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SUMMARY

The concept of the cell as a collection of multi-
subunit protein machines is emerging as a cor-
nerstone of modern biology, and molecular-
level study of these machines in most cases
will require recombinant production. Here, we
present and validate a strategy to rapidly pro-
duce, permutate, and posttranslationally mod-
ify large, eukaryotic multiprotein complexes by
using DNA recombination in a process that is
fully automatable. Parallel production of 12 pro-
tein complex variants within a period of weeks
resulted in specimens of sufficient quantity
and homogeneity for structural biology applica-
tions.

INTRODUCTION

Proteomics approaches including affinity copurification

and large-scale, two-hybrid experiments have revealed

that multiprotein complexes are the rule rather than the ex-

ception in cells (Forler et al., 2003; Rual et al., 2005; Parrish

et al., 2006). Molecular-level studies of the structure and

function of most multiprotein complexes will require ad-

vanced recombinant protein production technologies, as

many are not sufficiently homogenous or abundant to be

purified from source. The majority of X-ray crystal struc-

tures of multiprotein complexes solved to date have in

common that the specimens were purified from source

in sufficient quantity and uniformity to yield well-diffracting

crystals (Dutta and Berman, 2005). Crystal structures of

multiprotein complexes that were recombinantly pro-

duced are few in number, while structures of recombi-

nantly produced, large eukaryotic complexes are almost

nonexistent. Likewise, for single-particle electron micros-

copy, resolution depends on preparing a uniform sample.

This is technically a considerable challenge for scarce,

heterogeneous multisubunit specimens, which would de-

scribe most of the eukaryotic proteome. Therefore, pres-

ently, a great fraction of the proteome is largely inaccessi-

ble for structural studies.
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For eukaryotic multiprotein complex production, we re-

cently introduced MultiBac, a system for protein coex-

pression using multigene baculoviral vectors as a superior

alternative to coinfection by single-gene baculoviruses

(Berger et al., 2004; Roy, 2004). For production in E. coli,

the Duet system (Tolia and Joshua-Tor, 2006) and

pST44 polycistronic vector system (Tan et al., 2005) exist.

These three systems have in common a reliance on con-

ventional cloning strategies utilizing restriction digestion,

electrophoretic separation of DNA fragments, and DNA

ligation. Already for single genes, this process is time

and labor intensive and is essentially refractory to high-

throughput methods. An alternative is combining DNA

fragments by recombinases, and several systems for sin-

gle-gene expression constructs have emerged (Liu et al.,

1998; Muyrers et al., 2004; Benoit et al., 2006). For multi-

gene expression vector generation, we describe here

a general, simple, and rapid recombination-based ap-

proach using baculovirus that yields samples of sufficient

quantity and uniformity for structural studies. The overall

principle is readily adaptable to other expression systems.

RESULTS AND DISCUSSION

The strategy underlying the presented approach makes

use of expression plasmids classified as either ‘‘Accep-

tors’’ and ‘‘Donors,’’ which can be fused in vitro to yield

multigene constructs (Figure 1A). A loxP sequence pres-

ent on all vectors allows for in vitro fusing of Donors

with Acceptors by Cre recombinase (Figure 1A, left).

Acceptor plasmids contain standard replication origins,

while Donor plasmids carry a R6Kg conditional origin, ren-

dering their propagation dependent on hosts expressing

the pir gene (Experimental Procedures). Transforming

in vitro fusion reactions of Donors and Acceptors into pir�

bacterial strains eliminates nonfused Donors, while the

unique antibiotic-resistance markers present on each

Donor and Acceptor allow for selection of the desired

Donor-Acceptor fusions. Donor-Acceptor fusions enter

the MultiBac genome by Tn7 transposition in DH10Multi-

Bac cells (Berger et al., 2004). A separate pathway to

funnel multigene cassettes into MultiBac DNA is shown

in Figure 1A (right). Individual Donors or Donor-Donor
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Figure 1. Rapid Assembly of Multipro-

tein Expression Vectors

(A) In vitro recombination (left). An Acceptor

plasmid (far left, black line) and two Donor

plasmids (center, gray line) are fused to an

Acceptor-Donor-Donor triple fusion plasmid by

a single Cre-loxP reaction. Recombinant genes

encode for human TBP-associated factors

TAF5, TAF6, and TAF9 and for fluorescent pro-

tein eCFP (two copies). Antibiotic markers (col-

ored boxes), expression cassettes (open ar-

rows), loxP (red circles) and Tn7 transposition

sequences (black triangles), and noncondi-

tional origins of replication (boxed) are indi-

cated. In vivo recombination (right). Generation

of a six-gene baculoviral expression vector is

shown. Acceptor-Donor fusions access Multi-

Bac DNA through Tn7 transposition (bottom

center). Single Donors enter the loxP site

through Cre-loxP recombination (top, right) in

DH10MultiBacCre cells. Here, a Donor plasmid

carrying eYFP first entered via loxP, and the

other five genes on an Acceptor-Donor-Donor

triple fusion were then added via Tn7.

(B) Viral stability. Fluorescence micrographs of

cells infected with first- (top-left row) or fourth-

generation (bottom-left row) virus from the

MultiBac expression vector shown in (A). Mi-

crographs were taken from the same field of Sf21 cells. Phalloidin stains actin in infected and uninfected cells (far left). Specific fluorescence signals

for eYFP, eCFP, and TAF9 were detected concurrently from infected cells. Scale bars are 20 mm. Right: Coomassie-stained SDS-PAGE of uninfected

Sf21 cells, cells infected with first- or fourth-generation virus, and purified TAFs. Molecular weights are indicated. Both eCFP and eYFP migrate in the

region of the asterisk.
fusions are prepared in pir+ cells, and these vectors enter

MultiBac DNA by Cre-loxP recombination in DH10Multi-

BacCre cells.

We first constructed a six-gene baculoviral expression

vector containing the human TBP-associated factors

TAF5, TAF6, and TAF9 and the fluorescent proteins

eCFP (two copies) and eYFP (Figure 1A). TAF5-Donor

was generated by ‘‘seamless cloning’’ with BD In-Fusion

recombinase (Benoit et al., 2006; Fitzgerald et al., 2006)

and was fused with eCFP-eCFP-Donor and TAF6-TAF9-

Acceptor, resulting in a triple fusion. eYFP-Donor entered

MultiBac DNA by Cre-loxP recombination, and thereafter

the triple fusion entered eYFP-MultiBac DNA via Tn7

transposition. Composite bacmid was then selected for

initial virus generation. The procedure, starting with en-

coding DNAs to harvesting six-gene baculovirus, took

2 weeks.

Successful protein production with baculovirus de-

pends on virus stability. Deletion genotypes relying on

coinfection with wild-type specimens for propagation

accumulate over generations (Simon et al., 2006), while

selective pressure drives specific deletions of recombi-

nant inserts (Pjilman et al., 2004). The numerous identical

expression elements present in MultiBac viruses are po-

tential homologous recombination sites and are thus of

concern (Roy, 2004). To address this, we challenged the

virus shown in Figure 1A by serial passaging four times.

Only budded virus was harvested (Braunagel et al.,

1998), and we maintained a multiplicity of infection of

�0.1 throughout. Heterologous protein expression of
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first- and fourth-generation viruses was assayed at the

single-cell level by fluorescence microscopy. Both viruses

produced all proteins assayed in >90% of infected cells

(Figure 1B, left; Experimental Procedures). SDS-PAGE

analysis further revealed constant expression levels of

fluorescent proteins and TAFs (Figure 1B, right). Taken

together, the data provide compelling evidence for virus

stability in our experimental setup and validate this ap-

proach for automated applications in which lengthy ana-

lytical steps during virus generation are to be avoided.

TAFs 5, 6, and 9 are components of human general

transcription factor TFIID (Thomas and Chiang, 2006).

However, their stoichiometry within TFIID is not clearly es-

tablished. Purification of TAFs 5, 6, and 9 (Experimental

Procedures) resulted in a yield of 4 mg purified complex

per liter cell culture. Characterization of this complex by

size-exclusion chromatography (not shown) and analytical

ultracentrifugation revealed a single 15S (402 kDa) spe-

cies (Figure 2A), which is consistent with two copies

each of TAFs 5, 6, and 9 (predicted 394 kDa). Electron mi-

crographs showed uniform particles and thus confirmed

sample quality (Figure 2B). Class averages revealed ap-

parent two-fold symmetry consistent with a hexameric

(abg)2 arrangement.

For high-resolution structural and functional studies, it is

often necessary to produce numerous sequence variants

of wild-type protein(s) by using bioinformatic and bio-

chemical data. Chromatin-remodeling factors are multi-

protein complexes that hydrolyze ATP to modify chromo-

some structure (Saha et al., 2006). In Figure 3A, a series
rights reserved
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of chromatin-remodeling complexes and variants of the

wild-type complexes were created by PCR amplification

and funneling the products by seamless cloning into two

Donors and one Acceptor. Cre recombination was used

to generate 8 three-gene and 12 two-gene permutations

in a single-day parallel transformation experiment. In con-

trast, traditional subcloning of all of these permutations

would be expected to require months. Expression, purifi-

cation, and crystallization screening of ten permutations

resulted in initial protein crystals (Figure 3A, bottom),

and a subsequent round of revised expression experi-

ments based on this construct resulted in crystals suitable

for X-ray structure determination.

MALDI mass spectroscopy revealed that a wild-type

three-member chromatin-remodeling complex from Fig-

ure 3A carried a single phosphate that could be removed

in vitro with l-Ppase, as determined by Pro-Q phospho-

staining (Figure 3B) and MALDI analysis (not shown). We

tested whether coexpression of l-PPase with the complex

would also remove the phosphate group. In vivo dephos-

Figure 2. Characterization of Human TAF5,6,9 Transcription

Factor Complex

(A) Results from analytical ultracentrifugation experiments of purified

TAF complex composed of TBP-associated factors TAF5, TAF6, and

TAF9 expressed from the baculovirus shown in Figure 1. Sedimenta-

tion velocity experiments revealed a single species migrating at 15S.

The inset depicts representative curves from sedimentation equilib-

rium experiments at 5,000 rpm (5k) and 8,000 rpm (8k) together with

the respective single-component fit.

(B) Structure of heterohexameric TAF5,6,9 complex analyzed by neg-

ative-stain electron microscopy. Micrographs revealed particles of

uniform size, �13 nm in diameter (left). Class averages (right) show

a rounded tripartite shape with apparent two-fold symmetry. Scale

bars are 100 nm in the overview and 10 nm in the class averages.
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phorylation was quantitative (Figure 3B). We anticipate

that shuttling of a series of modifiying enzymes (e.g.,

kinases, glycosylases) or, by the same token, putative

stable interaction partners in such a framework would like-

wise provide a rapid in vivo screening assay in a eukaryotic

setting.

Our strategy combines homologous (In-Fusion)

and site-specific (Cre-loxP) recombination in tandem for

Figure 3. Rapid Multiprotein Permutation by Recombination

(A) In vitro shuffling of multigene expression cassettes. Genes encod-

ing for chromatin-remodeling complex variants (blue, green, and or-

ange) were PCR amplified and separately inserted into Donors and

Acceptors by In-Fusion recombination (red crosses). Different gene

combinations were then generated by in vitro Cre fusion (black cross).

SDS gel segments (bottom left) of purified complex variants are de-

fined by numbers above each lane. Molecular weights are indicated.

One of ten purified complexes yielded protein crystals (bottom right),

which, after a subsequent round of revised expression experiments

based on the crystallizable construct, diffracted to better than 4 Å

resolution.

(B) Coexpression of a posttranslation modification enzyme. Mono-

phosphorylated purified remodeling complex (lane 1 in [A]) was de-

phosphorylated with l-PPase in vitro or by coexpression of l-PPase

in vivo. Acceptor-Donor-Donor fusions were created as in (A) to coin-

tegrate l-PPase in an Acceptor as schematically indicated (left). Coo-

massie-stained SDS gel lanes of purified complex after in vitro or

in vivo dephosphorylation (right). Molecular weights are indicated.

The region of the gels marked with an asterisk is shown (bottom right)

after Pro-Q phosphoprotein gel staining.
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rapid and flexible generation of multigene coexpression

vectors. Revised expression experiments can be easily

accommodated in this system given the pyramidal assem-

bly of multigene expression vectors from single or double

gene progenitors. All steps in the process, from cloning to

protein expression, could be fully automated in a high-

throughput setting in a format that generates structural

biology grade samples. The general strategy can easily be

adapted to existing prokaryotic, yeast, or mammalian ex-

pression vectors by providing the appropriate promoters

and terminators, resistance markers, and replicons.

EXPERIMENTAL PROCEDURES

Acceptor and Donor Plasmids and Derivatives

Acceptor plasmids pFL and pKL are derivatives of pFBDM (Berger

et al., 2004) with an additional loxP sequence. pFL contains a high-

copy number ColE1 replicon and an ampicillin (Ap)-resistance marker,

and pKL contains a pBR322-derived, low-copy number origin of repli-

cation and a kanamycin-resistance marker. Donor plasmids are

pUCDM (Berger et al., 2004) and pSPL. pSPL is identical to pUCDM,

except for the spectinomycin (Sp)-resistance marker (chloramphenicol

in pUCDM). All vectors contain two expression cassettes and a multi-

plication module that allows for adding additional cassettes (Berger

et al., 2004). All vector sequences and further details about

expression cassettes, recombination elements, and restriction maps

can be obtained from our website (http://www.mol.biol.ethz.ch/

groups/berger_group/MultiBac). The components of the system pre-

sented can be obtained from the authors. Vector and insert PCR

amplifications were carried out with ultra-high-fidelity Phusion poly-

merase (Finzymes). BD In-Fusion reactions were performed by follow-

ing the procedures described (Benoit et al., 2006; Fitzgerald et al.,

2006). In vitro Cre-loxP reactions were carried out as recommended

by the manufacturer (NEB).

Fluorescence Microscopy

Cells infected with composite MultiBac viruses were assayed by fluo-

rescence spectroscopy for phalloidin, eCFP, and eYFP as described

(Berger et al., 2004), with the exception that Cy5-conjugated phalloidin

(Molecular Probes) was used. Flourescence analyses were performed

with a Leica TCS SP confocal microscope. TAF9 was detected with

a polyclonal goat anti-TAF32 antibody (Santa Cruz Biotechnology)

and a Cy3-conjugated donkey anti-goat antibody (Jackson Immuno-

Research, Inc.).

TAF5,6,9 Complex Purification and Characterization

TAF heterohexamer was purified by following standard protocols by

using TALON (BD Biosciences) and calmodulin affinity resin (Strata-

gene), followed by size-exclusion chromatography on a Superose 6

column (Amersham Biosciences). TAF heterohexamer was applied

to a Superdex S200 gel-permeation column (Pharmacia) calibrated

by using a high-molecular weight gel filtration kit (Amersham Biosci-

ences).

Analytical ultracentrifugation studies were carried out in a Beckman

Optima XL-I analytical ultracentrifuge at 4�C. Program Sednterp v1.08

was used to calculate partial specific volumes and solution density.

Interference data from sedimentation equilibrium experiments were

analyzed with the Ultrascan v6 program. Sedimentation velocity ex-

periments were carried out at 30,000 rpm, and interference data

were analyzed by using continuous c(s) distribution in Sedfit v8.52b

(Fitzgerald et al., 2004).

Electron Microscopy

Protein complex (50 mg/ml) was crosslinked with 0.1% formaldehyde

and adsorbed to glow-discharged carbon film for 30 s, followed by

staining with a 0.75% (w/v) uranyl formate solution for 30 s (Ohi
278 Structure 15, 275–279, March 2007 ª2007 Elsevier Ltd All r
et al., 2004). Images of the complex were recorded with a Fei Morgagni

268(D) electron microscope (80 kV, magnification 80,0003). Images

were taken at 1–4 mm defocus with a SIS Megaview III CCD camera

(1300 3 1024 pixels). IMAGIC-5 (Image Science) was used for image

processing of 4,000 individual molecular images of the complex. After

a ‘‘reference-free’’ alignment procedure, images were subjected to

multivariate statistical analysis and classification (van Heel and Frank,

1981). The resulting class averages were then used as reference

images in subsequent rounds of alignment.
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