compact Hausdorff space then C,.(T) will denote the 
space of complex valued continuous compactly supported functions on T 
and we shall identify the positive linear functionals on C,(T) with the Baire 
measures and the regular Bore1 measures as usual. We refer to this using 
the term “Radon measure.” 

If m is a Radon measure on X then let mg be the translation of m by g, 
i.e., jxf(xg) dm,(x) = jxf(x) dm(x). 

For fE C,.(G) let f’ be the “conditional expectation” off, i.e., f’( p( g)) = 
jH f(hg) dh. Then f’ E C,(X) and for any u E C,.(X) one can find an 
f~ C,(G) such that f’ = U; moreover, if u > 0 then we can choosefa 0 (see, 
e.g., [3, Vol. I, p. 2051). 
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DEFINITION. We call a function p: G + C a p-function if it satisfies the 
condition 

P(k) = WI ah)r’dg) for all hEH, gEG. (1) 

We deviate from Mackey’s notation here because the above version will 
be more convenient for our purposes. Of course, a continuous positive 
p-function is a p-function in the sense of [6] as well. 

PROPOSITION 1. There exist continuous positive p-functions. 

Proof: First we construct a cone of continuous p-functions which are 
only non-negative. If b E C,.(G) then we set 

fdg) = j-H b(hg) d(h) d(h)-’ dh. 

These fb’s are clearly p-functions and if b 20 then fb 2 0. Now if the 
variable g varies on a compact then the integration can be restricted to a 
compact subset of H, and b is uniformly continuous, hence we get fb is 
continuous. 

Observe that (Y 0 p) . f is a p-function whenever f is a p-function and r is 
an arbitrary function on X. 

Now assume that {u~}~ is a locally finite family of continuous p-func- 
tions (i.e., the supports of U, form a locally finite family of subsets of G). 
Then clearly C, U, is a continuous p-function. 

Choose b, E C,.(G) such that b, 30 for all a and u, G, = G, where 
G, = (g E G; b,(g) > O}. Then the sets p(G,) form an open covering of X, 
and since X is paracompact (we sketch the proof of this known result 
below) we can find a locally finite family rz E C,(X) such that rl > 0, 
C, ra = 1, and supp r, c p(G,) for all CI. Then the family u, = (r&o p) .fb, 
is locally finite because p is continuous. On the other hand, for any 
gE G, 3: r,(p(g)) > 0 (because Ccl ra = 1) and for such an a we have 
p(g) E p(G,) and therefore fb,( g) > 0, since the integrand is non-negative, 
continuous, and not 0 in that case. Thus C, U, is a continuous positive 
p-function. 

It remains to show the paracompactness of X. Let G, be the identity 
component of G. It is well known that G, is a o-compact open normal 
subgroup of G. Since Go is a normal subgroup, hence HG, is a subgroup 
of G, and therefore the translations of the a-compact open set M= p(G,) 
in X form a partition of X. In other words, X is a “direct sum” of c-corn- 
pact locally compact Hausdorff spaces, hence paracompact. 

Remark 1. If G is a Lie group then we can use b,E C:(G) and 
ra E C:(X) in the above proof to get the following result: 

In case of a Lie group there exist smooth positive p-functions. 
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Question. Are there analytic positive p-functions? 

Remark 2. The construction of fb is closely related to the “e(f, u) 
construction” from [l] and even to that from [6]. Moreover, if we 
have a look at the construction in [l] then we realize that jjs(fl u)jj’ is a 
p-function. 

PROPOSITION 2. We have non-zero positive Radon measures m on X such 
that the Radon-Nikodym derivatives dm,/dm exist for all g and can be 
chosen so that (dm,/dm)(x) be a continuous function on G x X. Namely, if p 
is a continuous positive p-function then the formula 

defines a Radon measure m for which (dm,/dm)(x) = p(sg)/p(s), where 
x = p(s). 

Proof: If p is any locally integrable p-function and U, v are compactly 
supported bounded measurable functions on G then using the properties of 
the Haar measure and applying Fubini’s theorem to the function 
p(g) u(g) 4hg) on Hx G we get 

(Obtaining such a formula was the motivation of introducing p-functions.) 
Note that we need (2) only for continuous p, U, u in which case “a simpler 
Fubini’s theorem” can be applied. 

Now we see from (2) and the properties of the mapping f --) f’ that our 
construction JX f’ dm = JG f . p is correct (use that for the compact set 
A = p(supp f) we can find r E C,(X) such that r 1 A = 1 and r can be written 
in the form r = u’ with some u E C,.(G)). 

If p is a continuous positive p-function then (2) applies and p(sg) p(s)-’ 
has meaning and is continuous on G x G; further, this function depends 
only on p(s) and g. Therefore it can be considered as a functions on G x X, 
and it remains continuous because X carries the factor topology. Now an 
easy calculation completes the proof of the proposition. 

Remark 3. The existence of such an m for which (dm,/dm)(x) is 
continuous on G x X was discovered by L. H. Loomis in 1960. This result 
made it possible to simplify greatly the proof of Mackey’s imprimitivity 
theorem (see [S]). About further developments see the remarks at the end 
of the present note. 
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Now we turn to the induced representations and their intertwining 
theorem. In essence, we adopt the version of R. J. Blattner for the notion 
of the induced representation. The details are the following. Consider a 
strongly continuous unitary representation L of H in the Hilbert space X. 
Then let &’ = {f: G + X; j-is strongly measurable, Ilf( .)lI is in L’loc, and 
f(hg) = 6(h)‘/* d(h)-*‘*LJ( g) Vg E G, h E H}. Then (using the polarization 
identity) we get for any fi , fi E & that (SI ( ), fi(. ) ) is a locally integrable 
p-function and therefore gives rise to a complex Radon measure mf,,h as 
in Proposition2. Now let &‘,= {fE&‘;m.,JX)< +a}, &= {fES$,,;fis 
continuous} and Let 2’ be the closure of cd0 in di with respect to the 
seminorm If\ = rnk ,(X)“’ (or more precisely the closure of X& in the space 
&,/{f~&‘,; IfI =O}). Then X’ ’ is a Hilbert space with the scalar product 
(fiJ2) :=mh,h (X). For f~ ZL, g, g’ E G, and r E C,.(X) we define 
U,“f(g’) :=flg’g) and PL(r)f( g) := r(p(g)) .f(g). Then ( UL, P”) is called 
the induced system of L ( UL is called the representation induced by L). 

It can be shown that pL consists of all functions from J;s,, and also that 
the subspace d0 is large enough. See [ 11 for the details but we mention 
that the heart of the construction is the integral transform 

E(b, 4k)=JH4w- I/* A(h)“‘b(hg) L,u dh (3) 

with g E G, b E C,.(G), and u E X which yields Qb, u) E JZ&. 
Observe that the whole construction of the induced system can be done 

inside r;eO (not concerning measurability), and then simply take the comple- 
tion of d0 in the end. 

Now using our Proposition 1 we see that the original definition of an 
induced system (due to G. W. Mackey) goes through in the non-separable 
case as well and gives us an equivalent notion. Namely, we can pick out a 
continuous positive p-function p, writef(hg) = L,f(g) to define d’ instead 
of d, and write (f,f) =lX ilflj’d m, where m is associated with p as in 
Proposition 1 and, eventually, we see that f in the old system is the same 
as p112, f in the new system. Observe that the factor p”’ does not affect the 
continuity off, nor the local integrability of j~fj~‘. One must use, of course, 
the fact that if r is a locally integrable function (with respect to the measure 
m) then the measure r. dm is associated to the p-function (r 0 p) . p. This 
fact can be proved easily by applying (2). 

Again one might restrict one’s attention to continuousJ: 

THE INTERTWINING THEOREM. Let L and M be strongly continuous 
unitary representations of H in the Hilbert spaces X and Xl, respectively, 
and W be the set of operators which intertwine L and M, i.e., 
~={TEB(X,~); TL,=M,,T f or all h E H >. Then any intertwining 
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operator of ( UL, P”) and (U”, P”) is of the form f -+ To f with some fixed 
TE W (these ones trivially intertwine the two systems). 

Now we present a proof to this theorem which seems to be even simpler 
than the proof given by R. J. Blattner (see [2]). Of course, our proof is 
closely related to Blattner’s proof. 

LEMMA. Let beC,.(G) and f EXL. Set UL(b)f:=jGb(g) LJt-, fdg 
(this is an ordinary Riemann integral in the Hilbert space 2”“). Then 
CJL(b)f E &, i.e., continuous as a function G -+ Xx. 

Proof of the Lemma. We assert that UL(b) f(s) = jG b(g) f(sg-‘) dg = 
jG b( gs) f(g-‘) dg. The second equality is clear because dg is right 
invariant. But ljf( g-‘)[I is locally integrable (since 11 f 11 is even in L’loc 
and local integrability with respect to dg or d( g- ‘) is the same) so we 
get the continuity of the function q(s) := Jo- b(g) f(sg-‘) dg. Hence for 
any rE C,.(X) we have ro p .q~ dO. Apply Fubini’s theorem to 
jGx x bk )r(x) 4x) ds dm(x), where u( p(s)) = (f(sg-‘), v(s))/p(s) with 
some v E XL. Here m and p are taken from Proposition 2. Then we get 
(rop~q,~)=(U~(b)f,rOp.v)=(r~p.U~(b)f,o), and hence rop.q= 
r 0 p U’(b)f for all r E C,(X), and the lemma is proved. 

We note that it will be enough to know this lemma for continuousf, and 
in the above proof it is also enough to take all v E z&, thus we may argue 
with “continuous Fubini’s theorem.” 

Now let S be an intertwining operator of (UL, P”) and (U”, PM). We 
say that k-k, if there is an f E S&(L), i.e., a continuous element of the 
space XL such that Sf E z&(M), f(e) = k, and Sf(e) = k, . Since S is inter- 
twining thus we have 

if f and Sf are continuous then 

f(g) = U,Lf(e)- U,MSf(e) = V(g) VgEG, (4) 

SUL(b) f = U”(b) Sf for all f E lCL, b E C,.(G), (5) 

and 

P”(r) Sf = SPL(r) f for all f E XL, r E C,.(X). (6) 

Choose a net r, from C,.(X) such that the support of rn tends to p(e) and 
sXr, dm=p(e) for all n. Then (6) yields llkljl < IjSll . Ilk11 whenever k-k,. 
Since the relation “-” is clearly linear, we see it is a bounded linear 
operator TO on its domain D. We deduce from (4) and our lemma that 
keD whenever k= UL(b)f(e), and hence fin {f(e);fEdO} (this is seen 
simply by tending with b to the Dirac 6). But the latter set is dense in x 
because of the construction (3). 
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Thus the closure T of T,, is an ordinary bounded operator. By (4), (5) 
and the lemma we have Sf = To f whenever f is of the form UL(b)u, i.e., on 
a dense set, and hence for all J: In particular, for h E H and f E do we have 
TL,f(e) = A(h)“’ 6(h)-1’2Tf(h) = A(h)“’ 6(h)p1’2Sf(h) = MhSf(e) = 
M, Tf(e), i.e., T interwines L and M. 

Remarks. The author has to apologize because the results of this paper 
can be considered as corollaries of the ideas due to R. J. Blattner (see 
[ 1, 23); moreover, these ideas are closely related to the classical paper of 
G. W. Mackey (see [6]). But we must notice that Mackey in [6] and even 
Loomis in [5] did not observe the existence of a continuous positive 
p-function though it would have simplified their proofs. Later contributors 
seem to have avoided the problem by modifying the definition of induced 
representation (cf. [ 1, 2, 73). They did not point out that this is equivalent 
to the older one in the non-separable case, too. The cause of this might be 
the fact these authors were able to give much simpler proofs to the classical 
theorems of Mackey. Moreover, the proof given by B. Orsted to the 
Imprimitivity Theorem goes through even if we do not assume P to be a 
projection valued measure, instead, we just assume P to be a positive linear 
mapping from C,.(X) to B(X) satisfying suprG, P(r) = I. In that case the 
system of imprimitivity may not be induced but anyway a subsystem of an 
induced one in the sense that U, is simply the restriction of Ui to a 
V-invariant subspace A? of XL but P(r) = QPL(r)l,, where Q is the 
projection onto Y?. The latter facts are pointed out in [4]. 

The present note is intended to show these notions are useful for better 
understanding of the theory of induced representations. 
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