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Abstract

The strength of trophic cascades in the pelagic area of lakes at low productivity has been discussed intensively, but
predictions of trophic coupling differ strongly. Many studies suggest that trophic cascades are weak in oligotrophic
lakes, but some models discussed that trophic interactions might be strong at low nutrient concentration. Here, we
used time series over 9 (phytoplankton and zooplankton) or 6 (fish) years from the oligo-mesotrophic Lake Stechlin
(Germany) to explore correlative relationships between biomasses of these trophic levels. The fourth trophic level of
piscivorous fish was almost absent in the pelagic area. The biomass of planktivorous coregonid fishes was not at all
correlated to total zooplankton biomass, which was dominated by calanoid copepods. However, there was a strong
negative correlation of adult coregonid biomass to the proportion of Daphnia in zooplankton, and a strong positive
correlation of adult fish to proportion of calanoid copepods. Zooplankton and phytoplankton biomasses were not
correlated except for a significantly negative correlation between Daphnia biomass and biomass of Cyanobacteria.
Overall, our results suggest that planktivorous fish may modify the zooplankton structure, but not the zooplankton
biomass, in lakes of low productivity. However, this top-down effect by fish does not cascade further down to the
phytoplankton biomass or community structure, confirming earlier hypotheses that trophic cascades are weak in
oligotrophic lakes.
r 2008 Elsevier GmbH. All rights reserved.
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Introduction

The strength of top-down interactions in the pelagic
area of lakes has been discussed intensively, both from
the perspective of basic research (e.g., Brooks and
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Dodson, 1965; Carpenter et al., 1985; Brett and Gold-
man, 1996) and with respect to the application as a
management tool to improve lake water quality (i.e.,
biomanipulation; Shapiro et al., 1975; DeMelo et al.,
1992; Mehner et al., 2002). Hypotheses on the corre-
spondence between the strength of pelagic trophic
cascades and the trophic state of lakes can be grouped
into three distinct concepts. The first concept assumes
that trophic cascades are strongest at intermediate
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productivity, and weaker at both oligotrophic and
eutrophic states. According to the intermediate trophic
state hypothesis, Carney (1990) and Elser and Goldman
(1991) suggested that the grazing by herbivorous
zooplankton (mainly Daphnia) on phytoplankton is
maximised at mesotrophic conditions. This hypothesis
has been supported by empirical analyses in 466
temperate lakes where the Daphnia proportion of total
zooplankton biomass showed a unimodal curve, peak-
ing at intermediate levels of total phosphorus concen-
tration (Jeppesen et al., 2003). Similarly, the food chain
theory suggested that an efficient control of planktivor-
ous fishes by abundant populations of piscivorous
predators occurs only at mesotrophic conditions
(Persson et al., 1992). Consequently, only at intermedi-
ate productivity was phytoplankton expected to be
efficiently controlled by zooplankton grazing. At oligo-
trophic states, the low overall productivity of the system
prevents the establishment of a fourth trophic level
(Persson et al., 1992).

The top-down:bottom-up hypothesis predicted that
the strength of trophic cascades is a negative function of
enrichment because of the increasing importance of
inedible algae along the nutrient gradient such that
phytoplankton control by zooplankton grazing was
expected to be strong only in oligotrophic lakes
(McQueen et al., 1986). The third hypothesis (referred
to as nutrient enrichment) stated in contrast that the
grazing effect of zooplankton on phytoplankton is a
positive function of nutrient enrichment (Sarnelle,
1992), and that the effects of zooplankton on phyto-
plankton would be low in oligotrophic lakes because of
an overall low zooplankton biomass in which inefficient
grazers like copepods dominate (Elser and Goldman,
1991). A weak trophic cascade at low productivity was
corroborated by empirical studies which failed to detect
a significant influence of fish on zooplankton and
phytoplankton biomasses in Canadian oligo-meso-
trophic lakes (Currie et al., 1999; Bertolo et al., 2005).

Accordingly, the intermediate trophic state hypoth-
esis, the food chain hypothesis and the nutrient
enrichment hypothesis predict weak trophic cascades
in oligotrophic lakes, whereas the top-down:bottom-up
hypothesis suggests stronger pelagic interactions at low
productivity. Therefore, we tested these hypotheses by
analysing the inter-annual variability of phytoplankton,
zooplankton and fish biomasses in the deep, oligo-
mesotrophic Lake Stechlin (Germany). In this lake, the
dominant planktivorous fish species were coregonids,
namely vendace (Coregonus albula) and the lake-
endemic Coregonus fontanae (Schulz and Freyhof,
2003; Schulz et al., 2006). Vendace populations are
especially suitable for such analyses since they show
population cycles with strongly differing abundances
between subsequent years due to negative inter-cohort
interactions and differential recruitment rates (Hamrin
and Persson, 1986; Helminen and Sarvala, 1997).
Accordingly, we expected that the fluctuating fish
populations may induce a trophic cascade differing in
strength between the years such that negative correla-
tions of time series between trophic levels would mainly
reflect real interactions in the pelagic area of Lake
Stechlin.
Material and methods

Lake description

Lake Stechlin is situated about 100 km north of Berlin
(Germany). It has a surface area of 4.25 km2 and mean
and maximum depths of 22.3 and 69m, respectively.
According to long-term (1998–2006) annual averages
of total phosphorus concentrations (grand mean
over nine years ¼ 11mgm�3, range 10–14mgm�3) and
chlorophyll-a concentrations (grand mean over nine
years ¼ 3mgm�3, range 2–4mgm�3), the lake can be
considered as oligotrophic to weakly mesotrophic
(Koschel et al., 2002; Koschel and Adams, 2003).

According to earlier analyses of trophic variables with
high spatial and temporal resolution in Lake Stechlin
(Mehner et al., 2005), horizontal variability between the
lake basins is low such that samples taken at the deepest
location of the lake reliably reflect biomass and
assemblage composition of the entire pelagic area.
However, there was a strong seasonal effect on
variability of samplings (Mehner et al. 2005). Accord-
ingly, we used annual averages of phytoplankton and
zooplankton to integrate over the entire season. Fish
samples were taken in June since both young-of-the-year
vendace and the recruited 1+ vendace and Fontane
cisco are reliably recorded as pelagic targets by
hydroacoustics during this month (Mehner and Schulz,
2002; Mehner et al., 2007).

Phytoplankton sampling and analyses

Phytoplankton sampling and analyses were conducted
according to Padisák et al. (2003). Samples from 10
depths evenly distributed within the 0–25m layer were
taken at the sampling site located at the maximum depth
of the lake. Phytoplankton composition and biomass
were then estimated from integrated samples. Sampling
frequency varied between weekly and monthly, with
more frequent sampling during the vegetation period.
Phytoplankton species were identified using the most
up-to-date phycological manuals and literature. The
phytoplankton species were grouped into the larger
systematic groups (divisions) Cyanobacteria, Chloro-
phyta, Cryptophyta, Dinophyta and Heterokontophyta.
The two most important classes of Heterokontophyta in
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Stechlin, the classes Chrysophyceae and Bacillariophy-
ceae, were grouped separately. The phytoplankton
species which do not belong to these systematic
categories were grouped as ‘other phytoplankton’.
A minimum of 400 settling units per species (cells,
filaments or colonies) were counted in each Lugol-fixed
sample, giving a counting accuracy of 710% for total
phytoplankton (Lund et al., 1958). Phytoplankton
biomass was estimated by geometrical approximations
using the computerised plankton counter Opticount
(Hepperle and Schmidt-Halewicz, 2000). For each
systematic group the monthly and annual means were
calculated. Additionally, autotrophic picoplankton was
also counted in parallel samples with epifluorescence
technique as described in Padisák et al. (1997). All
values were expressed as g fresh weight (fwt)m�2, scaled
to the mean depth (22.3m) of Lake Stechlin.
Zooplankton sampling and analyses

Crustacean plankton was collected by vertical tows
from 0–22m (mean depth) and 22–65m, respectively,
using a cone-shaped closing net (mesh size 90 mm,
opening 27 cm2; length 1.2m, Hydrobios, Kiel, Ger-
many) at the deepest location of the lake (NE basin).
From April to October, the lake was sampled biweekly.
For the rest of the year monthly samples were taken.
Samples were preserved in a 4% sugar-formaldehyde
solution. A sub-sample containing at least 100 indivi-
duals of the dominating species or group was counted
using an inverted microscope at 60-fold magnification.
Mean length was estimated by measuring 30–40
individuals. Biomass of the crustaceans was calculated
using published length–weight relationships (Bottrell
et al., 1976; Kasprzak, 1984). Dry weight (dw)
and carbon (c) were converted into fresh weight
(fwt) following Winberg et al. (1971) (dw ¼ c�2,
fwt ¼ dw�5). Taxa were identified according to Flößner
(1972, 2000), Lieder (1996), Einsle (1993) and Kiefer and
Fryer (1978).

Zooplankton were categorised into six groups, namely
daphnids (Daphnia cucullata, D. hyalina, Daphnia

hyalina x cucullata), small cladocerans (Bosmina corego-

ni, Bosmina longirostris, Alonella sp., Ceriodaphnia

quadrangula, Alona sp., Chydorus sphaericus, Diaphano-

soma brachyurum, Polyphemus pediculus), calanoid
copepods (Eudiaptomus gracilis, Eurytemora lacustris,
Heterocope appendiculata), cyclopoid copepods (Ther-

mocyclops oithonoides, Mesocyclops leuckarti, Diacy-

clops bicuspidatus, Acanthocyclops sp., Paracyclops

fimbriatus), juvenile copepods (copepodit and nauplii
stages) and invertebrate predatory zooplankton (Lepto-

dora kindtii, Bythotrephes longimanus).
Conversion of invertebrate abundance into biomass

was done by assuming a fixed biomass for Leptodora
kindtii and Bythotrephes longimanus of about 500 mg fwt
(see formula in Mehner et al., 1995), since length
measurements were not available.

Zooplankton biomass was calculated as areal value
over the total water column (g fresh weight (fwt)m�2)
summed from epilimnetic and hypolimnetic biomasses.
To allow for comparison with phytoplankton and fish
biomasses obtained from differing depth ranges, this
value was finally scaled to the mean depth of the lake
(22.3m; i.e., multiplied by 22.3/65 ¼ 0.34). Group-
specific annual average biomasses were calculated from
the individual samples.

Fish sampling and analyses

Fish biomass was estimated by hydroacoustic meth-
ods. Night-time surveys were conducted every June in
the years from 2000 through 2006 except for 2004. Since
vendace larvae hatch in April, the juveniles are of
sufficient size to be identified by hydroacoustics in June
(Mehner and Schulz, 2002). Accordingly, annual surveys
in June are expected to record appropriately the inter-
annual differences in fish population biomass due to
variable fish recruitment. On-axis calibrations of the
hydroacoustic systems were performed at least once per
year by a standard copper sphere of 23.0mm diameter
(reference target strength (TS) ¼ �40.4 dB at 1490m s�1

sound speed). Each annual survey covered five transects
about 1 km long, all with a maximum depth of least
45m, in the central and north basins of Lake Stechlin
(for location of transects, see Mehner et al., 2007). We
used either a SIMRAD EY-500 120 kHz split-beam
transceiver with 41� 101 elliptical transducer (years
2000–2002) or a SIMRAD EY-60 120 kHz split-beam
transceiver with 71� 71 circular transducer since 2003.
Pulse duration was 0.1 or 0.3ms (EY-500) or 256 ms
(EY-60), and pulse interval varied between 0.1 and 0.4 s.

Data analysis was performed by the Sonar 5Pro
software, version 5.9.5 (Balk and Lindem, 2005). Upper
echo thresholds for file conversion were set to �80dB
(volumetric backscattering strength, Sv) and �75dB (TS).
Single echo detection (SED) was based on 0.8–1.2 relative
pulse widths, a one-way beam compensation of 3dB, and
a maximum phase deviation of 0.8. The recorded file of
each transect was split into 13 separate 5m thick depth
layers, starting outside of the near-field range of the
transducer at 1m water depth (1–6, 6–11m,y, 61–66m).
These layers were separately analyzed to prevent biased
estimates of total fish densities due to inhomogeneity in
vertical distribution (see Mehner et al., 2005).

TS of echoes were converted into vendace total
lengths (TLs) by

TS ðdBÞ ¼ 25:5 log10 TL ðcmÞ � 70:9

(Mehner, 2006). Estimates were limited to the potential
length range of vendace (2–25 cm TL, identical to a TS
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range between �60 and �36 dB). Areal fish abundances
(ind.m�2) per 5-m thick layer were converted into areal
biomasses (g fresh weight (fwt)m�2) by

fwtðgÞ ¼ 0:00507TL ðcmÞ3:089

(Mehner and Schulz, 2002). Finally, areal biomasses
were summed over all vertical layers per transect, and an
average areal fish abundance for Lake Stechlin was
calculated from the five transects per survey. According
to the frequency distribution of single targets, total
biomass was split into biomass of fish o10 cm TL (i.e.,
mainly juvenile fish, TSo�45 dB) and biomass of fish
410 cm (i.e., mainly adult fish TS X�45 dB). Echoes
stronger than �36 dB, i.e. 425 cm TL, were considered
predatory fish (presumably perch, Perca fluviatilis,
Anwand et al., 2003). Average depth of the five transects
was 40m. To allow for direct comparison with
zooplankton and phytoplankton biomasses, all areal
fish biomasses were multiplied by 0.56 to scale the data
to 22.3m mean depth of Lake Stechlin.

Statistical analyses

All time series (single groups of phytoplankton,
zooplankton and fish biomasses) were tested for serial
autocorrelation. There was no autocorrelation at annual
lags �1, �2 or �3 years except for a weak negative
correlation for calanoid copepod biomasses between the
current and the previous years (lag �1 year, r ¼ �0.59,
Box–Ljung statistics ¼ 4.36, p ¼ 0.037). Accordingly,
pairwise linear correlation coefficients (Pearson’s r) were
calculated between all time series, with particular
emphasis on negative interactions between single groups
from different trophic levels which would indicate the
existence of a pelagic trophic cascade. We did not
correct the significance level from a ¼ 0.05 to a lower,
table-wide value by a sequential Bonferroni procedure
according to recent discussions that the chance of many
weakly significant correlations being spurious is extre-
mely improbable (Moran, 2003). If we found weakly
significant negative interactions between biomasses of
fish and certain zooplankton groups, we tested in
addition whether fish biomass and zooplankton assem-
blage structure (group proportions of total crustacean
biomass) were negatively correlated. All calculations
were performed by SPSS 9.0 (SPSS Inc. 1999, Chicago,
IL, USA).
Results

Phytoplankton composition was dominated by Cya-
nobacteria only in 1998. From 1999 onwards, there was
an increasing proportion of Bacillariophyceae in the
phytoplankton such that this group dominated the total
phytoplankton biomass by 48–61% in the years
2000–2006. Except for 1998 and 1999, Cyanobacteria,
Chrysophyceae and Cryptophyta had intermediate
biomasses, whereas Chlorophyta, Dinophyta and others
(Euglenophyta, Xanthophyceae) contributed only mar-
ginally to total phytoplankton biomass (Fig. 1a). The
total annual average phytoplankton biomass ranged
between 8.47 (year 1999) and 18.87 (year 2006) g fwtm�2

(Fig. 1a).
Zooplankton biomass was clearly dominated by

calanoid copepods (41–68% of total zooplankton
biomass), with Eudiaptomus gracilis contributing stron-
gest to biomass among all zooplankton species. Daphnia

and small cladocerans (mainly Bosmina longirostris)
contributed with 5–12% each to overall zooplankton
biomass (Fig. 1b). The proportion of Leptodora and
Bythotrephes was less than 1% all over the years (Fig.
1b). The annual average total zooplankton biomass
varied between 1.19 (2006) and 3.66 (2002) g fwtm�2

(Fig. 1b).
The fish biomass varied 3.4-fold between 2.02 and

6.81 g fwtm�2 between 2000 and 2006 (Fig. 1c). Biomass
of fisho10 cm length was lower than that of adult fish in
almost all years, but exceptionally low proportions were
recorded in 2005 (12.1%) and 2006 (8.0%) (Fig. 1c).
Only very few echoes were detected which represented
piscivorous predators (i.e., fish 425 cm TL). Their
annual contribution to the total number of echoes per
survey was very low and ranged between 0 and 0.8%
(Fig. 1c). Accordingly, conversion of predator abun-
dance into biomass would have been based on uncertain
length–frequency distributions due to low number of
detections, and was thus avoided. Instead, the numerical
proportions of predatory fishes were graphically dis-
played (Fig. 1c).

Time series of single groups of phytoplankton,
zooplankton and fish biomasses were only occasionally
significantly correlated (Table 1). There were a number
of positive correlations between single phytoplankton
groups, such as Dinophyta and Bacillariophyceae, or
between single zooplankton groups, such as juvenile and
calanoid copepods (Table 1). A top-down effect by fish
on lower trophic levels was indicated by the weakly
significant negative correlations between fish 410 cm
biomass and Daphnia biomass (r ¼ �0.73, n ¼ 6,
p ¼ 0.108; Fig. 2a), and between Daphnia biomass and
Cyanobacteria biomass (r ¼ �0.76, n ¼ 9, p ¼ 0.017;
Fig. 2e). In contrast, fish o10 cm and juvenile copepods
were weakly positively correlated (r ¼ 0.72, n ¼ 6,
p ¼ 0.111; Fig. 2b), and cyclopoid copepods and
Chrysophyceae were significantly positively correlated
(r ¼ 0.86, n ¼ 9, p ¼ 0.003; Fig. 2f). However, there was
a strong top-down effect of fish on zooplankton
assemblage structure. The biomass of fish 410 cm was
significantly negatively correlated to Daphnia propor-
tion of total crustacean biomass (r ¼ �0.89, n ¼ 6,
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p ¼ 0.016; Fig. 2c), whereas the proportion of calanoid
copepods significantly positively correlated with fish
410 cm biomass (r ¼ 0.92, n ¼ 6, p ¼ 0.009; Fig. 2d).
Discussion

The time series of phytoplankton, zooplankton and
fish biomasses in the oligo-mesotrophic Lake Stechlin
accumulated over the last 9 years gave little evidence for
the existence of a strong pelagic trophic cascade. Despite
a more than three-fold inter-annual variability in
biomass of the planktivorous coregonids, the drastic
changes at the top of the food web did not result
in synchronous changes at either the zooplankton
or the phytoplankton biomass levels. Furthermore, the
fourth trophic level of piscivorous predators was
almost absent such that the biomass of coregonid fishes
was likewise not top-down controlled. A few weak
correlations indicated that Daphnia biomasses tended to
be higher in years with lower adult fish biomasses.
Similarly, Cyanobacteria biomass was higher in
years with low Daphnia biomasses. These negative
interactions would reflect a control of larger cladocerans
by fish feeding, which in turn facilitates the population
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Table 1. Linear correlations (Pearson’s r) between time series of phytoplankton (1998–2006), zooplankton (1998–2006) and fish biomasses (2000–2006, 2004 missing) in Lake

Stechlin (all values are annual averages in g fwtm�2)

Cyanobacteria Chlorophyta Chrysophyta Cryptophyta Dinophyta Bacillariophyta Other

phytoplankton

Daphnia Small

cladocerans

Cyclopoid

copepods

Calanoid

copepods

Juvenile

copepods

Invertebr.

predators

Fisho10 cm Fish

410 cm

Cyanobacteria �0.067 �0.297 �0.577 �0.118 �0.476 0.212 �0.763 �0.240 �0.225 �0.287 �0.459 �0.201 �0.493 0.729

Chlorophyta 0.863 �0.478 0.064 0.346 0.072 0.716 �0.188 �0.283 �0.175 �0.238 �0.418 0.083 �0.917 0.418

Chrysophyta 0.438 0.193 0.521 0.136 0.508 �0.551 0.176 0.462 0.858 0.349 0.178 0.151 0.647 �0.310

Cryptophyta 0.104 0.870 0.150 �0.129 0.038 �0.071 0.450 0.443 0.463 0.512 0.286 �0.006 0.251 0.017

Dinophyta 0.762 0.361 0.727 0.742 0.685 0.298 �0.419 �0.303 0.522 �0.346 �0.585 0.564 �0.270 0.483

Bacillariophyta 0.195 0.855 0.162 0.923 0.042 �0.064 0.046 0.063 0.634 0.079 0.005 0.502 0.193 0.129

Other

phytoplankton

0.583 0.030 0.124 0.856 0.436 0.869 �0.337 �0.067 �0.134 0.007 �0.348 0.416 �0.538 0.713

Daphnia 0.017 0.628 0.651 0.224 0.262 0.906 0.375 0.582 �0.063 0.347 0.646 0.106 0.342 �0.718

Small

cladocerans

0.533 0.461 0.210 0.232 0.428 0.872 0.864 0.100 0.423 0.632 0.465 0.382 0.568 �0.288

Cycl. copepods 0.561 0.652 0.003 0.209 0.149 0.067 0.731 0.872 0.256 0.309 �0.084 0.449 0.571 0.131

Cal. copepods 0.454 0.537 0.358 0.159 0.362 0.840 0.987 0.361 0.068 0.418 0.797 �0.049 0.649 0.314

Juvenile

copepods

0.214 0.263 0.647 0.455 0.098 0.989 0.358 0.060 0.207 0.830 0.010 �0.266 0.714 �0.116

Invertebr.
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0.604 0.832 0.699 0.988 0.114 0.169 0.265 0.786 0.310 0.225 0.900 0.489 0.052 0.111

Fish o10 cm 0.320 0.010 0.165 0.631 0.604 0.714 0.271 0.507 0.240 0.236 0.163 0.111 0.922 �0.106

Fish 410 cm 0.100 0.410 0.551 0.975 0.331 0.807 0.112 0.108 0.580 0.805 0.545 0.827 0.835 0.842

The biomasses of trophic levels are split into several groups. Correlation coefficients are given above the diagonal, whereas significance levels are given below the diagonal. Significant (po0.05)

correlations are indicated in bold.
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development of blue–green algae. The negative
trend between fish and Daphnia and the positive trend
between fish and calanoid copepods became much
more pronounced if proportions of these groups
of total crustacean biomass were considered instead.
This underlines that the adult coregonids in Lake
Stechlin seem to control the zooplankton assemblage
structure, but exerted little predation effect on total
zooplankton biomasses. Furthermore, since almost all
correlations between biomasses of zooplankton and
phytoplankton groups were weak, it is suggested that
inter-annual differences in pelagic fish density had no
cascading influence on the phytoplankton in Lake
Stechlin.
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Vendace are primarily zooplanktivorous fish (Naesje
et al., 1991; Bohn and Amundsen, 2001). In empirical
studies it was demonstrated that the feeding by vendace
and the related whitefish (Coregonus spp.) populations
modified abundances and species structures of zoo-
plankton communities or single zooplankton groups
(Helminen and Sarvala, 1997; Eckmann et al., 2002).
Accordingly, a strong impact of predation by vendace
and Fontane cisco on the zooplankton in Lake Stechlin
was expected. In Lake Stechlin, the diet of the
coregonids consisted mainly of cladocerans (Bosmina

and Daphnia) and predatory zooplankton (Leptodora

and Bythotrephes), whereas copepods were of minor
importance (Schulz et al., 2003). Accordingly, biomasses
of fish and cladocerans were expected to correlate
negatively, whereas the biomass of copepods should be
varying independently of fish biomass. Earlier work in
Lake Stechlin has estimated that the trophic transfer
efficiency between zooplankton and fish was only about
6%, indicating that a top-down control of zooplankton
production by fish feeding was rather unlikely (Schulz
et al., 2004). Comparative studies in Canadian and
Faroese oligotrophic lakes at TP-ranges similar to Lake
Stechlin found no negative response of zooplankton
biomass to fish predation, but this lack of correlation
was mainly attributable to the overall low biomass of
truly pelagic planktivorous fish (Bertolo et al., 2005;
Amsinck et al., 2006). Our results and these studies
would suggest that the control of zooplankton biomass
by fish feeding in low-productivity lakes is indeed
negligible.

Based on analyses from another 29 lakes of low
productivity in Canada (TP-range 5.5–27mgm�3),
Currie et al. (1999) found likewise no correlative
evidence that variance in plankton abundance among
lakes was related to variation in fish communities.
However, they detected an effect of fish on the size
structure of zooplankton. When piscivores were present,
cladocerans were larger (Currie et al., 1999). The most
comprehensive study, covering 466 temperate and Artic
lakes over three magnitudes of TP-concentrations,
indicated that fish abundance and lake productivity
modified zooplankton assemblage structure (Jeppesen
et al., 2003). The proportion of Daphnia in zooplankton
assemblages was unimodally related to TP concentra-
tions, peaking at about 90mgm�3 in lakes deeper than
6m (Jeppesen et al., 2003). In both low-productivity and
high-productivity systems, the Daphnia proportions
were lower. If the analysis was limited to low-
productivity lakes, Daphnia proportion and catch per
unit effort (CPUE) of fish in gillnets correlated
negatively, and Daphnia were almost absent in all lakes
where fish CPUE exceeded a certain threshold (Jeppesen
et al., 2003). This analysis indicates that predation by
abundant zooplanktivorous fish in oligo- to mesotrophic
lakes rather modified the zooplankton structure than
declined the absolute biomass of total zooplankton or
single groups. This conclusion was supported by the
time series from Lake Stechlin.

However, the negative correlation between fish and
Daphnia did not cascade further down to phytoplank-
ton. Except for the fact that Cyanobacteria biomass
showed an opposite trend to Daphnia biomasses over the
years, most of the phytoplankton seemed to be
unaffected by changes in zooplankton biomass or
assemblage structure. Zooplankton in Lake Stechlin
was dominated by calanoid copepods, mainly Eudiapto-

mus gracilis and Eurytemora lacustris (Kasprzak et al.,
2005; Helland et al., 2007). The dominance of calanoid
copepods is typical for low-productivity lakes, whereas
the proportions of Daphnia and cyclopoid copepods
increase with increasing chlorophyll-a concentrations
(Kasprzak and Koschel, 2000). Earlier studies suggested
that herbivorous calanoid copepods can exert little
influence on phytoplankton biomasses due to their low
overall biomasses, slow growth and low metabolic rates
(summarised by Sommer and Stibor, 2002). More recent
results from mesocosm experiments in a mesotrophic
lake revealed that copepods suppressed large phyto-
plankton, whereas cladocerans suppressed small phyto-
plankton (Sommer et al., 2001). However, even by
grouping the phytoplankton data into small, mainly
edible (Chlorophyta, Bacillariophyceae, Cryptophyta,
Chrysophyceae) and large, mainly non-edible taxa
(Cyanobacteria, Dinophyta), correlation strength did
not change. Only Daphnia was still significantly nega-
tively correlated to the non-edible phytoplankton due to
the dominance of Cyanobacteria in this group. How-
ever, picoplanktonic Cyanobacteria such as Cyanobium

were frequent in Lake Stechlin and their depth distribu-
tion range partially overlapped with that of daphnids
(Kasprzak and Schwabe, 1987; Padisák et al., 1997).
Accordingly, it may be assumed that a reason for the
negative correlation between Daphnia and cyanobacteria
can be found in the fact that picoplanktonic cyanobac-
teria were heavily grazed by the cladocerans.

The only weak negative correlations between pelagic
trophic levels in Lake Stechlin do not support the top-
down:bottom-up hypothesis, which predicts that altera-
tions of zooplankton grazing will have the greatest
effects in low-nutrient lakes (McQueen et al., 1986). In
contrast, our results support the intermediate trophic
state, the food chain and the nutrient enrichment
hypotheses suggesting that a pelagic trophic cascade is
weak in lakes at low productivity (Elser and Goldman,
1991; Persson et al., 1992; Sarnelle, 1992). The low
impact of zooplankton on phytoplankton in oligo-
trophic lakes was explained by the dominance of
copepods and the lower nutrient regeneration rates at
low phosphorus concentrations (Carney, 1990). A weak
trophic cascade at low productivity is also a confirma-
tion of the food chain theory (Persson et al., 1992).
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These authors suggested that a strong top-down
influence on phytoplankton can be expected only when
the food web consists of an even number of trophic
levels (two or four). If there is an odd number of trophic
levels such as in Lake Stechlin where the piscivorous fish
level is almost absent (i.e., only three levels are present),
the feeding by pelagic planktivores will modify the
zooplankton assemblage structure substantially, with
the further consequence that the zooplankton–phyto-
plankton link is functionally decoupled.

Finally, our results support the theoretical predictions
of a lower biomanipulation efficiency threshold of P-
loading by Benndorf et al. (2002). These authors
concluded that zooplankton grazing cannot sustainably
reduce total phytoplankton biomass (not only) in
oligotrophic stratified lakes. However, the reason that
zooplankton fail to control phytoplankton is not
attributable to the low grazing rate of the less abundant
zooplankton. Instead, the otherwise strong direct
cascading effect of zooplankton on phytoplankton
resources by reduction of pelagic P-concentrations via
increased sedimentation (faecal material, exuviae),
vertical migration of animals or P-accumulation in
Daphnia biomass are not efficient at already low
productivity conditions. Consequently, pelagic P-con-
centrations cannot be reduced further by these top-
down mechanisms, and phytoplankton is continuously
controlled bottom-up by resource availability in oligo-
trophic lakes, independent of the structure and biomass
of zooplankton (Benndorf et al. 2002).
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Die Binnengewässer, Bd. 26. Schweizerbart, Stuttgart,

pp. 1–380.

Koschel, R., Adams, D.D., 2003. Lake Stechlin: An Approach

to Understanding an Oligotrophic Lowland Lake. Schwei-

zerbart, Stuttgart.

Koschel, R., Gonsiorczyk, T., Krienitz, L., Padisák, J.,

Scheffler, W., 2002. Primary production of phytoplankton

and nutrient metabolism during and after thermal pollution

in a deep, oligotrophic lowland lake (Lake Stechlin,

Germany). Verh. Int. Ver. Limnol. 28, 569–575.

Lieder, U., 1996. Crustacea, Cladocera, Bosminidae. In:

Schwoerbel, J., Zwick, P. (Eds.), Die Süßwasserfauna von
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