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1. INTRODUCTION

Our investigation is motivated by analogy with classical Z-graded rings.
There are many theorems connecting the structure of a Z-graded ring
R = &, _, R, and the initial component R,. In particular, Camillo and
Fuller [3] proved that a finitely Z-graded ring is semiprimary or right or
left perfect if and only if its initial subring is.

Let S be a groupoid, and let R be an associative ring not necessarily
with identity. Then R is said to be graded by S, or S-graded, if R is a direct
sum of additive subgroups R, indexed by the elements of § and such that
R,R, c R, for any s,t € S. This concept was first mentioned in {26]. Its
two special cases, group and semigroup graded rings, have been actively
investigated recently (see [13, 15, 20)).

Several interesting results establish connections between the properties
of a graded ring R and homogeneous components R,, where e is an
idempotent of S. Denote by E(S) the set of idempotents of S. Let 7 be a
class of rings. Some authors have considered the implication

R,exr foralleceE(S)=Rex (1
while other authors have examined the equivalence
R,ex foralle € E(S) « Rex. (2)

For rings graded by finite groups results of this sort are deducible with
the use of duality theory of Cohen and Montgomery [8]. Let G be a finite
group with identity e, and let R be a G-graded ring. Beattie and Jespers [1]
and Jensen and Jondrup [12] proved that a ring R graded by a finite group
is right or left perfect or semiprimary if and only if the component R,
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satisfies the same property, where ¢ is the identity of the group (see [20]
for other relevant references). The results of Cohen and Rowen [7] and
Cohen and Montgomery [8] show that the Jacobson radical of R is Baer
radical (nilpotent, locally nilpotent) if and only if the radical of R, is Baer
radical (nilpotent, locally nilpotent), as was noted by Okninski [21, Lemma
1.1]. Also, Theorem 3.5 of [8] implies that R is a PI-ring if and only if R, is
a Pl-ring, sce [17, Lemma 4].

Similar problems have been considered for semigroup graded rings.
Wauters [27] proved that a ring graded by a finite semilattice is semilocal,
or semiprimary, or left or right perfect if and only if all the homogeneous
components satisfy the same property. Oknifiski and Wauters [23, Lemma
4.1] showed that a ring R graded by a finite semigroup S is quasiregular if
and only if R, is quasiregular for every e in E(S). Clase and Jespers
proved that the same can be said of semilocal, right and left perfect,
semiprimary rings [4], Jacobson rings, and rings with nilpotent or locally
nilpotent Jacobson radicals [5].

In a number of papers it was established that various facts concerning
rings graded by finite groups or semigroups can be generalized for group
or semigroup graded rings with finite supports. A graded ring R is said to
have a finite support if only a finite number of the homogeneous compo-
nents of R, arc nonzero. In particular, Beattie and Jespers [1] proved that
a group graded ring R with finite support is semilocal or right or left
perfect or semiprimary if and only if R, satisfies the same property, where
e is the identity of the group. Clase, Jespers, and del Rio [6] proved that a
semigroup graded ring R with finite support is semilocal or right or left or
semiprimary or PI if and only if R, satisfies the same property, for every e
in E(S).

Groupoid graded rings include all the constructions mentioned above as
special cases. Our main theorem shows that, for ring classes .#° with
certain natural closure properties, as soon as relation (1) or relation (2)
has been verified for rings graded by finite groups, it immediately holds for
rings graded by finite groupoids (Theorem 1). This generalizes several
known facts on group or semigroup graded rings (see Corollaries 1, 3).
Thereby our main theorem provides new unified proofs for several differ-
ent previous results.

Our theorem cannot be generalized further by introducing larger classes
of sets with binary operations as indexing sets of graded rings. Indeed, the
definition of a groupoid graded ring naturally appears when one considers
a ring R which is just a direct sum of its additive subgroup R, indexed by
the elements s of a set S (this situation is connected to the results of
several authors; see [18] for references). In such generality there is very
little relation between the properties of R and those of R, and so some
extra restrictions are needed to obtain positive results. Following [26], we
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shall consider the restriction that the product of every two homogeneous
elements of R be homogenous again. In this case we say that R is graded
by the set S.

Then it easily follows that, for any s,¢ € §, there exists « € S such that
R. R, € R,. Therefore we can introduce an operation on S and make R a
groupoid graded ring. For every groupoid § it is easy to construct an
S-graded ring R such that R R, # 0 for each pair 5,7 € §, and so the
multiplication of S is uniquely determined by R. Therefore, it is impossible
to “regrade” such R by a semigroup, if § is not associative. Thus, groupoid
graded rings are a priori interesting; they are equivalent to set graded rings
and cannot be immediately reduced to semigroup graded ones.

As we see, for groupoid graded rings the concepts of a “ring graded by a
finite groupoid” and a “‘graded ring with finite support” coincide. Since our
main theorem transfers results from groups to groupoids, it shows that
these results are immediately true for graded rings with finite supports
(see Remark 1). Thus the concept of a groupoid graded ring explains why
so many facts valid for rings graded by finite groups or semigroups remain
true also for group or semigroup graded rings with finite supports.

The results of this paper were reported at the Conference on Semigroup
Theory (5-7 January 1994, Hobart, Tasmania).

2. MAIN THEOREM

A class % of rings is said to be closed under finite sums of one-sided ideals
if and only if, for every ring with right (or left) ideals, A, B €.%, it follows
that 4 + B €.%. Our proof applies to both (1) and (2), and so we combine
“if and only if” and “provided that” parts in one theorem.

THEOREM 1. Let Z be a class of rings which contains all rings with zero
multiplication and is closed for homomorphic images, right and left ideals,
ring extensions. Then the following assertions are equivalent:

(i) for each finite groupoid S, an S-graded ring R = © __ (R, belongs
to % provided that (if and only if ) R, belongs to % for every idempotent e
of §;

(ii) for each finite semigroup S, an S-graded ring R = ® _ (R, be-
longs to # provided that (if and only if ) R, belongs to ¥ for every idempotent
e of S.

If, moreover, % is also closed for finite sums of one-sided ideals, then the
following is equivalent to the abouve assertions:
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(iii)  for every finite group G with identity e, a G-graded ring R =
& _ R, isin ¥ provided that (if and only if) R, €.

gEG™E

3. PROOF OF THE MAIN THEOREM

The implication (i) = (ii) is trivial.

Assume that (ii) holds. Then Lemma 3 of [15] tells us that % is closed
for finite sums of one-sided ideals. For convenience we include a proof of
this fact. Clearly, it suffices to consider a ring 4 which is the sum of its
two right ideals M and N from 7. Let L = {a, b} be the two-element
semigroup such that ab = a = a°, ba = b = b”. In the semigroup ring AL
consider subrings R, = Ma and R, = Nb. Then R = R, + R, is L-graded.
Since R, = M and R, = N belong to .%, it follows from (ii) that R € 7. It
is easily seen that J = {k(a — b)lk € M N N} is an ideal of R and R/I =
A. Given that .7 is closed for homomorphic images, we get 4 €7, as
required.

Since (ii) = (iii) is also trivial, it remains to prove (iii) = (i) with the
extra hypothesis that .7 is closed for finite sums of one-sided ideals.

Recall that a subset 7 of R = @ _ R, is said to be homogeneous if
I=® _ I, where I, =1nN R_. The support of I is the set Supp(/) =
(s € SII, # O}. If I is a homogeneous ideal of R, then R/I = & _ R /I,
is S-graded, as well.

Let S be any finite groupoid, R = © _ R, an S-graded ring, and [ a

homogeneous two-sided ideal of R. Given that % is closed for ideals and
homomorphic images, it is very easy to prove that R is a counterexample
for (i) if, and only if, either I or R/l is a counterexample for (i).
Suppose now that R = @ __ (R, is a counterexample for (i) with |S]
minimal. We claim that, given any s € § and any additive subgroup A4 or
R, such that Supp(AR) # S, there is a two-sided homogeneous ideal I of
R such that A C I, I €%, and I, €% for every idempotent e & E(S).
Obviously, I is not a counterexample for (i). As a consequence, we shall be
able to factor I out, and a new counterexample for (i) will appear in which
A=0.

If AR =0, we take /] = R'4. Then I° = 0,and so [/ € % and I, €.%, for
every t € S.

If AR =P # 0 then, by the minimality of |S|, P cannot be a counter-
example to (i). In the “provided that” part of our theorem, that R is a
counterexample implies that R, is in .7, for every e € E(S). Then P, €%
for every e € E(S), because P, is a right ideal in R,. Since P satisfies (i),
we get P €% (In the “if and only if” version of the theorem, that R is a
counterexample implies that either R €% or R, is in %, for every

sES
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e € E(S). If R €%, then P € % because P is a right ideal of R. If R, is
in 7, for every e € E(S), then P, is also in %, and so P €.%, again.)

But Supp(R,P) # §, for every x € §, and the same argument applied to
the additive subgroup R, A contained in R, tells us that R, .4 and
(R, A), are in %, for every idempotent e € S. Given that % is closed for
finite sums of two-sided ideals, it follows that I = R'P =P + L _ R P is
a homogeneous two-sided ideal with the desired properties.

If now s € S and sS # S, then Supp(R,R) C sS # § and, putting 4 = R,
above, we obtain a counterexample for (i) whose sth homogeneous compo-
nent is zero and hence can be graded by the set T = §\ {s}. As in Section
1, we can introduce a multiplication on this set, make it a groupoid, and
obtain a contradiction to the minimality of |S|. Therefore s§ = S and, by
changing sides in this argument, we get Ss = §. Thus § is a left and right
simple groupoid.

We claim that it is also associative and it is thereby a semigroup. In
deed, if (st)x # s(xx) then R R,Rx C R, N R,,, implies that R R, R,
= 0 and so Supp(R R,R) # S, because S is finite. By applying the above
paragraph with 4 = R R,, we may assume R R, = 0. Again using the
same reduction with 4 = R, we can also assume R = 0, because
Supp(R,R) # S. This yields a contradiction with the minimality of [S|. So
our claim has been established. It is well known and easily seen that every
finite left and right simple semigroup is a group. Thus S is a group, and we
obtain a contradiction with (iii), which completes the proof.

Note also that the implication (iii) = (ii) easily follows from [23, proof of
Lemma 4.1]. This was pointed out in [14, Lemma 1; 17, Lemma 5]). We do
not use the proofs of these lemmas; they all follow from our main
theorem.

Next we give an example which shows that the closedness restrictions on
.7 are essential in the main theorem.

ExaMmpLE 1. The class .# of Brown—McCoy radical rings satisfies
implication (1) in (iii), but not in (ii).

It is well known that .# contains all rings with zero multiplication and is
closed for ring extensions, homomorphic images, and ideals [19, Sect. 37].
Theorem 5 of [9] says that, for every finite group G with identity e, each
G-graded ring R belongs to .# provided that R, €.#.

Take a simple non-Artinian domain R with unity (for example, the Weyl
algebra A,). Pick two different maximal right ideals M and N in R. It is
proved in [2, Lemma 2], that M and N are simple. Since R has no nonzero
idempotents, M and N are rings without identities, and so they are
Brown-McCoy radical rings. However, R =M + N is Brown-McCoy
semisimple. Therefore .# is not closed for sums of two right ideals. It
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follows from the second paragraph of the proof of Theorem 1 that .# does
not satisfy (ii).

4. MODIFICATIONS OF THE MAIN THEOREM

Remark 1. For groupoid gradings the terms “graded ring with finite
support” and “ring graded by a finite groupoid” are the same. As a
consequence, conditions (i), (ii), and (iii) of Theorem 1 are equivalent,
under the given hypotheses, to the corresponding statements obtained by
replacing “ring graded by a finite groupoid (semigroup, group)’ by
“groupoid (semigroup, group)-graded ring with finite support,” and so the
theorem can be rewritten for graded rings with finite supports.

Remark 2. In the “if and only if” version we can slightly weaken the
closedness restrictions imposed on the class of the hypothesis of Theo-
rem 1.

Indeed, the example in the last paragraph of the proof of necessity of
[16, Theorem 1] shows that every class .# which contains all rings with zero
multiplication, is closed for ring extensions and homomorphic images, and
satisfies the “if and only if” version of (ii) is also closed for one-sided
ideals. For completeness we include a proof of this fact. Consider a ring
A €% with a right ideal I. Let L = {c¢,d} be a semigroup such that
cd=c=c* dc=d=4d* Then R =Ac + Id is L-graded. It is readily
verified that N = {i(c — d)li €I} is an ideal of R and N? = 0. Since
N e# and R/N = A €%, we get R €.%. The “if and only if” version of
(i) yields I = R, €.%, as required. Thus, in the “if and only if”’ case of the
main theorem the closedness of % for right and left ideals can be moved
from the hypothesis of the theorem to the extra restrictions before (iii).

Remark 3. Suppose that R is an S-graded ring and R, is a subring of
R.If s' & E(S), then R2 C R, N R, = 0. Since every class of Theorem 1
contains all rings with zero multiplication, our main theorem and several
corollaries can be rewritten by replacing “every e in E(S)” by “every R,
which is a ring.”

5. COROLLARIES

For the class of all quasiregular (locally nilpotent; Baer radical) rings the
properties in the hypothesis of Theorem 1 are well known. In particular, it
is known that the Jacobson (Levitzki; Baer) radical of a ring contains all
quasiregular (locally nilpotent, Baer radical) left and right ideals of the
ring, and therefore these classes are closed for sums of one-sided ideals
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(see [10, Sects. 1.6, 8.1, 8.3]). For Pl-rings all the necessary closedness
properties are obvious except for the very difficult fact that every sum of
two right (or left) ideals satisfying polynomial identities is a PI-ring. This
was proved by Rowen [25]. Jaegermann and Sands established the fact that
the class of Jacobson rings is an N-radical class, and that all such classes
are closed for left and right ideals (see [11, p. 348, Theorem 11]). For
semilocal, right or left perfect, semiprimary rings all properties which are
not straightforward were proved by Clase and Jespers [4].

For the classes of semilocal, right or left perfect, semiprimary, nilpotent,
locally nilpotent, T-nilpotent, Baer radical, quasiregular, and PI-rings the
“if and only if” versions of (iii) are also known: see [12] for right or left
perfect and semiprimary rings; [1] for right or left perfect, semilocal, and
semiprimary rings; [7] for nilpotent rings; [8] for quasiregular, Baer radical,
and locally nilpotent rings; [17] for Pl-rings. Note that for nilpotent and
T-nilpotent rings assertion (iii) (and even Corollary 1 below) follows from
the Ramsey theorem (see [18]). Combinatorial proofs are also possible for
the classes of locally nilpotent and Baer radical rings [18]. A “provided
that” version of (iii) for Jacobson rings is contained in [24]; see also [5].

COROLLARY 1. Let & be the class of all semilocal (right perfect; left
perfect; semiprimary; nilpotent; locally nilpotent; T-nilpotent; Baer radical,
quasiregular; PI) rings, S a finite groupoid, R = @© _ (R an S-graded ring.
Then R € % if and only if all R, belong to % for all e € E(S). In addition, R
is a Jacobson ring provided that R, is a Jacobson ring for every e € E(S).

COROLLARY 2. Let 7 be a class of rings which contains all rings with zero
mudtiplication and is closed under subrings, homomorphic images, ring exten-
sions, and finite sums of one-sided ideals. Then, for any finite groupoid S,
each S-graded ring R = © _ (R, belongs to % if and only if R, is in 5% for
every e in E(S).

Proof. 'The result is true for S a group by [8, Theorem 3.5], as was
noted in [17, Lemma 4]. Hence the corollary follows from Theorem 1.

COROLLARY 3. Let ¥ be the class of all semilocal (right perfect; left
perfect; semiprimary; nilpotent, locally nilpotent; T-nilpotent; Baer radical,
quasiregular; PI) rings, S a semigroup, R = ©__ (R, an S-graded ring with
finite support. Then R € % if and only if R, € % for every e in E(S).

Corollary 3 was known earlier in the following special cases:
(a) for semiprimary or left perfect or right perfect Z-graded rings
with finite supports [3, Proposition 10];

(b) for a finite semigroup § and quasiregular rings [23, Lemma 4.1]
(the same proof holds for nilpotent, locally nilpotent, Baer radical rings, as
noted in [14], and for Pl-rings, see [17]);
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(c) for a semilattice (i.c., a commutative semigroup entirely consist-
ing of idempotents) S and semilocal, right perfect, left perfect, semipri-
mary rings [27};

(d) for a group S and semilocal, right perfect, left perfect, semipri-
mary rings [1];

(e) for a finite semigroup S and semilocal, right perfect, left perfect,
semiprimary rings [4];

(f) for Pl-algebras and certain periodic semigroups [17];

(g) for an arbitrary semigroup S and semilocal, right perfect, left
perfect, semiprimary rings [6].

Our proof of Theorem 1 is independent of the proofs in the papers
indicated in (a) to (g). Note that [1] uses reflected radicals, and [4, 17, 23,
27] use the structure theory of semigroups. The proof in [6] uses ideas
similar to ours, but was obtained independently.

Denote the Jacobson radical of a ring R by #(R). The following analog
of [3, Theorem 1] immediately follows from Corollary 1.

CoROLLARY 4. Let S be a semigroup, R = © __ (R an S-graded ring. If
R, is semilocal for every e in E(S) and if R, € #(R) for all finitely many s in
S, then R is semilocal, too.

Our main theorem can also be applied to some graded rings with not
necessarily finite supports. We record only one corollary of this sort.

COROLLARY 5. Let S be a periodic semigroup with a finite number of
idempotents and only finite subgroups, and such that all nil factors of S are
nilpotent. Let R = @ __ (R, be an S-graded ring. Then R is semiprimary if
and only if R, is semiprimary for every e in E(S).

Proof. 1t follows from [22, Theorem 3.3] or from [17, Lemma 11] that S
has a finite ideal chin with finite or nilpotent factors. If / is an ideal of §,
then R is an extension of R, by R/R,, and R/R, is graded by S//. As in
[17, proof of Theorem 1], it easily follows by induction on the length of the
ideal chain of § that it suffices to prove the corollary for all factors of S.
For finite factors Theorem 1 in the present paper gives the result. For
nilpotent factors the claim is obvious.

Analogous corollaries can be written for other properties from Theorem
1. Known examples of semigroup rings show that all the restrictions on
semigroup S in Corollary 5 are essential (cf. [17, 22]).
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