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Abstract

It is shown that certain classes of Bezout domains have stable range 1, and thus are elementary
divisor rings. Included is a strengthening of Roquette’s principal ideal theorem which states that
the holomorphy ring of a family S of valuation rings of a 4eld K , with S having bounded residue
4elds, is Bezout. A counterpart is also given where a bound is placed on the rami4cation indices
instead of the residue 4elds, and these results are applied to rings of integer-valued rational
functions over these rings. Along the way, characterizations are given of Pr6ufer domains with
torsion class group, Bezout domains, and Bezout domains with stable range 1 in terms of a
family {B(t) | t ∈ K} of numerical semigroups associated with the ring R, and a related family
{D(t) | t ∈ K} of numerical semigroups. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 13F05; 13F07; 13B22; 13C05; 13F20

0. Introduction

Let R be a commutative ring with identity. Then R is said to be an elementary
divisor ring if every matrix over R is equivalent to a diagonal matrix [11], or equiva-
lently if every 4nitely presented R-module is a direct sum of cyclic modules [13]. The
classical examples of such rings are the principal ideal domains. In [11] it was shown
that an elementary divisor ring R is Bezout; that is every 4nitely generated ideal of
R is principal. The main open question on such rings, which has been considered at
least as far back as the paper [9], is whether the converse holds for integral domains.
Most known constructions of Bezout domains have been shown to always produce
elementary divisor rings. See for example [5, Section 4; 3].
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By [24, Theorem 2:1] and [11, Theorem 3.2], elementary divisor domains can also
be characterized as the Bezout domains R such that each 4nitely generated R-module
M can be generated by n elements whenever, for each maximal ideal P of R, the
localization MP can be generated by n elements over RP . Thus, the above-mentioned
question bears some resemblance to the question of whether each 4nitely generated
ideal of a Pr6ufer domain is generated by 2 elements. This latter question was raised
by Gilmer in 1964 and solved with a counterexample in 1979 [20] (see also [21]).
All known counterexamples to Gilmer’s question involve real holomorphy rings. Recall
that a 4eld F is said to be formally real if it has an order, and the real holomorphy
ring of a formally real 4eld F is H (F) = ∩{V |V is a valuation ring of F with
formally real residue 4eld}.

By replacing R, the completion of the rationals Q with respect to the archimedean
valuation of Q, by the completion Qp of Q with respect to one of its non-archimedean
valuations, J. Ax, S. Kochen and others de4ned and studied the analogous classes of
formally p-adic holomorphy rings (see [16]).

We recall the de4nitions from [16]. Let p be a rational prime, let e, f be positive
integers and let K be a 4eld of characteristic zero. A valuation ring (V;M) of K is said
to be a p-valuation ring of type (e; f) if p ∈ M , the residue degree f′ = [V=M : Z=pZ]
divides f, and M = �V with pV = �e′V , e′ ≤ e. A 4eld is said to be formally p-adic
if there exists a p-valuation on F . The formally p-adic holomorphy ring of type (e; f)
of a formally p-adic 4eld F is H (F) = ∩{V |V is a p-valuation ring of F of type
(e; f)}. In general, if S is a family of valuation rings of the 4eld K , the holomorphy
ring of S is de4ned as the ring R = ∩S. Unlike real holomorphy rings, the formally
p-adic holomorphy rings are always Bezout, as was shown by Roquette [17, 18]. Thus
it is natural to ask if such rings are always elementary divisor rings, especially in view
of the above-mentioned application of formally real holomorphy rings. We show that
such rings always have stable range 1, and thus are elementary divisor rings in a very
strong way.

In [7] Gilmer showed that if R is an integrally closed domain for which there
exists a monic polynomial f with coeIcients in the prime subring of R such that
{1=f(t) | t ∈ K}⊆R, then R is Pr6ufer and if I is a 4nitely generated ideal of R, then
I n

k
is principal where n is the degree of f and k is the number of elements in some

generating set for I . It follows easily that if there exist such polynomials f1; : : : ; fk ∈
R[X ] of relatively prime degrees, R is Bezout. A variation of this was given in [17],
where suIcient conditions were also given on the set of residue 4elds of a family S
of valuation rings of a 4eld K for there to exist such polynomials over R = ∩S. In
particular, the fact that the residue 4elds of a formally p-adic holomorphy ring of type
(e; f) are bounded away from an algebraic closure of their common prime 4eld Z=pZ
easily implies the existence of monic polynomials f1; : : : ; fk ∈ R[X ], R = H (F), of
relatively prime degrees such that {1=fi(t) | t ∈ K}⊆R for each i. This is in contrast
to real holomorphy rings, where there may not exist f ∈ R[X ] of odd degree such that
{1=f(t) | t ∈ K}⊆R.
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In Section 1 we examine the relationship between the values of monic polynomials
and the Pr6ufer property. It turns out that the hypothesis that there exists one monic
polynomial f ∈ R[X ] such that 1=f(t) ∈ R for each t ∈ K can be weakened to
the condition that for each t ∈ K − {0} there exist a monic polynomial ft ∈ R[X ]
such that 1=ft(t) ∈ R. The monic assumption can also be weakened to what we call
monic relative to t. This means that the leading coeIcient of ft is a unit in each
valuation overring of R not containing t. This allows the assignment of a numerical
semigroup B(t) to each t ∈ K . We characterize Pr6ufer domains with torsion class group
and Bezout domains in terms of the family {B(t) | t ∈ K} of numerical semigroups.
In Section 2 we compare and generalize the approaches in [7, 17]. In Section 3 we
consider, for each t ∈ K , a numerical subsemigroup D(t) of B(t) and characterize
when R is Bezout with stable range 1 in terms of the semigroups D(t), t ∈ K . This
applies in particular to the Bezout rings produced in [7, 17]. Therefore these rings are
Bezout with stable range 1, and thus are elementary divisor rings.

In Section 4 we specialize to the formally p-adic holomorphy rings which were the
motivating examples for Roquette’s principal ideal theorem (Theorem 2.4), in order
to give a complementary result for such rings. We extend the de4nition of formally
p-adic holomorphy ring of type (e; f) by allowing either e or f to be in4nite, and
show that such rings are Bezout with stable range 1.

In Section 5 we apply the previous results to rings of integer-valued rational func-
tions, to produce further examples of Bezout domains having stable range 1.

1. Pr�ufer domains with torsion class group

Let R be an integral domain with quotient 4eld K and let t ∈ K . We begin by
considering conditions under which (R + Rt)n is principal. Let f ∈ R[X ] have degree
n. If t ∈ R, it is clear that (R + Rt)n = f(t)R if and only if 1=f(t) ∈ R; that is,
f(t) is a unit of R. We next consider the equality (R + Rt)n = f(t)R for t ∈ K − R.
We 4rst restrict to the case that R is a valuation ring. By a valuation ring of K we
mean a valuation ring with quotient 4eld K , and by an overring of an integral domain
R we mean a ring which contains R as a subring and has the same quotient 4eld
as R.

Lemma 1.1. Let (V;M) be a valuation ring of the 2eld K; let f ∈ V [X ] be of degree
n ≥ 1; and let t ∈ K − V . Then (V + Vt)n = f(t)V if and only if the leading
coe4cient of f is a unit of V . If this holds; then ti=f(t) ∈ Mn−i for i = 0; : : : ; n; and
(V + Vt)n = tnV = f(t)V .

Proof. Let f(X ) = c0 + c1X + · · ·+ cn−1X n−1 + cnX n. Since t =∈ V , 1=t ∈ M . Then

f(t)=tn = c0(1=t)n + c1(1=t)n−1 + · · ·+ cn−1(1=t) + cn ∈ M + cn:
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Therefore if cn is a unit, f(t)=tn is a unit of V , and thus f(t)V = tnV . It follows
that tn=f(t) ∈ V , and for 0 ≤ i ¡ n, ti=f(t) = (1=tn−i)(tn=f(t)) ∈ Mn−i. Therefore
(V + Vt)n = tnV = f(t)V .

If cn is not a unit, then f(t)=tn ∈ M + cn = M . Therefore f(t) ∈ tnM , and thus
(V + Vt)n = tnV * f(t)V .

Lemma 1.2. Let R be an integrally closed domain with quotient 2eld K; let L be an
extension 2eld of K; let f ∈ R[X ] be monic of degree n ≥ 1 and let t ∈ L. Then
(R + Rt)n = f(t)R if and only if t ∈ K and 1=f(t) ∈ R.

Proof. (⇒) If (R + Rt)n = f(t)R then x = 1=f(t) ∈ R and y = t=f(t) ∈ R. Thus
t = y=x ∈ K .

(⇐) Clearly f(t)R⊆(R+Rt)n = (1; t; : : : ; tn)R. For the opposite inclusion let (V;M)
be a valuation overring of R. Since 1=f(t) ∈ R⊆V , if t ∈ V then ti=f(t) ∈ V for i =
0; : : : ; n. If t =∈ V , then since f is monic, Lemma 1.1 gives ti=f(t) = (1=tn−i)(tn=f(t)) ∈
Mn−i for 0 ≤ i ¡ n. In particular ti=f(t) is contained in each valuation overring of
R. Since R is integrally closed, we get ti=f(t) ∈ R for i = 1; : : : ; n. That is, (R +
Rt)n ⊆f(t)R.

For an integral domain R with quotient 4eld K let X (R) denote the set of non-
trivial valuation overrings of R. For x1; x2; : : : ; xn ∈ K , let E[x1; : : : ; xn] = {V ∈
X (R) | x1; x2; : : : ; xn ∈ V}. Recall that {E[x1; : : : ; xn] | n ∈ Z+; x1; x2; : : : ; xn ∈ K}, is a
basis for the Zariski topology on X (R), and X (R) with this topology is called the
Riemann surface of K relative to R [25]. Using this we give a version of the above
lemma which does not require f ∈ R[X ] to be monic. Let lc(f) denote the leading
coeIcient of f.

Proposition 1.3. Let R be an integrally closed domain contained in the 2eld K . Let
t ∈ K; let n be a positive integer and let f ∈ R[X ] have degree ≤ n. The following
statements are equivalent:
(i) (R + Rt)n = f(t)R;
(ii) t is in the quotient 2eld of R; 1=f(t) ∈ R and E[1=lc(f)] ∪ E[t] = X (R);
(iii) {1=f(t); t=f(t); : : : ; tn=f(t)}⊆R.

Proof. The equivalence of (i) and (iii) is immediate.
(i) ⇒ (ii) If (R+Rt)n = f(t)R, then 1=f(t) ∈ R. To show E[1=lc(f)]∪E[t] = X (R),

let (V;M) ∈ X (R) and assume t =∈ V . Then by Lemma 1.1, the equality (R + Rt)n =
f(t)R implies 1=lc(f) ∈ V . Thus E[1=lc(f)] ∪ E[t] = X (R).

(ii) ⇒ (iii) Since R is integrally closed, we have R = ∩X (R). Clearly f(t)R⊆(R+
Rt)n = (1; t; : : : ; tn)R. For the opposite inclusion let (V;M) ∈ X (R). Then 1=f(t) ∈ V
by (ii), and thus if t ∈ V then 1=f(t); t=f(t); : : : ; tn=f(t) ∈ V . If t ∈ K − V ; that is,
V =∈ E[t], then by (ii), 1=lc(f) ∈ V . Thus 1=f(t); t=f(t); : : : ; tn=f(t) ∈ V by Lemma
1.1. Therefore 1=f(t); t=f(t); : : : ; tn=f(t) ∈ ∩X (R) = R.
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We now associate a numerical semigroup B(t) to t ∈ K . Recall that a numerical
semigroup is an additive subsemigroup � of the non-negative integers Z+. Our nu-
merical semigroups will not contain 0, and are allowed to be empty. For a non-empty
numerical semigroup � write gcd(�) for the greatest common divisor of the members
of �. A non-empty numerical semigroup � is said to be primitive if gcd(�) = 1.
If R is an integral domain with quotient 4eld K , t ∈ K and f ∈ R[X ] − R with
E[1=lc(f)] ∪ E[t] = X (R), we say f is monic relative to t. For each t ∈ K let

B(t) = {deg(f) |f ∈ R[X ]− R with E[1=lc(f)] ∪ E[t] = X (R) and 1=f(t) ∈ R}:
It is easily seen, either by the previous proposition, or directly, that B(t) is closed
under addition.

We can now give a characterization of when R is Pr6ufer having quotient 4eld K
and torsion class group.

Theorem 1.4. Let R be an integral domain contained in the 2eld K . The following
statements are equivalent:
(i) R is Pr9ufer with quotient 2eld K and with torsion class group.
(ii) R is integrally closed and for each t ∈ K; B(t) �= ∅.
(iii) For each t ∈ K − {0} there exists a positive integer nt and ft ∈ R[X ] with

deg(ft) ≤ nt such that {1=ft(t); t=ft(t); : : : ; tnt =ft(t)}⊆R.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow from the corresponding
implications of Proposition 1.3.

For (iii) ⇒ (i), we 4rst show R is Pr6ufer. Let x; y ∈ R − {0} and let t = y=x. By
hypothesis (R + Rt)nt = ft(t)R for some positive integer nt and some ft ∈ R[X ] of
degree ≤ nt . Since (Rx+Ry)nt = xnt (R+Rt)nt = xntft(t)R, Rx+Ry is invertible. Thus
each ideal generated by two elements is invertible. Since this property passes to the
localization RP for each prime ideal P of R, it follows that R is Pr6ufer.

To show R has quotient 4eld K let t ∈ K −{0}. Since {1=ft(t); t=ft(t); : : : ; tnt =ft(t)}
⊆R, where nt ≥ deg(ft), then letting x = 1=ft(t) ∈ R and y = t=ft(t) ∈ R, we see that
t = y=x is in the quotient 4eld of R.

Since R is Pr6ufer, we have (I + J )k = I k + J k for any ideals I , J of R. Indeed this
equation is clear if one of I or J contains the other, and locally this is what happens.
Then for x; y ∈ R we have (Rx + Ry)nt = xnt (R + R(y=x))nt = xntft(y=x)R as noted
above. Let I be an ideal of R generated by k elements, k ¿ 2. To show Im is principal
for some m write I = xR+ J where J is generated by k− 1 elements. Using induction
we may assume Jm1 is principal. Then Im1 = (xR + J )m1 = (xR)m1 + Jm1 is generated
by 2 elements, and thus for some integer m2, (Im1 )m2 = Im1m2 is principal.

We can now give a characterization of when R is Bezout with quotient 4eld K .

Theorem 1.5. Let R be an integral domain contained in the 2eld K . Then R is Bezout
with quotient 2eld K if and only if R is integrally closed and B(t) is primitive for
each t ∈ K .
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Proof. If R is integrally closed and B(t) is primitive for each t ∈ K , R is Pr6ufer with
torsion class group by Theorem 1.4. Let x; y ∈ R − {0}, and let t = y=x. Since the
period of the ideal class of R+Rt in the class group of R must divide each n ∈ B(t),
R+Rt is principal, and thus Rx+Ry is also. Conversely, if R is Bezout with quotient
4eld K then R is integrally closed, and if t ∈ K − {0}, then R + Rt = (a + bt)R for
some a; b ∈ R. Thus 1 ∈ B(t) by (i) ⇒ (ii) of Proposition 1.3.

2. Comparisons with constructions of Gilmer and Roquette

In order to clarify the relationship between the results in this paper and the suIcient
conditions given in [7, 17] for a domain R to be Pr6ufer with torsion class group,
we begin this section with a proposition which is somewhat intermediate between
Theorem 1.4 and the results in [7, 17]. The 4rst two conditions are generalizations of
the suIcient conditions considered in [7, 17].

Proposition 2.1. Let R be a subring of the 2eld K and for each t ∈ K let ft ∈ R[X ]
be of degree nt ≥ 1. The following properties of a ring R are equivalent:
(1) ft is monic relative to t for each t ∈ K and R is an integrally closed subring of

K containing {1=ft(t) | t ∈ K}.
(2) R = ∩S where S is a set of valuation rings of K; the leading coe4cient of ft is

a unit in each (V;M) ∈ S with t =∈ V and ft(t) =∈ M for each (V;M) ∈ S and
t ∈ V .

(3) (R + Rt)nt = ft(t)R for each t ∈ K .
Further; if these hold then R is a Pr9ufer domain with quotient 2eld K and torsion

class group.

Proof. (1) ⇒ (2) Since R is integrally closed, we can write R = ∩S for a set of
valuation overrings. It suIces to show that for each (V;M) ∈ S and t ∈ V , ft(t) �∈ M .
But if t ∈ V , then since 1=ft(t) ∈ R⊆V , ft(t) �∈ M .

(2) ⇒ (3) Let t ∈ K . Clearly ft(t)R⊆(R + Rt)nt = (1; t; : : : ; tnt )R. For the opposite
inclusion let (V;M) ∈ S. If t ∈ V then 1=ft(t) ∈ V by (2); and thus {1=ft(t); t=ft(t); : : : ;
tnt =ft(t)}⊆V . If t ∈ K − V then since the leading coeIcient of ft is a unit in V
by hypothesis, {1=ft(t); t=ft(t); : : : ; tnt =ft(t)}⊆V by Lemma 1.1. Therefore ft(t)R =
(R + Rt)nt .

(3) ⇒ (1) It follows from (iii) ⇒ (i) of Theorem 1.4 that R is Pr6ufer (with torsion
class group) and thus is integrally closed. The rest of this implication follows from
(iii) ⇒ (ii) of Proposition 1.3.

The last statement follows Theorem 1:4.

In the above result there was no relationship assumed between fs, ft ∈ R[X ] for
s, t ∈ K . Instead of letting the ft vary with t, it was shown in [7, Theorem 2:2; 17,
Theorems 1, 2], that if there is a single monic polynomial satisfying the counterparts
of (1) and (2), respectively, of the above theorem, then R is Pr6ufer with torsion class
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group. In the following result, which will be needed in Section 5, these conditions
are conditions (1) and (2), respectively. Condition (3) of Theorem 2.2 was used for a
similar purpose in [14, Theorem 2:5]. The following result also shows that the monic
assumption in these papers is necessary.

Theorem 2.2. Let R be a subring of the 2eld K and let f ∈ R[X ] of degree n ≥ 1.
The following properties of a ring R are equivalent:
(1) The polynomial f is monic and R is an integrally closed subring of K containing

{1=f(t) | t ∈ K}.
(2) f is monic; R = ∩S where S is a set of valuation rings of K; and the image

f ∈ V=M [X ] has no root in V=M for each (V;M) ∈ S.
(3) R is a Pr9ufer domain; f is monic and f(r) is a unit of R for each r ∈ R.
(4) (R + Rt)n = f(t)R for each t ∈ K .

Proof. That (1), (2) and (4) are equivalent follows from Proposition 2.1, and these
clearly imply (3). For (3) ⇒ (2) observe that if M is a maximal ideal of R, f
has no root in R=M = RM=MRM , and thus since R is Pr6ufer, (2) holds with S =
{RM |M is a maximal ideal of R}.

Theorem 2.3 (Gilmer [7, Theorem 2:2]). Let K be a 2eld and let A be the integral
closure of the prime subring of K in K . Let f ∈ A[X ] be monic of degree n ≥ 1 and
have no root in K . If R is an integrally closed subring of K containing {1=f(t) | t ∈ K};
then R is a Pr9ufer domain with torsion class group. Further if a fractional ideal I of
R is generated by k elements then I n

k
is principal.

The last statement in Theorem 2.3 follows as in the last sentence of the proof of
Theorem 1.4.

Theorem 2.4 (Roquette [17, Theorems 1, 2, 18]). Let S be a set of valuation rings
of the 2eld K and let R = ∩S:
(1) If there exists a monic f ∈ R[X ] of degree n ≥ 1 such that for each (V;M) ∈ S;

the image of f in V=M [X ] has no root in V=M; then R is a Pr9ufer domain and
if a fractional ideal I of R is generated by k elements then I n

k
is principal.

(2) If there exist monic f1; : : : ; fr ∈ R[X ] of positive degrees n1; : : : ; nr ; respectively
such that for each (V;M) ∈ S; the image of each fi in V=M [X ] has no root in
V=M; then R is a Pr9ufer domain and if a fractional ideal I of R is generated
by k elements then Id

k
is principal; where d is the greatest common divisor of

{n1; : : : ; nr}. In particular; if d = 1; R is Bezout.

The second part of Theorem 2.4 follows immediately from the 4rst. The motivating
examples for [17] were the formally p-adic holomorphy rings, and for these rings it is
easy to 4nd polynomials as in part (2) of the above theorem. It is natural to ask if the
Bezout domains produced by this construction can give examples of Bezout domains
which are not elementary divisor rings. We answer this in the following section.
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The paper [7] was less concerned with the case where R is Bezout since the mo-
tivation there was to produce examples of Pr6ufer domains, at least partly to test the
conjecture that each 4nitely generated ideal in a Pr6ufer domain can be generated by
two elements. It turns out that this construction, in fact the special case f = X 2 + 1
considered in [4], can be used to produce a counterexample to this conjecture, although
the 4rst such counterexample, by Schulting, was a diMerent variation of the construction
in [4], see [21, Section 6].

3. Stable range 1

In this section we give a characterization of Bezout domains with stable range 1
which applies to the Bezout domains considered [7, 14, 17], and some generaliza-
tions considered in the previous section. First we recall some de4nitions. A sequence
(a1; a2; : : : ; as+1) of elements of R is said to be unimodular if (a1; a2; : : : ; as+1)R = R,
and (a1; a2; : : : ; as+1) is said to be stable if there exist b1; b2; : : : ; bs ∈ R such that the
sequence (a1 + b1as+1; a2 + b2as+1; : : : ; as + bsas+1) is unimodular. Recall that a ring R
is said to have n in the stable range if every unimodular sequence (a1; a2; : : : ; as+1) in
R with s ≥ n is stable [6]. By a result of Vaserstein [22, Theorem 1], this is equivalent
to the property that each unimodular sequence in R of length n+ 1 is stable. If R has
n in the stable range and does not have n− 1 in the stable range, R is sometimes said
to have stable range n. We shall only be interested in stable range 1, where we can
use the following simple lemma in place of the above-mentioned result of Vaserstein.
This lemma is a slight variation of [6, Proposition 5:1]. We reproduce the proof in [6]
for the convenience of the reader.

Lemma 3.1. The following properties of an integral domain R are equivalent:
(1) R is Bezout with 1 in the stable range.
(2) R is Bezout and each unimodular sequence in R of length 2 is stable.
(3) For each pair of elements a1; a2 ∈ R; there exists d ∈ R such that (a1; a2)R =

(a1 + da2)R.

Proof. Implication (1) ⇒ (2) is clear.
For (2) ⇒ (3), we may assume a1a2 �= 0. Since R is Bezout, we have (a1; a2)R =

aR for some a ∈ R. Let a1 = aa′1, a2 = aa′2. Then (a′1; a
′
2)R = R, and thus by (2)

a′1 + da′2 = u is a unit for some d ∈ R. To show that (a1; a2)R⊆(a1 + da2)R, let b ∈
(a1; a2)R = aR. Write b = ab′, b′ ∈ R. Then ub = uab′ = (a′1+da′2)ab

′ = (a1+da2)b′.
So b ∈ (a1 + da2)R.

For (3) ⇒ (1), let (a1; a2; : : : ; an+1) ∈ Rn+1 be unimodular. By (3) there exist bi ∈ R
such that (ai; an+1)R = (ai + bian+1)R for i = 1; : : : ; n. Then R = (a1; a2; : : : ; an+1) =
(a1 + b1an+1; a2 + b2an+1; : : : ; an + bnan+1).

The ring of entire functions has stable range 1 [19]. Other examples are given in
[6, 10, 23]. For consequences of the stable range 1 condition see [1].
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To measure the degree of stability of a unimodular pair (a; b) in R with a �= 0 we
associate to t = b=a a subsemigroup D(t) of B(t). If R is an integral domain with
quotient 4eld K , then for each t ∈ K let

D(t) = {deg(f) |f ∈ R[X ]− R with E[1=lc(f)] ∪ E[t] = X (R)

and 1=f(t); 1=f(0) ∈ R}:

Theorem 3.2. Let R be an integrally closed domain with quotient 2eld K and let
t ∈ K − {0}. If D(t) is primitive then (1; t)R = (1 + at)R for some a ∈ R.

Proof. Let f1; f2; : : : ; fk ∈ R[X ] be monic relative to t of degrees n1; n2; : : : ; nk respec-
tively such that 1=fi(t), 1=fi(0) ∈ R, and let 1 =

∑k
i=1 rini, ri ∈ Z. By Proposition 1.3

we have (R + Rt)ni = fi(t)R for i = 1; : : : ; k. Thus R + Rt is invertible and

R + Rt = (R + Rt)
∑

rini = ((R + Rt)n1 )r1 · · · ((R + Rt)nk )rk = f1(t)r1 · · ·fk(t)rk R:

Assume r1; r2; : : : ; rj are positive and the other ri are negative. Let ri = −ui for i =
j + 1; : : : ; k. Since by hypothesis each of the constant terms fi(0) is a unit of R, after
multiplying by a unit of R we may assume that each fi has constant term 1. Let
f =

∏j
i=1 fi(t)ri and g =

∏k
i=j+1 fi(t)ui . Then deg(f)− deg(g) = 1 and

f1(t)r1 · · ·fk(t)rk =
f(t)
g(t)

=
g(t) + f(t)− g(t)

g(t)
= 1 +

f(t)− g(t)
g(t)

:

Since each of the fi has constant term 1, we can write this as 1+ th(t)=g(t) for h(X ),
g(X ) ∈ R[X ] monic relative to t, and deg(h) = deg(f)− 1 = deg(g).

Since 1=g(t) ∈ R and E[1=lc(g)] ∪ E[t] = X (R), by Proposition 1.3 we have (R +
Rt)deg(g) = g(t)R. Thus ti=g(t) ∈ R for i = 0; : : : ; deg(g), and therefore h(t)=g(t) ∈ R.
Therefore u(X ) = 1 + Xh(t)=g(t) ∈ R[X ].

Also R + Rt = f1(t)r1 · · ·fk(t)rk R = (1 + th(t)=g(t))R = u(t)R, and thus 1=u(t),
1=u(0) ∈ R. Therefore the result holds with a = h(t)=g(t).

Corollary 3.3. Let R be an integrally closed integral domain with quotient 2eld K
and let t = y=x ∈ K; x; y ∈ R. The following statements are equivalent:
(i) D(t) is primitive.
(ii) (1; t)R = (1 + at)R for some a ∈ R.
(iii) (x; y)R = (x + ay)R for some a ∈ R.

Proof. That (i) ⇒ (ii) follows from Theorem 3.2, and that (ii) ⇒ (i) follows from
Proposition 1.3. The equivalence of (ii) and (iii) follows since x(1; t)R = (x; y)R and
x(1 + at)R = (x + ay)R.

We can now give our characterization of Bezout domains with stable range 1.
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Theorem 3.4. Let R be a subring of a 2eld K . Then R is a Bezout domain with
stable range 1 and quotient 2eld K if and only if R is integrally closed and D(t) is
primitive for each t ∈ K .

Proof. If R is integrally closed and D(t) is primitive for each t ∈ K , it follows from
Theorem 1.5 that R is Bezout with quotient 4eld K . By Corollary 3.3 R has stable
range 1.

Conversely, if R is Bezout with stable range 1 and quotient 4eld K , then by Lemma
3.1, for each x; y ∈ R there exists a ∈ R such that (x; y)R = (x + ay)R. Thus by
Corollary 3.3, D(t) is primitive for each t ∈ K .

Corollary 3.5. Let R be an integrally closed integral domain with quotient 2eld K
such that D(t) is primitive for each t ∈ K . Then R is an elementary divisor domain.

Proof. By [11, Theorem 5:2] it suIces to show that R is Bezout and if a; b; c ∈ R
with R = (a; b; c)R, then R = (pa; pb + qc)R for some p; q ∈ R. But by Theorem 3.4
and its proof, R is Bezout and such p, q exist with p = 1.

The stable range 1 property is much stronger than the property of being an elemen-
tary divisor domain. For example the most classical examples of elementary divisor
domains, namely the rational integers Z and the polynomial ring k[X ] in one variable
over a 4eld, do not have stable range 1. See [6, 23] for example. In fact, whereas
stable range 1 requires gcd(D(t)) = 1 for each t ∈ Q by Theorem 3.4, for Z the
set {gcd(D(t)) | t ∈ Q} is unbounded. Indeed given b ∈ Z, b ¿ 1, choose a ∈ Z,
a ¿ 1 relatively prime to b such that for i = 1; 2; : : : ; n, bi �≡ ±1 (mod a). Consider
(1; a=b; : : : ; (a=b)n)Z = (bn=bn; abn−1=bn; : : : ; an=bn))Z = (bn; a)=bnZ = 1=bnZ. By Propo-
sition 1.3 we must show that there does not exist f ∈ Z[X ] such that deg(f) ≤ n,
f(0) = ±1 and f(a=b)R = (1; a=b; : : : ; (a=b)n)Z = 1=bnZ. But if

±(1=bn) = 1 + c1(a=b) + c2(a=b)2 + · · ·+ cn(a=b)n; ci ∈ Z;
we would have

±1 = bn + c1abn−1 + c2a2bn−2 + · · ·+ cnan ∈ bn + aZ:

This contradicts bn �≡ ±1 (mod a). Thus gcd(D(a=b)) ¿ n.
If we specialize to the situation considered in [7, 17, 14] we get the following result

which strengthens, for example, the conclusion in Theorem 2:4:2 from Bezout to Bezout
with stable range 1 and quotient 4eld K .

Theorem 3.6. Let R be an integrally closed subring of the 2eld K; and assume there
exist monic f1; f2; : : : ; fk ∈ R[X ] of positive degrees n1; n2; : : : ; nk ; respectively; which
satisfy the equivalent conditions of Theorem 2:2. If Z = (n1; n2; : : : ; nk)Z; then R is a
Bezout domain with stable range 1 and quotient 2eld K .

Proof. This follows from Theorem 3.4.
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Several results are given in [17] which give examples of when a ring R satis4es the
hypothesis of Theorem 3.6. Of course in each case, by Theorem 3.6, R is a Bezout
domain with stable range 1, and thus is an elementary divisor domain. For later refer-
ence we state two such results, and recall the proof of the existence of the polynomials
as in Theorem 3.6 for the convenience of the reader.

Theorem 3.7. Let R be the holomorphy ring of a set S of valuation rings of the 2eld
K . If V=M is 2nite for each (V;M) ∈ S and the set of cardinalities {|V=M | | (V;M) ∈
S} is bounded. Then R is a Bezout domain with stable range 1 and quotient 2eld K .

Proof. Let {|V=M | | (V;M) ∈ S} = {qi | i = 1; : : : ; n}. Then g(X ) =
∏n

i=1 X
qi − X and

Xg(X ) vanish on V=M for each (V;M) ∈ S. Thus we may apply Theorem 3.6 with
k = 2, f1 = 1 + g(X ) and f2 = 1 + Xg(X ) to get the result.

Following [17] we generalize this as follows. A 4eld F is said to be residually 2nite
if there exists a valuation ring (V;M) of F such that V=M is 4nite. A family {Fi | i ∈ I}
of 4elds is said to be residually bounded if for each i ∈ I there is a valuation ring
(Vi;Mi) of Fi such that the set of cardinalities {|Vi=Mi| | i ∈ I} is bounded.

Theorem 3.8. Let R be the holomorphy ring of a set S of valuation rings of the
2eld K; and assume that the family of residue 2elds {V=M | (V;M) ∈ S} is residually
bounded. Then R is a Bezout domain with stable range 1 and quotient 2eld K .

Proof. Let (V0; M0) be the composite of (V;M) and the given valuation ring (V ′; M ′)
on V=M having 4nite residue 4eld. That is, V0 is the inverse image of V ′ under the
canonical map V → V=M . Then each V0 has quotient 4eld K , and the holomorphy ring
H (S0) of S0 = {(V0; M0) | (V;M) ∈ S} is Bezout with stable range 1 and quotient 4eld
K by Theorem 3.7, and R is an overring of H (S0). But an overring of a Bezout ring
is clearly Bezout, and by [6, Corollary 5:2], an overring of a Bezout domain having
stable range 1 also has stable range 1.

By Theorem 3.6 R is also Bezout with stable range 1 in the relative case considered
in [17, Theorem B], where the holomorphy ring R has a sub4eld F which is non-
exceptional [17, p. 363] such that, identifying F with a sub4eld of each V=M; (V;M)
∈ S, there is a uniform bound on the degrees [V=M : F]. Further, if E is a 4nite
extension 4eld of the p-adic numbers Qp for some rational prime p, it also follows
from Theorem 3.6 that each formally p-adic holomorphy ring of type E, as de4ned in
[15] is a Bezout domain with stable range 1.

It is not diIcult to see that the condition in Theorem 3.4 for R to be Bezout with
stable range 1 is strictly weaker than the hypothesis in Theorem 2:4:2. For example
one could take S to consist of a single valuation domain (V;M) of the form F + M
where F is an algebraically closed 4eld. Similarly, one could take R to be a principal
ideal domain with in4nitely many residue 4elds isomorphic to Q, and 4nitely many
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residue 4elds isomorphic to the algebraic closure of Q [8]. Then R is the holomorphy
ring of the family S = {RP |P a maximal ideal of R}, and R is not the holomorphy
ring of any proper subfamily of S. Although in this case R is a principal ideal domain
by its construction [8], Theorem 3.4 adds that R has stable range 1. In order to give a
general condition, which includes these examples, for the existence of monic ft ∈ R[X ]
such that 1=ft(t); 1=ft(0) ∈ R for a given t ∈ K , we 4x some notation.

Let R be the holomorphy ring of a family S of valuation rings of a 4eld K . For
t ∈ K let t(V ) be the image of t under the place corresponding to V . Thus t(V ) is
the image of t in V=M if t ∈ V and t(V ) = ∞ if t �∈ V . Assume further that R
contains a subring A such that each of the (V;M) ∈ S have the same center P on A.
That is M ∩ A = P for each (V;M) ∈ S. Then each of the canonical homomorphisms
V → V=M , (V;M) ∈ S, can be considered as extensions of the canonical map A → A=P.
Let F be the quotient 4eld of A=P, which is canonically embedded in each residue 4eld
V=M , (V;M) ∈ S. If t(V ) is 4nite and algebraic over F let gt;V ∈ F[X ] be the minimal
polynomial in F[X ] of t(V ) ∈ V=M . Otherwise let gt;V = 0. Then if ft(X ) ∈ A[X ] and
(V;M) ∈ S, ft(t) =∈ M if and only if the image ft(X ) in F[X ] is not in gt;V F[X ]. Let
Irr(F; t; S) = {gt;V |V ∈ S} and let Irr(F) denote the set of irreducible polynomials in
F[X ]. Then Irr(F; t; S) ⊆ Irr(F). We now have the following simple result.

Proposition 3.9. Let R be the holomorphy ring of a set S of valuation rings of the
2eld K and assume R contains a subring A having a prime ideal P such that M∩A = P
for each (V;M) ∈ S. Let F be the quotient 2eld of A=P.
(1) If t ∈ K is such that Irr(F; t; S) ∪ {X } �= Irr(F); there exists monic ft(X ) ∈ R[X ]

such that 1=ft(t); 1=ft(0) ∈ R.
(2) If t ∈ K is such that Irr(F)−(Irr(F; t; S)∪{X }) contains polynomials of relatively

prime degrees then D(t) is primitive.
(3) If (1) holds for every t ∈ K; then R is Pr9ufer with torsion class group.
(4) If (2) holds for every t ∈ K; then R is Bezout with stable range 1.

Proof. For (1) choose a monic preimage ft ∈ A[X ] of some f(X ) ∈ Irr(F) −
(Irr(F; t; S) ∪ {X }). Part (2) is similar. Parts (3) and (4) follow from Theorem 1.4
and Theorem 3.4, respectively.

4. A companion to Roquette’s principal ideal theorem

Although Roquette’s principal ideal theorem (Theorem 2:4:2) was motivated by the
formally p-adic holomorphy rings of type (e; f), his result only used the bound f on
the residue 4elds, and not the bound e on the rami4cation. This leads one to question
if a similar consequence follows from using only the bound e, and in this section we
show that indeed it does.

If (D;M)⊆(V; N ) are valuation rings we say V dominates D if M ⊆N . Let (D;M)
be a valuation ring of a 4eld K with principal maximal ideal, say M = aD. If (V; �V )
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is a valuation domain dominating D with aV = �jV; j ≥ 1, we say (V; �V ) has 2nite
rami2cation index over (D; aD). We denote the rami4cation index j by e(D; V ).

Lemma 4.1. Let (D; aD) be a valuation ring of a 2eld K and let (V; �V ) be a val-
uation ring of an extension 2eld L of K with 2nite rami2cation index e(D; V ) ≤ k.
Let .k(X ) = (a + aX k+1)=(1 + aX k+1). Then .k(V )⊆ aV and .k(L− V )⊆V − �V .

Proof. Let v be a valuation corresponding to V . If x ∈ V , a+axk+1 ∈ aV and 1 + axk+1

is a unit of V . If x ∈ L − V , the numerator and denominator of .k(x) have the same
value.

Theorem 4.2. Let (D; aD) be a valuation ring of a 2eld K and let S be a family of
valuation rings of an extension 2eld L of K; each having principal maximal ideal.
Assume each (V; �V ) ∈ S dominates (D; aD) with e(D; V ) ≤ k for each (V; �V ) ∈ S.
Then the holomorphy ring H (S) = R of S is a Bezout domain with stable range 1
and quotient 2eld L.

Proof. Let y ∈ L. From Lemma 4:1, .k(y) ∈ ∩{V | (V;M) ∈ S} = R, and thus
(1; y)R⊇(1+y.k(y))R. For the opposite inclusion it suIces to see that 1=(1+y.k(y))
and y=(1 + y.k(y)) ∈ V for each (V;M) ∈ S, and this is immediate from Lemma 4:1.
The result now follows from Corollary 3.3 and Theorem 3.4.

We specialize to the formally p-adic holomorphy rings which were the motivating
examples for Roquette’s principal ideal theorem (Theorem 2.4). We extend the de4-
nition of formally p-adic holomorphy ring of type (e; f). Let p be a rational prime
and let e; f be positive integers. A valuation ring (V;M) is said to be a p-valuation
ring of type (∞; f), or (e;∞), respectively, if the residue degree f′ = [V=M : Z=pZ]
divides f, or if M = �V with pV = �e′V; e′ ≤ e, respectively. A 4eld is said to be
formally p-adic if there exists a p-valuation on F . If e; f ∈ N ∪ {∞}, the formally
p-adic holomorphy ring of type (e; f) of a formally p-adic 4eld F is H (F) = ∩{V |V
is a p-valuation ring of F of type (e; f)}.

Corollary 4.3. Let R be the formally p-adic holomorphy ring of type (e; f) of a
formally p-adic 2eld K; with either e or f 2nite. Then R is a Bezout domain with
stable range 1 and quotient 2eld K.

Proof. This follows from Theorems 3.7 and 4.2.

5. Integer-valued rational functions

Let D be a domain with quotient 4eld K and let E be a subset of K . The ring of
integer-valued rational functions on E is de4ned as IntR(E;D) = {’ ∈ K(X ) |’(t) ∈
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R for each t ∈ E} [2]. This ring has been closely associated to formally p-adic
holomorphy rings since the latter rings were de4ned in [12]. Indeed one of the reasons
for introducing the formally p-adic holomorphy rings in [12] was to obtain analogues
for Qp to Artin’s Theorem which solves Hilbert’s 17th problem: If r(X ) ∈ R[X1; : : : ; Xn]
is such that r(a) ≥ 0 for each a ∈ Rn, where R is the 4eld of real numbers, then
r(X ) =

∑m
i=1 ciui(X )2; ci ∈ K; ci ¿ 0 and ui ∈ R(X ). In [12] the rational function

1(X ) = (1=p)(Xp − X )=((Xp − X )2 − 1) ∈ IntR(Qp;Zp), now called “the Kochen
operator”, takes the place of the squares in Hilbert’s 17th problem. Further, integral-
valued rational functions also arose naturally in Theorem 3.2 where the coeIcient
a was obtained as a rational function of t = b=a, and similarly in Lemma 4:1 and
Theorem 4.2. For integer-valued rational functions we have the following application
of Theorem 1.4.

Theorem 5.1. Let D be an integral domain with quotient 2eld K and let f ∈ D[X ]
be monic polynomial such that the equivalent conditions of Theorem 2:2 are satis2ed.
Then f satis2es the equivalent conditions of Theorem 2:2 with respect to the integral
domain IntR(K;D). In particular IntR(K;D) is a Pr9ufer domain with torsion class
group and quotient 2eld K(X ).

Proof. It is immediate that IntR(K;D) is integrally closed. Let 2 ∈ K(X ). If x ∈ K is
such that 2(x) is de4ned, 1=f(2(x)) ∈ D by the hypothesis on f. Thus 1=f(2(x)) ∈ D
for all but possibly 4nitely many x ∈ K . Let V be a valuation overring of D. Give K
the topology induced by any valuation associated to V , and let K ∪ {∞} be the one-
point compacti4cation of K . Then 1=f(2) : K → K ∪ {∞} is continuous and thus the
preimage B of V under the map 1=f(2) is a closed set in the V -topology on K . Thus
the 4nite set K−B is open in the V -topology on K . But since V �= K , each non-empty
open subset of K must be in4nite. Thus B = K , and it follows that 1=f(2) ∈ IntR(K; V ).
Thus 1=f(2) ∈ ∩{IntR(K; V ) |V is a valuation overring of D} = IntR(K;D). The rest
follows from Theorems 1.4 and 2.2.

Theorem 5.2. Let D be an integrally closed domain with quotient 2eld K and let
f1; f2; : : : ; fk ∈ D[X ] be monic polynomials of degree n1; n2; : : : ; nk ; respectively sat-
isfying the equivalent conditions of Theorem 2:2 and such that (n1; : : : ; nk)Z = Z.
Then IntR(K;D) is an elementary divisor domain with stable range 1 and quotient
2eld K(X ).

Proof. This follows immediately from Theorems 5.1 and 3.6.

Theorem 5.3. Let (D; aD) be a valuation ring of a 2eld K and let S be a family of
valuation rings of an extension 2eld L of K; each having principal maximal ideal.
Assume each (V; �V ) ∈ S dominates (D; aD) with e(D; V ) ≤ k. Then IntR(K;D) is a
Bezout domain with stable range 1 and quotient 2eld K(X ).
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Proof. Observe that if ’;  ∈ IntR(K;D), then letting 2 = ’(X )= (X ) we have
(1; 2(y))D = (1 + .k(2(y))2(y))D for all but 4nitely many y ∈ K by Lemma 4:1.
It follows as in the proof of Theorem 5.1 that this holds for all y ∈ K , and thus
(1; 2(X ))IntR(K;D) = (1 + .k(2(X ))2(X ))IntR(K;D). Multiplying both sides by  (X )
we get the result.

Corollary 5.4. If D is the formally p-adic holomorphy ring of type (e; f) of a 2eld
K; with either e or f 2nite; then IntR(K;D) is a Bezout domain with stable range 1
and quotient 2eld K(X ).

Proof. This follows from Theorems 5.2 and 5.3.

Observe that IntR(K;D)⊆ IntR(E;D) for any subset E of K , and since the properties
Pr6ufer with torsion class group, Bezout, and Bezout with stable range 1, are inherited
by overrings, we see that these results also hold for IntR(E;D).

In the case that (V; tV ) is a valuation ring with principal maximal ideal and quotient
4eld K , it was shown in [2, p. 271] that IntR(K; V ) is Bezout with stable range 1, and
the author greatfully acknowledges the inspiration this result furnished for Theorems
4.2 and 5.3.
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