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a b s t r a c t

Let Uζ be the quantum group (Lusztig form) associated to the simple Lie algebra g, with
parameter ζ specialized to an ℓ-th root of unity in a field of characteristic p > 0. In this
paper we study certain finite-dimensional normal Hopf subalgebras Uζ (Gr ) of Uζ , called
Frobenius–Lusztig kernels, which generalize the Frobenius kernels Gr of an algebraic group
G. When r = 0, the algebras studied here reduce to the small quantum group introduced by
Lusztig. We classify the irreducible Uζ (Gr )-modules and discuss their characters. We then
study the cohomology rings for the Frobenius–Lusztig kernels and for certain nilpotent and
Borel subalgebras corresponding to unipotent and Borel subgroups of G. We prove that the
cohomology ring for the first Frobenius–Lusztig kernel is finitely-generated when g has
type A or D, and that the cohomology rings for the nilpotent and Borel subalgebras are
finitely-generated in general.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

In the last twenty years, many deep connections have been discovered between the representation theory for algebraic
groups and that for quantized enveloping algebras (quantum groups). For example, let G be a semisimple, simply-connected
algebraic group over an algebraically closed field of characteristic p > 0, let g be the Lie algebra of G, and let Uζ be the
quantum group (Lusztig form) associated to g, with parameter ζ ∈ C an ℓ-th root of unity. Let G1 ⊂ G be the first Frobenius
kernel of G, and let uζ ⊂ Uζ be Lusztig’s small quantum group. A long outstanding problem has been to compute the
characters of the irreducible rational G-modules. In their seminal paper [1], Andersen et al. proved that if p is sufficiently
large, then every irreducible G1-module can be obtained via reductionmod p from an irreducible uζ -module. In particular, if
p is sufficiently large, then the Lusztig character formula for the characters of irreducible rational G-modules can be deduced
from the corresponding character formula for irreducible integrableUζ -modules. Other deep connections between algebraic
and quantum groups include the fact that if p and ℓ are both greater than the Coxeter number of g, then the cohomology
rings for G1 and uζ are both isomorphic to the coordinate ring of the variety of nilpotent elements in g [2,18,20].

Though quantum groups can be defined with the parameter ζ taken to be in any field k, relatively little specific attention
has been paid to the case when k has characteristic p > 0. Just as the algebraic group G in characteristic p possesses a tower
of normal subgroup schemes, G1 ⊂ G2 ⊂ · · · ⊂ G, its Frobenius kernels, so too does a quantum group in characteristic p
possess a tower of normal Hopf subalgebras, uζ = Uζ (G0) ⊂ Uζ (G1) ⊂ Uζ (G2) ⊂ · · · ⊂ Uζ , which we call the Frobenius–
Lusztig kernels of Uζ .

In this paper we study the representation theory and cohomology of the Frobenius–Lusztig kernels of a quantum group
Uζ defined over a field of characteristic p. Our results simultaneously generalize classical results on the Frobenius kernels of
algebraic groups, as well as the results of Andersen, Polo andWen [3,4] for the small quantum group. It is our hope that the
Frobenius–Lusztig kernels of a quantum group in characteristic pmight prove as useful to the study of representations and
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cohomology for Uζ as have the Frobenius kernels to the study of representations and cohomology for the algebraic group G
and its finite subgroups.

1.2. Organization

The paper is organized as follows. In Section 2we establish notation and recall basic notions about quantum groups. Then
in Section 3 we establish basic facts about the representation theory of the Frobenius–Lusztig kernels of Uζ . We prove that
Uζ (Gr) is a normal subalgebra of Uζ , and we classify the irreducible Uζ (Gr)-modules, showing that each irreducible Uζ (Gr)-
module is the restriction of an irreducible Uζ -module with highest weight lying in a suitable restricted region. Section 3
culminates with our proof that if p ≫ 0, then the characters of the simple uζ -modules in characteristic p are the same as
in characteristic zero, hence are given by the Lusztig character formula for quantum groups [25, II.H.12]. It is an interesting
open problem to determine if there is a value of p for which the characteristic p and characteristic zero characters of simple
uζ -modules do not agree.

Sections 4–6 are devoted to studying the cohomology of the Frobenius–Lusztig kernels, specifically, the cohomology ring
H•(Uζ (Gr), k), and also the cohomology rings for the Borel and nilpotent subalgebras of Uζ (Gr) corresponding to a Borel
subgroup B of G and its unipotent radical U ⊂ B. A major open problem in the study of finite-dimensional Hopf algebras
is to determine whether the associated cohomology ring is finitely generated. Given a Hopf algebra H over the field k, the
cohomology ringH•(H, k) is known to be finitely-generated ifH is cocommutative, bywork of Friedlander and Suslin [19], or
if H is pointed and char(k) = 0, by work of Mastnak et al. [32]. The higher Frobenius–Lusztig kernels of a quantum group in
characteristic p represent another infinite class of noncommutative, non-cocommutative finite-dimensional Hopf algebras,
so it would be interesting to determine if their cohomology rings are finitely-generated as well.

We begin in Section 4 by describing a general theory for the actions of Hopf algebras on cohomology groups. Then
in Section 5 we are able to imitate the inductive approach of Friedlander and Parshall [17] to prove (with some mild
restrictions on ℓ, and assuming g to be of type A orD) the finite-generation of the cohomology ring H•(Uζ (G1), k) for the first
Frobenius–Lusztig kernel of Uζ . Unlike in the classical situation for algebraic groups, there is no canonical way to embed an
arbitrary quantum group into one whose associated Lie algebra is of type A, so we are not able to prove finite-generation
of H•(Uζ (G1), k) in general at this time. The inductive approach to studying the first Frobenius–Lusztig kernel requires
calculating the cohomology ring H•(uζ , k) for the small quantum group in characteristic p; this we do in Section 5.1. It is our
opinion that the theory of Section 4 makes more transparent the Hopf algebra actions considered by Ginzburg and Kumar
[20] in their characteristic zero calculation of H•(uζ ,C).

In Section 6 we study, for all r ≥ 0, the cohomology rings H•(Uζ (Br), k) and H•(Uζ (Ur), k) for the subalgebras of Uζ (Gr)
corresponding to the Borel subgroup B and its unipotent radical U . We prove that H•(Uζ (Ur), k) and H•(Uζ (Br), k) are
finitely-generated as rings. A version of our results on H•(Uζ (Ur), k), appearing in the author’s thesis [11], was used by
Feldvoss and Witherspoon [15, Theorem 4.2] as part of their proof that the principal block of the small quantum group
is of wild representation type. Finally, in Section 6.3 we provide some circumstantial evidence for the finite-generation
of H•(Uζ (Gr), k) in general. Specifically, we prove that the complexity of finite-dimensional Uζ (Gr)-modules is finite and
uniformly bounded.

2. Preliminaries

2.1. Quantized enveloping algebras

LetΦ be a finite, indecomposable root system. Fix a set of simple rootsΠ ⊂ Φ , and letΦ+ andΦ− be the corresponding
sets of positive and negative roots in Φ . Write W for the Weyl group of Φ . It is generated by the set of simple reflections
{sα : α ∈ Π}. Let ℓ : W → N be the length function onW .

Let ZΦ be the root lattice of Φ . It spans a real vector space E, possessing a positive definite, W -invariant inner product
(·, ·), normalized so that (α, α) = 2 if α ∈ Φ is a short root. Given α ∈ Φ , let α∨

= 2α/(α, α) be the dual root. Let
X =


λ ∈ E : (λ, α∨) ∈ Z ∀α ∈ Φ


be the weight lattice of Φ . It is spanned by the set of fundamental dominant weights

{ϖα : α ∈ Π}, which are defined by the equations (ϖα, β
∨) = δα,β (β ∈ Π ). Let X+

=

λ ∈ X : (λ, α∨) ≥ 0 ∀α ∈ Φ+


be the subset of dominant weights. Set ρ =

1
2

∑
α∈Φ+ α =

∑
α∈Π ϖα , and let α0 ∈ Φ+ be the highest short root. Then the

Coxeter number h ofΦ is defined by h = (ρ, α∨

0 )+ 1.
Let q be an indeterminate. The quantized enveloping algebra Uq is the Q(q)-algebra defined by the generators

Eα, Fα, Kα, K−1
α : α ∈ Π


and the relations in [25, 4.3]. The algebra Uq admits the structure of a Hopf algebra, with

comultiplication∆, counit ε, and antipode S defined in [25, 4.8].
Set A = Z[q, q−1

]. For a ∈ Z, put [a] =
qa−q−a

q−q−1 ∈ A, and for n ∈ N, define [n]! = [n][n − 1] · · · [2][1]. For a ∈ Z,
define [a]α to be the image in A of [a] under the ring homomorphism A → A mapping q → qα := q(α,α)/2. Let UA be the
A-subalgebra of Uq generated by

E(n)α , F
(n)
α , Kα, K−1

α : α ∈ Π, n ∈ N

,
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where the divided powers E(n)α , F
(n)
α ∈ Uq are defined by E(n)α = En

α/[n]
!
α and F (n)α = F n

α/[n]
!
α . Then UA is a free A-module

and an A-form for Uq [31]. It is also a Hopf subalgebra of Uq. For any A-algebra Γ , write UΓ for the algebra UA ⊗A Γ .
We follow the usual convention ofwriting the superscripts+,− and 0 to denote the positive, negative, and toral subalgebras
of Uq, of the A-form UA, and of the specializations UΓ . Then, for example, U+

q is the subalgebra of Uq generated by the set
{Eα : α ∈ Π}. There exists an involutory Q(q)-algebra automorphism ω of Uq satisfying ω(Eα) = Fα , ω(Fα) = Eα , and
ω(Kα) = K−1

α (α ∈ Π ). It descends to an automorphism of UA.

2.2. Frobenius–Lusztig kernels

Let k be a field of characteristic p ≠ 2, and p ≠ 3 if Φ has type G2. Let ℓ ∈ N be an odd positive integer, with ℓ coprime
to p, and also ℓ coprime to 3 if Φ has type G2. (There should be no confusion between the use of ℓ as an integer, and the
use of ℓ for the length function on W .) Fix a primitive ℓ-th root of unity ζ ∈ k. Then k is naturally an A-module under the
specialization q → ζ . Define Uζ to be the quotient of Uk = UA ⊗A k by the two-sided ideal ⟨K ℓα ⊗ 1 − 1 ⊗ 1 : α ∈ Π⟩.
In the language of [3–5], every Uζ -module is a Uk-module of type 1. Conversely, every Uk-module of type 1 is automatically
a Uζ -module. By abuse of notation, we denote from now on the generators of UA as well as their images in Uk and Uζ by the
same symbols.

The elements {Eα, Fα, Kα : α ∈ Π} of Uk generate a finite-dimensional Hopf subalgebra uk of Uk. We denote the image of
uk inUζ by uζ , and call this latter algebra the small quantum group. It is a normal Hopf subalgebra ofUζ (see Section 3.1), and
the quotient Uζ //uζ is isomorphic as a Hopf algebra to Dist(G), the algebra of distributions on the simple, simply-connected
algebraic group G over k with root system Φ . (For details on Dist(G), see [26, II.1.12].) The algebra Dist(G) is also known as
the hyperalgebra of G, and denoted by hy(G). The quotient map Fζ : Uζ → Dist(G)was constructed by Lusztig [31, Section
8], and is called the quantum Frobeniusmorphism. For this reason, the algebra uζ is also called the Frobenius–Lusztig kernel
of Uζ . Given a Dist(G)-module V , write V [1] for V considered as a Uζ -module via the morphism Fζ : Uζ → Dist(G).

Set g = Lie(G), the Lie algebra of G. If we wish to emphasize the dependence of the algebras Uq, Uζ , uζ , etc., on the root
systemΦ of g, then we write Uq = Uq(g), Uζ = Uζ (g), uζ = uζ (g), etc.

Fix r ∈ N, and suppose p = char(k) > 0. Define Uζ (Gr) to be the subalgebra of Uζ generated by
Eα, E(p

iℓ)
α , Fα, F (p

iℓ)
α , Kα : α ∈ Π, 0 ≤ i ≤ r − 1


. (2.2.1)

Then Uζ (Gr) is a finite-dimensional Hopf subalgebra of Uζ , and Fζ (Uζ (Gr)) = Dist(Gr), the algebra of distributions on the
r-th Frobenius kernel Gr of G. We call Uζ (Gr) the r-th Frobenius–Lusztig kernel of Uζ . By definition, the zeroth Frobenius–
Lusztig kernel,Uζ (G0), is just the small quantumgroup uζ .We refer to theUζ (Gr)with r ≥ 1 as the higher Frobenius–Lusztig
kernels of Uζ . The higher Frobenius–Lusztig kernels of Uζ are defined only if p = char(k) > 0. Indeed, if char(k) = 0 and
r ≥ 1, then the subalgebra of Uζ generated by (2.2.1) is all of Uζ [30, Proposition 3.2].

2.3. Braid group automorphisms and integral bases

Let w0 = sβ1 · · · sβN be a reduced expression for the longest word w0 ∈ W . For each γ ∈ Φ+, there exist root vectors
Eγ ∈ U+

q and Fγ ∈ U−
q , defined in terms of certain braid group operators on Uq, and depending on the chosen reduced

expression forw0 [31, Appendix].
For 1 ≤ i ≤ N , set wi = sβ1 · · · sβi−1 (so w1 = 1), and set γi = wi(βi). Then Φ+

= {γ1, . . . , γN}, and A-bases for U−

A and
U+

A , respectively, are given by the collections of monomials
F (r) = F (r1)γ1

· · · F (rN )γN
: r = (r1, . . . , rN) ∈ NN

, and (2.3.1)
E(s) = E(s1)γ1

· · · E(sN )γN
: s = (s1, . . . , sN) ∈ NN

(2.3.2)

where E(n)γ and F (n)γ for arbitrary γ ∈ Φ+ are defined in [31, Section 5.1]. An A-basis for the A-form U0
A of U0

q is described in
[31, Theorem 6.7].

Multiplication induces A-module isomorphisms U+

A ⊗A U0
A ⊗A U−

A
∼= UA

∼= U−

A ⊗A U0
A ⊗A U+

A (triangular decomposition).
We thus obtain for any A-algebra Γ a Γ -basis for UΓ . The A-bases for U+

A and U−

A project onto k-bases for U+

ζ and U−

ζ , and
there exist similar vector space isomorphisms U+

ζ ⊗ U0
ζ ⊗ U−

ζ
∼= Uζ ∼= U−

ζ ⊗ U0
ζ ⊗ U+

ζ .

2.4. Distinguished subalgebras

Fix a maximal torus T ⊂ G such that Φ is the root system of T in G. Let B ⊂ G be the Borel subgroup of G containing T
and corresponding to Φ−. Let U be the unipotent radical of B. To the subgroup schemes U , B, Ur , Br , Tr , BrT , GrT , and GrB
of G, we associate certain distinguished subalgebras of Uζ . Define Uζ (U) = U−

ζ , Uζ (B) = U−

ζ U0
ζ , Uζ (Ur) = U−

ζ ∩ Uζ (Gr),
Uζ (Br) = Uζ (B) ∩ Uζ (Gr), Uζ (Tr) = U0

ζ ∩ Uζ (Gr), Uζ (BrT ) = Uζ (Br)U0
ζ , Uζ (GrT ) = Uζ (Gr)U0

ζ , and Uζ (GrB) = Uζ (Gr)Uζ (B).
Then, for example, Uζ (Ur) admits a basis consisting of all monomials in (2.3.1) with 0 ≤ ai < prℓ for all 1 ≤ i ≤ N .
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Replacing B by its opposite Borel subgroup B+, we similarly define the opposite subalgebras Uζ (U+
r ), Uζ (B

+
r ), etc., of Uζ . The

automorphism ω induces isomorphisms U−

ζ

∼
→ U+

ζ , Uζ (Ur)
∼
→ Uζ (U+

r ), etc.
If r > 0, then the distinguished subalgebras defined in the previous paragraph generalize those studied in [3,4]. When

r = 0, set uζ (g) = Uζ (Gr), uζ (u) = Uζ (Ur), and uζ (b) = Uζ (Br). Here u = Lie(U) and b = Lie(B). These notations are meant
to emphasize the similarity between the algebras uζ (g), uζ (u), uζ (b) and the restricted enveloping algebras u(g), u(u), u(b)
of the p-restricted Lie algebras g, u, b.

3. Representation theory

3.1. Normality

Let A be a Hopf algebra, and let B ⊆ A be a subalgebra. Then B is called a normal subalgebra of A if B is closed under the
left and right adjoint actions of A on itself. Write B+ for the augmentation ideal of B. If B is normal in A, then AB+ = B+A,
i.e., the left and right ideals in A generated by B+ are equal [34, Lemma 3.4.2]. For B normal in A, put A//B = A/(AB+). If B
is a normal Hopf subalgebra of A, then A//B inherits from A the structure of Hopf algebra. In this section we show that the
Frobenius–Lusztig kernels are normal in Uζ .
Proposition 3.1.1. Let r ≥ 0. Then Uζ (Gr) is normal in Uζ .
Proof. First, if char(k) = 0 (so also r = 0), then uζ is normal in Uζ by [29, Proposition 5.3]. So assume that p = char(k) > 0.
Consider (2.2.1) as a subset of the algebra Uk, and let Uk(Gr) denote the subalgebra it generates. Then it suffices to show that
Uk(Gr) is normal in Uk. Recall that for a Hopf algebraH with bijective antipode S, the left and right adjoint actions are related
via the equation

Adr(h) = S ◦ Adℓ(S−1(h)) ◦ S−1 (h ∈ H).
So it suffices even to show that Uk(Gr) is stable under the left adjoint action of Uk on itself.

Given n ∈ N, letφn be the n-th cyclotomic polynomial. By our assumptions on ℓ and p, the product prℓ is odd and coprime
to 3 ifΦ has type G2, so it satisfies the same assumptions as ℓ. The map A = Z[q, q−1

] → k sending q → ζ maps φℓ to zero.
Let ϕ be Euler’s totient function. According to [22], the polynomial φpr ℓ factors over Fp as (φℓ)ϕ(p

r ). Then the map A → k
factors through the quotient A/(φpr ℓ). Let ξ ∈ C be a primitive prℓ-th root of unity. Then the quotient A/(φpr ℓ) identifies
with the subring Z[ξ ] of the cyclotomic field Q(ξ).

Let UA(Gr) be the subalgebra of UA generated by (2.2.1), considered now as a subset of UA. Then UA(Gr)⊗A k = Uk(Gr).
Also, Adℓ(UA)(UA(Gr)) ⊆ UA, because UA is a Hopf subalgebra of Uq. To show that Adℓ(Uk)(Uk(Gr)) ⊆ Uk(Gr), it suffices
to show that (Adℓ(UA)(UA(Gr))) ⊗A k ⊆ Uk(Gr). Observe that UA(Gr) ⊗A Q(ξ) = uQ(ξ), the subalgebra of UQ(ξ) that
projects onto the small quantum group associated to the prℓ-th root of unity ξ ∈ Q(ξ). Then by the case char(k) = 0,
(Adℓ(UA)(UA(Gr)))⊗A Z[ξ ] ⊆ uQ(ξ) = UA(Gr)⊗A Q[ξ ]. Since base change from A to k factors through Z[ξ ], we get

(Adℓ(UA)(UA(Gr)))⊗ k = (Adℓ(UA)(UA(Gr))⊗A Z[ξ ])⊗Z[ξ ] k
⊆ (UA(Gr)⊗A Z[ξ ])⊗Z[ξ ] k = Uk(Gr). �

Corollary 3.1.2. The algebra uζ (b) is stable under the right adjoint action of Uζ (B).
Proof. The algebra Uζ (B) is a Hopf algebra containing uζ (b), and uζ (b) ⊂ uζ (g). Then Adr(Uζ (B))(uζ (b)) ⊆ Uζ (B)∩uζ (g) =

uζ (b). �

3.2. Local finiteness

Let N be one of the distinguished subgroup schemes of G identified in Section 2.4. Recall the definition, due to Andersen,
Polo and Wen [3–5], of the category of integrable Uζ (N)-modules. If N is a finite subgroup scheme of G, then every Uζ (N)-
module is integrable. Otherwise, a Uζ (N)-module V is integrable if it satisfies the following two conditions:

1. If T ⊂ N , then V admits a weight space decomposition for U0
ζ (in the sense of [5, Section 1.2]).

2. Given α ∈ Φ+, let Uα ⊂ B and U+
α ⊂ B+ be the corresponding root subgroups of G. Let v ∈ V . If Uα ⊂ N , then F (n)α .v = 0

for all n ≫ 0. If U+
α ⊂ N , then E(n)α .v = 0 for all n ≫ 0.

Our goal now is to study the integrable representation theory of the distinguished subalgebras Uζ (Gr), Uζ (GrT ), and
Uζ (GrB) defined in Section 2.4. Specifically, we wish to characterize the simple integrable modules for these algebras. When
r = 0, our results reproduce those of Andersen, Polo andWen [3,4] for the small quantum group.We begin our investigation
with the following lemma, which implies that the simple modules we wish to study are all finite-dimensional. First some
notation: Given λ ∈ X , there exists a one-dimensional integrableUζ (B)-module (resp.Uζ (B+)-module) ofU0

ζ -weight λ, with
trivial U−

ζ (resp. U+

ζ )-action; denote it by the symbol λ.

Lemma 3.2.1. Let V be an integrable Uζ (N)-module. Then V is locally finite, i.e., every finitely-generated submodule of V is
contained in a finite-dimensional submodule of V .



C.M. Drupieski / Journal of Pure and Applied Algebra 215 (2011) 1473–1491 1477

Proof. Let 0 ≠ v ∈ V . To prove the lemma, it suffices to show that v generates a finite-dimensional Uζ (N)-submodule
of V . If N is a finite subgroup scheme of G, then Uζ (N) is finite-dimensional, in which case the result is obvious. If V is a
Uζ (NT )-module, then v =

∑
µ∈X vµ, a finite sum of weight vectors, and Uζ (NT ).v ⊆

∑
Uζ (N)U0

ζ .vµ =
∑

Uζ (N).vµ, which
is again finite-dimensional.

SupposeN = U . For eachα ∈ Π , setnα = max{n ∈ N : F (n)α .v ≠ 0}, and setλ =
∑

α∈Π nαϖα . ThenM(λ) := Uζ⊗Uζ (B+)λ

is the Verma module of highest weight λ, generated by the vector xλ := 1 ⊗ λ. As a vector space and as a module for U−

ζ ,
M(λ) ∼= U−

ζ . Now define J(λ) to be the left ideal of U−

ζ generated by {F (n)α : α ∈ Π, n > nα}, and define N(λ) to be
the U−

ζ -submodule J(λ).xλ of M(λ). Since the action of U−

ζ on v factors through the quotient U−

ζ /J(λ), it suffices to show
that the quotient is finite-dimensional. As a U−

ζ -module, U−

ζ /J(λ) ∼= M(λ)/N(λ). Arguing as in the proof of [5, Proposition
1.20], we see that N(λ) is a Uζ -submodule of M(λ), and that the quotient M(λ)/N(λ) is an integrable Uζ -module. Then by
[3, Proposition 1.7], theWeyl groupW acts on the weights ofM(λ)/N(λ). Continuing as in the proof of [5, Proposition 1.20],
we conclude that M(λ)/N(λ), and hence also U−

ζ .v, is finite-dimensional. This proves the lemma for the case N = U , from
which the case N = GrB also follows. (Write Uζ (GrB) = Uζ (GrT )Uζ (U).)

Finally, supposeN = G. Againwriting v =
∑
vµ, we haveUζ .v ⊆

∑
Uζ .vµ, so it suffices to show that eachUζ .vµ is finite-

dimensional, i.e., wemay assume that v is aweight vector. ThenUζ .v = U+

ζ U0
ζ U

−

ζ .v = U+

ζ U−

ζ U0
ζ .v = U+

ζ U−

ζ .v = U+

ζ (U
−

ζ .v).
By the case N = U , the space V ′

:= U−

ζ .v is finite-dimensional. Then by the case N = U+ (which is completely analogous
to the case N = U), the space Uζ .v = U+

ζ .V
′ is as well. �

Remark 3.2.2. Conversely, every locally finite Uζ -module is integrable [13, Theorem A3.7].

3.3. Baby Verma modules

Let indU2
U1
(−) = H0(U2/U1,−) be the induction functor for quantized enveloping algebras defined in [3–5]. Given λ ∈ X ,

define the integrable modulesZ ′

r(λ) = ind
Uζ (GrB)
Uζ (B)

λ,Z ′

r(λ) = ind
Uζ (Gr T )
Uζ (Br T )

λ, and

Z ′

r(λ) = ind
Uζ (Gr )
Uζ (Br )

λ.

ThenZ ′
r(λ)|Uζ (Gr T )

∼= Z ′
r(λ) andZ ′

r(λ)|Uζ (Gr )
∼= Z ′

r(λ) (cf. [4, Sections 1.1–1.3]). Now let coindH
K (−) = H ⊗K − be the usual

tensor induction functor for Hopf algebras, and define the integrable modulesZr(λ) = coind
Uζ (GrB+)

Uζ (B+)
λ,

Zr(λ) = coind
Uζ (Gr T )

Uζ (B
+
r T )
λ, and

Zr(λ) = coind
Uζ (Gr )

Uζ (B
+
r )
λ.

ThenZr(λ)|Uζ (Gr T ) ∼= Zr(λ) andZr(λ)|Uζ (Gr ) ∼= Zr(λ). As modules for the Hopf algebra U0
ζ ,Z ′

r(λ)
∼= Homk(Uζ (U+

r ), k) ⊗ λ,
andZr(λ) ∼= Uζ (Ur)⊗ λ. Here Uζ (Ur) and Uζ (U+

r ) are viewed as U0
ζ -modules via the adjoint action of U0

ζ .
Lemma 3.3.1 ([12, Lemma 2.2.3]). Let λ ∈ X.
1. In the category of integrable Uζ (BrT )-modules,Zr(λ) is the projective cover of λ and the injective hull of λ− 2(prℓ− 1)ρ .
2. In the category of integrable Uζ (B+

r T )-modules,Z ′
r(λ) is the projective cover of λ− 2(prℓ− 1)ρ and the injective hull of λ.

Statements (1) and (2) are also true if the modulesZr(λ) andZ ′
r(λ) are replaced by Zr(λ) and Z ′

r(λ), and if the algebras Uζ (BrT )
and Uζ (B+

r T ) are replaced by Uζ (Br) and Uζ (B+
r ).

LetH be aHopf algebrawith antipode S, and let V be a leftH-module. Recall that the dual space V ∗
= Homk(V , k) ismade

into an H-module by setting (h.f )(v) = f (S(h).v) for all f ∈ V ∗, h ∈ H , and v ∈ V . For the Hopf algebras considered in this
paper, if V is finite-dimensional, then V ∗∗

= (V ∗)∗ is naturally (though not canonically) isomorphic to V as an H-module
[25, 5.3(3)].
Lemma 3.3.2 ([12, Lemma 2.2.4]). Let λ ∈ X. ThenZ ′

r(λ)
∗ ∼= Z ′

r(2(p
rℓ− 1)ρ − λ) andZr(λ)∗ ∼= Zr(2(prℓ− 1)ρ − λ).

3.4. Simple modules

Given λ ∈ X , define
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Lζ ,r(λ) = socUζ (GrB)Z ′
r(λ),Lζ ,r(λ) = socUζ (Gr T )Z ′
r(λ), and

Lζ ,r(λ) = socUζ (Gr ) Z
′
r(λ).

(3.4.1)

In the context of quantized enveloping algebras, it is not a priori clear that there should be any inclusion relations among
the modules in (3.4.1). We will eventually prove that the modules in (3.4.1) are in fact equal. First we require the following
theorem, which follows from arguments completely analogous to those used in the context of algebraic groups (cf. [26,
I.9.6]).
Theorem 3.4.1. Let N ∈ {Gr ,GrT ,GrB}, and let L(λ) be the corresponding module in (3.4.1).
1. L(λ) is a simple Uζ (N)-module.
2. L(λ)Uζ (U

+
r ) ∼= λ as a Uζ (Tr)-module, and EndUζ (N)(L(λ))

∼= k.
3. If T ⊂ N, then L(λ)Uζ (U

+
r ) = L(λ)λ, and each weight µ of L(λ) satisfies µ ≤ λ.

4. For all λ,µ ∈ X, L(λ+ prℓµ) ∼= L(λ)⊗ prℓµ as a Uζ (N)-module.
5. If N ∈ {GrT ,GrB}, then the L(λ) for λ ∈ X form a complete set of pairwise non-isomorphic simple integrable Uζ (N)-modules.

If N = Gr , then the L(λ) with
λ ∈ Xpr ℓ :=


µ ∈ X+

: 0 ≤ (µ, α∨) < prℓ ∀α ∈ Π


form a complete set of pairwise non-isomorphic simple integrable Uζ (N)-modules.
6. There exist isomorphisms of Uζ (N)-modules

L(2(prℓ− 1)ρ − λ)∗ ∼= Z ′

r(λ)/ radUζ (N)
Z ′

r(λ) (3.4.2)

L(λ) ∼= Zr(λ)/ radUζ (N)
Zr(λ) (3.4.3)

L(2(prℓ− 1)ρ − λ)∗ ∼= socUζ (N)Zr(λ). (3.4.4)

Recall that the simple integrable Uζ -modules are parameterized by their highest dominant weights [3, Proposition 1.6].
Given µ ∈ X+, let Lζ (µ) be the simple integrable Uζ -module of highest weight µ, and let L(µ) be the simple rational G-
module of highest weightµ. Now let λ ∈ X+, and write λ = λ0 +ℓλ1 with λ0 ∈ Xℓ and λ1 ∈ X+. Then by [3, Theorem 1.10],
there exists a Uζ -module isomorphism

Lζ (λ) ∼= Lζ (λ0)⊗ L(λ1)[1]. (3.4.5)

The restriction of Lζ (λ0) to uζ is simple by [3, Theorem 1.9], while L(λ1) is simple for G (equivalently, for Dist(G)).

Lemma 3.4.2. Let λ ∈ Xℓ, and let 0 ≠ v ∈ Lζ (λ)λ. Then F (n)α .v = 0 for all α ∈ Π and n ≥ ℓ.
Proof. Let ξ ∈ C be a primitive ℓ-th root of unity. Let Lξ (λ) be the integrable type 1 simple UQ(ξ)-module of highest weight
λ (i.e., the simple integrable Uξ -module of highest weight λ). Fix a highest weight vector x ∈ Lξ (λ)λ. Then F (ℓ)α .x = 0 for all
α ∈ Π by [30, Proposition 7.1], and consequently F (n)α .x = 0 for all α ∈ Π and n ≥ ℓ by [30, 3.2(c)].

Now letφℓ be the ℓ-th cyclotomic polynomial. Recall that themapA = Z[q, q−1
] → k sending q → ζ factors through the

quotient A/(φℓ) ∼= Z[ξ ]. The ring UZ[ξ ] = UA ⊗A Z[ξ ] is a subring of UQ(ξ). Let V ′ be the UZ[ξ ]-submodule of Lξ (λ) generated
by x. Set V = V ′

⊗Z[ξ ] k. Then V is an integrable Uk-module of type 1, i.e., V is an integrable Uζ -module. The module V need
not be simple for Uζ , though it does have Lζ (λ) as a simple quotient because dim Vλ = 1, and because all other weightsµ of
V satisfy µ ≤ λ. Furthermore, the image of x in V projects on to the highest weight vector of Lζ (λ). Since for all α ∈ Π and
n ≥ ℓ the equality F (n)α .x = 0 holds in Lξ (λ), it must then hold in V ′, and hence also in V and in its simple quotient Lζ (λ). �

Theorem 3.4.3. Let λ ∈ Xpr ℓ. Then Lζ (λ) is simple as a module for Uζ (Gr).

Proof. Write λ = λ0 + ℓλ1 with λ0 ∈ Xℓ and λ1 ∈ Xpr . Arguing as in the proof of [30, Theorem 7.4], one uses Lemma 3.4.2
to show that Lζ (λ) ∼= Lζ (λ0)⊗ L(λ1)[1] is generated as a Uζ (Gr)-module by a highest weight vector 0 ≠ x ∈ Lζ (λ)λ. Then,
continuing as in [30], one uses the simplicity of Lζ (λ0) for uζ and the simplicity of L(λ1) for Dist(Gr) ∼= Uζ (Gr)//uζ to show
that every Uζ (Gr)-submodule of Lζ (λ) contains x, and hence Lζ (λ) is simple for Uζ (Gr). �

Corollary 3.4.4. Let λ ∈ X. The three submodules ofZ ′
r(λ) defined in (3.4.1) coincide.

Proof. Since any λ ∈ X can be written uniquely as λ = λ′
+ prℓµwith λ′

∈ Xpr ℓ and µ ∈ X , it suffices by Theorem 3.4.1(4)
to prove that the three submodules ofZ ′

r(λ) coincide in the special case λ ∈ Xpr ℓ. So assume λ ∈ Xpr ℓ. By Theorem 3.4.3,
Lζ (λ) is simple as a Uζ (Gr)-module, hence also as a Uζ (GrB)-module and as a Uζ (GrT )-module. Lemma 3.4.2 and (3.4.5)
imply that the set of Uζ (U+

r )-invariants in Lζ (λ) is precisely Lζ (λ)λ. Then Theorem 3.4.1(2) implies Lζ (λ) ∼= Lζ ,r(λ) as a
Uζ (GrB)-module, and hence thatLζ ,r(λ) =Lζ ,r(λ) = Lζ ,r(λ). �

Remark 3.4.5. Corollary 3.4.4 and Theorem 3.4.1(2) imply that every simple integrable Uζ (GrT )-module lifts uniquely to
a simple Uζ (GrB)-module, and every simple integrable Uζ (GrB)-module is isomorphic to exactly one simple integrable
Uζ (GrT )-module thus extended. By symmetry, the corresponding statement for Uζ (GrB+) is also true.
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3.5. Injective modules

Given λ ∈ X , letQζ ,r(λ) denote the injective hull ofLζ ,r(λ) in the category of integrableUζ (GrT )-modules, and let Qζ ,r(λ)
denote the injective hull of Lζ ,r(λ) in the category of integrableUζ (Gr)-modules. By [12, Lemma2.2.6],Qζ ,r(λ) is also injective
as a Uζ (Gr)-module. Then arguing as in [26, II.11.3], we get that Qζ ,r(λ) ∼= Qζ ,r(λ) as Uζ (Gr)-modules. Using the results in
[12, Sections 2.1, 2.2], the proof of the following theorem now only requires a routine translation to the present context of
the argument in [26, II.11.4], where the corresponding result for Frobenius kernels of algebraic groups is proved.

Proposition 3.5.1 (cf. [26, Proposition II.11.4]). Let λ ∈ X. The Uζ (GrT )-module Qζ ,r(λ) admits filtrations 0 = M0 ⊂ M1 ⊂

· · · ⊂ Ms = Qζ ,r(λ) and 0 = M ′

0 ⊂ M ′

1 ⊂ · · · ⊂ M ′
s = Qζ ,r(λ) such that each factor has the form Mi/Mi−1 ∼= Zr(λi)

resp. M ′

i/M
′

i−1
∼= Z ′

r(λ
′

i) with λ, λ′

i ∈ X. For each µ ∈ X, the number of i with λi = µ resp. with λ′

i = µ is equal to
[Zr(µ) :Lζ ,r(λ)] = [Z ′

r(µ) :Lζ ,r(λ)], the composition factor multiplicity ofLζ ,r(λ) inZr(µ) resp.Z ′
r(µ).

Corollary 3.5.2. Let λ ∈ X. Then Qζ ,r(λ) is the projective cover ofLζ ,r(λ) in the category of integrable Uζ (GrT )-modules, and
Qζ ,r(λ) is the projective cover of Lζ ,r(λ) in the category of integrable Uζ (Gr)-modules.

Proof. This follows from Proposition 3.5.1, from [12, Proposition 2.2.8], and from the argument in [26, II.11.5]. �

Set Stpr ℓ = Lζ ((prℓ − 1)ρ). We call this module the r-th Steinberg module for Uζ . When r = 0, we refer to Stℓ
simply as the Steinberg module. TheWeyl groupW acts on the weights of integrable Uζ -modules by [3, Proposition 1.7], so
w0((prℓ−1)ρ) = −(prℓ−1)ρ is the lowestweight of Stpr ℓ. Then (Stpr ℓ)∗ is a simple integrableUζ -module of highest weight
(prℓ − 1)ρ, hence is isomorphic to Stpr ℓ, i.e., Stpr ℓ is self-dual. Now (3.4.2)–(3.4.4) imply that there exist Uζ (GrT )-module
isomorphisms

Stpr ℓ ∼= Z ′

r((p
rℓ− 1)ρ) ∼= Zr((prℓ− 1)ρ). (3.5.1)

Corollary 3.5.3. The r-th Steinberg module Stpr ℓ = Lζ ((prℓ− 1)ρ) is injective and projective as an integrable Uζ (GrT )-module
and as a Uζ (Gr)-module.

Proof. Apply Proposition 3.5.1 and [12, Lemma 2.2.6]. �

3.6. Characters of simple modules

Let {e(µ) : µ ∈ X} be the canonical basis for the group ring k[X] of the weight lattice X (an additive group). Given a
finite-dimensional Uζ -module (resp. G-module)M , the formal character ofM is defined by chM =

∑
µ∈X (dimMµ)e(µ).

Let λ ∈ X+, and write λ = λ0 +λ1 with λ0 ∈ Xℓ and λ1 ∈ X+. To compute the formal character of the simple Uζ -module
Lζ (λ), it suffices by (3.4.5) to compute the formal characters of Lζ (λ0) and L(λ1)[1]. If p := char(k) = 0, then ch L(λ1) is given
by the Weyl character formula, and if ℓ > h, then ch Lζ (λ0) can be computed by the Lusztig character formula [26, II.H.12].

If p > 0, thenmuch less is certain. By relating quantum groups in characteristic zero to algebraic groups in characteristic
p > 0, Andersen et al. [1] have shown that for each root systemΦ , there exists an unknown bound n(Φ), depending only on
Φ , such that if p > n(Φ), then ch L(λ1) can also be computed by the Lusztig character formula. Unfortunately, no effective
lower bound for n(Φ) is known, though Fiebig [16] has recently computed a lower bound that is explicit but very large.

Now to compute the characters of the simple Uζ -modules when ζ ∈ k and p = char(k) ≫ 0, it remains to compute
ch Lζ (λ) for λ ∈ Xℓ. Recall the setup for the proof of Lemma 3.4.2: We have ξ ∈ C a primitive ℓ-th root of unity, and
UQ(ξ) = UA ⊗A Q(ξ). The module Lξ (λ) is the integrable type 1 simple UQ(ξ)-module of highest weight λ ∈ Xℓ, and ch Lξ (λ)
can be computed by the Lusztig character formula.

Theorem 3.6.1. Let λ ∈ Xℓ. There exists an integer N(Φ), depending only on the root system Φ , such that if p := char(k) >
N(Φ), then ch Lζ (λ) = ch Lξ (λ). In particular, if ℓ > h and p > N(Φ), then ch Lζ (λ) is given by the Lusztig character formula.

Proof. By the proof of Lemma 3.4.2, dim Lζ (λ)µ ≤ dim Lξ (λ)µ for all µ ∈ X . Then to prove the theorem, it suffices to show
that there exists an integer N(Φ), depending only on the root systemΦ (i.e., not depending on the integer ℓ or on the choice
of primitive ℓ-th root of unity ζ ∈ k) such that if p > N(Φ), then dim Lζ (λ) = dim Lξ (λ).

Let uZ[ξ ] be the subalgebra of UZ[ξ ] = UA ⊗A Z[ξ ] generated by {Eα, Fα, Kα : α ∈ Π}. Then uZ[ξ ] and UZ[ξ ] are naturally
subalgebras of uQ(ξ) andUQ(ξ), respectively. As remarked in the proof of Lemma 3.4.2, themapA → k sending q → ζ factors
through a map A/(φℓ) ∼= Z[ξ ] → k. Then uZ[ξ ] ⊗Z[ξ ] k ∼= uk.

The simple modules for uQ(ξ) and for uk are each parameterized by the same finite set, namely, the cartesian product
Xℓ × (Z/2Z)n; cf. [5, Section 1]. Given λ ∈ Xℓ and the identity element e ∈ (Z/2Z)n, the simple module parameterized by
(λ, e) is just Lξ (λ) (resp. Lζ (λ)). Given σ ∈ (Z/2Z)n, there exists a one-dimensional uQ(ξ)-module (resp. uk-module), also
denoted σ , such that the simple module parameterized by (λ, σ ) is Lξ (λ)⊗ σ (resp. Lζ (λ)⊗ σ ).

Let L1, . . . , Lm and L′

1, . . . , L
′
m be representatives for the isomorphism classes of distinct simple uQ(ξ)-modules (resp. uk-

modules). Since dim Lζ (λ) ≤ dim Lξ (λ) for all λ ∈ Xℓ, we may assume dim L′

i ≤ dim Li for all 1 ≤ i ≤ m. For 1 ≤ i ≤ m, let
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Qi be the uQ(ξ)-projective hull of Li, and let Q ′

i be the uk-projective hull of L′

i . Since EnduQ(ξ)(Li) ∼= Q(ξ) (resp. Enduk(L
′

i)
∼= k)

by Theorem 3.4.1(2), we get by standard results for finite-dimensional algebras that the left regular modules decompose as

uQ(ξ) ∼=

m
i=1

(Qi)
⊕ dim Li and uk ∼=

m
i=1

(Q ′

i )
⊕ dim L′i .

Write the above direct sum decomposition for uQ(ξ) as uQ(ξ) ∼= P1 ⊕ · · · ⊕ Ps, where Pi ∼= Q1 for 1 ≤ i ≤ dim L1, Pi ∼= Q2
for (dim L1 + 1) ≤ i ≤ dim L2, and so on. Let S ⊂ uQ(ξ) be an ordered basis for uQ(ξ) such that the first (dim P1) vectors in S
are a basis for P1, the second (dim P2) vectors in S are a basis for P2, and so on. There exists N ∈ N such that S ⊂

1
N uZ[ξ ]. Set

u′
= uZ[ξ ] ⊗Z[ξ ] Z[ξ, 1/N]. Then the first (dim P1) vectors in S span a u′-submodule of u′, the second (dim P2) vectors in S

span a u′-submodule of u′, and so on.
Suppose that S is chosen so as to make N as small as possible. In this case, put N(Φ) = N . Now suppose p > N . Then the

mapZ[ξ ] → k extends to amapZ[ξ, 1/N] → k, anduk ∼= u′
⊗Z[ξ,1/N]k. It follows that the left regularmoduleuk decomposes

as uk ∼= P ′

1 ⊕P ′

2 ⊕· · ·⊕P ′
s , for some uk-submodules P ′

1, P
′

2, . . . , P
′
s of uk with dim P ′

i = dim Pi. By the Krull–Schmidt theorem,
we must have s ≤

∑m
i=1 dim L′

i . But
∑m

i=1 dim L′

i ≤
∑m

i=1 dim Li = s. Then dim Li = dim L′

i for all 1 ≤ i ≤ m. In particular,
we must have dim Lζ (λ) = dim Lξ (λ) for all λ ∈ Xℓ. �

4. Hopf algebra actions on cohomology

4.1. Cohomology of normal subalgebras

Let A be an arbitrary augmented algebra over k, and let B ⊆ A be a subalgebra. Generalizing the definition of a normal
subalgebra given in Section 3.1, we say that B is (left) normal in A if B+A ⊆ AB+. If B is normal in A, put A//B = A/(AB+).
Suppose B is normal in A. Then the space of invariants V B ∼= HomB(k, V ) is an A-submodule of V , and the map −

B
: V → V B

is an endofunctor on the category of A-modules.
The cohomology Hn(B,W ) of B with coefficients in the B-module W is defined by Hn(B,W ) = ExtnB(k,W ) =

Rn(HomB(k,−))(W ). In this context, HomB(k,−) is considered as a functor from the category of B-modules to the category
of k-vector spaces. The right derived functors of HomB(k,−) are defined in terms of B-injective resolutions, whereas the
right derived functors of−B are defined in terms of A-injective resolutions. The following lemma gives a sufficient condition
for Rn(−B)(V ) and Hn(B, V ) to be isomorphic as k-vector spaces.
Lemma 4.1.1 ([6, Lemma I.4.3]). Every injective A-module is injective for B if and only if A is flat as a right B-module.

As a consequence, one gets:
Lemma 4.1.2 ([6, I.5]). Suppose that A is right B-flat. Then for each A-module V , there exists a unique natural extension of the
action of A on V B to an action of A on H•(B, V ). This action of A on H•(B, V ) factors through the quotient A//B.

4.2. Compatible actions for Hopf algebras

Our next goal is to investigate the actions of Hopf algebras on the cohomology groups H•(B, V ). When A is itself a Hopf
algebra, this will give a new description for the action of A on H•(B, V ). First recall the notion of an H-module algebra.
Definition 4.2.1. Let H be a Hopf algebra. An algebra A is an H-module algebra if
1. A is an H-module,
2. Multiplication A ⊗ A → A is an H-module homomorphism, and
3. H acts trivially on 1A ∈ A.
Additionally, if A is augmented over k, with augmentation map ε : A → k, we assume for all a ∈ A and h ∈ H that
ε(a · h) = ε(a)ε(h).

Any Hopf algebra is an H-module algebra over itself via the left and right adjoint actions [34, Example 4.1.9].
Definition 4.2.2. Let H be a Hopf algebra, A a right H-module algebra, and V a left A-module that is simultaneously a left
H-module. Given h ∈ H , write∆(h) =

∑
h(1) ⊗ h(2). Then we say that the A- and H-module structures on V are compatible

if for all v ∈ V , a ∈ A and h ∈ H , we have a.(h.v) =
∑

h(1).((a · h(2)).v).
Example 4.2.3. The A- and H-module structures on the trivial module k are compatible.
Lemma 4.2.4. Let A be a right H-module algebra, and let V be a left A-module with compatible left H-module structure. Then V A

is an H-submodule of V .
Proof. Let v ∈ V A, and let h ∈ H . Then for all a ∈ A,

a.(h.v) =

−
h(1).


(a · h(2)).v


=

−
ε(a)ε(h(2))h(1).v = ε(a)h.v. �

4.3. Actions on the bar resolution

Let A be an augmented algebra over k, and let B be a normal subalgebra of A. The left bar resolution B•(B) = B ⊗ B⊗•

+ of
B is the chain complex with differential dn : Bn(B) → Bn−1(B) defined by dn =

∑n−1
i=0 (−1)i(1⊗i

⊗ m ⊗ 1⊗n−i−1), where
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m : B ⊗ B → B is the multiplication in B. Given a B-module W , set C•(B,W ) = HomB(B•(B),W ). Then Hn(B,W ) is the
cohomology of the cochain complex C•(B,W ).

Suppose A is a right H-module algebra, and that B is an H-submodule of A. Then the right action of H on B extends
diagonally to an action of H on B•(B), making B•(B) a complex of right H-modules. Now let M be a right H-module and let
N be a left H-module. Then Homk(M,N) is made a left H-module by setting (for all h ∈ H , f ∈ Homk(M,N), and m ∈ M)

(h.f )(m) =

−
h(1).f (m · h(2)). (4.3.1)

Theorem 4.3.1. Let A be an augmented algebra over k, and let B be a normal subalgebra of A. Assume that A is a right H-module
algebra, and that B is an H-submodule of A. Let V be a left A-module with compatible H-module structure. Then (4.3.1) defines a
left H-module structure on C•(B, V ) such that C•(B, V ) is a complex of H-modules. The left action of H on C•(B, V ) induces a left
action of H on H•(B, V ).

Proof. The left action ofH onHomk(B•(B), V ) stabilizes the subspace C•(B, V ) of B-module homomorphisms and commutes
with the differential of C•(B, V ), because the A- and H-module structures on V are compatible. �

Definition 4.3.2. We call the left action of H on H•(B, V ) defined in Theorem 4.3.1 the adjoint action of H on H•(B, V ).

The cup product∪ defines a ring structure on H•(B, k). Given cocycles f ∈ Cn(B, k) and g ∈ Cm(B, k), write [f ] ∈ Hn(B, k)
and [g] ∈ Hm(B, k) for the corresponding cohomology classes. Then the cup product [f ] ∪ [g] ∈ Hn+m(B, k) is defined by
[f ] ∪ [g] = [f ∪ g], where f ∪ g ∈ Cn+m(B, k) is defined by (f ∪ g)([b1| . . . |bn+m]) = f ([b1| · · · |bn])g([bn+1| · · · |bn+m]).
Lemma 4.3.3. Let A, B,H be as in Theorem 4.3.1. The adjoint action of H on the cohomology ring H•(B, k)makes H•(B, k) a left
H-module algebra.

Proof. The product ∪ on C•(B, k) is a homomorphism of H-modules. �

4.4. Hopf algebra actions via injective resolutions

Let H be a Hopf algebra, A a right H-module algebra, B a normal subalgebra of A stable under the action of H , and V a left
A-module with compatible H-action. So far we have described the adjoint action of H on H•(B, V ) in terms of a B-projective
resolution of k. Nowwe give conditions under which the H-module structure on H•(B, V )may also be described in terms of
an A-injective resolution of V .

Recall the bimodule bar resolution B•(A, A) = A ⊗ A⊗•

+ ⊗ A, with differential dn : Bn(A, A) → Bn−1(A, A) defined
by dn =

∑n
i=0(−1)i(1⊗i

⊗ m ⊗ 1⊗n−i), where m : A ⊗ A → A is the multiplication in A. Form the complex Q•(V ) =

HomA(B•(A, A), V ), where HomA(−, V ) is taken with respect to the left A-module structure of B•(A, A). The right A-module
structure of Bn(A, A) induces the structure of a left A-module on Qn(V ). Then Q•(V ) is an A-injective resolution of V , called
the coinduced resolution of V [6, VI.2].

As for the bar resolution,B•(A, A) is a complex of rightH-modules. Define a leftH-module structure onHomk(Bn(A, A), V )
by (4.3.1). Since the A and H-module structures on V are compatible, this definition makes Q•(V ) a complex of left H-
modules. The A- and H-modules structures on Q•(V ) are compatible in the sense of Definition 4.2.2 because the A- and
H-module structures on V are compatible.

Now suppose that A is right B-flat. Then by Lemma 4.1.1, the cohomology group Hn(B, V ) may be computed as either
Hn(HomB(B•(B), V )) or as Hn(HomB(k,Q•(V ))). From Lemma 4.2.4 and Theorem 4.3.1, we conclude the existence of two
possibly inequivalent H-module structures on Hn(B, V ), namely, the adjoint action of H on Hn(B, V ), and the H-module
structure induced by the H-module structure of Q•(V ). In fact, these two H-module structures are equivalent.
Proposition 4.4.1. The two left H-module structures on H•(B, V ) defined above are equivalent via a natural isomorphism
Hn(HomB(B•(B), V ))

∼
→ Hn(HomB(k,Q•(V ))).

Proof. One observes that the natural isomorphism

Hn(HomB(B•(B), V ))
∼
→ Hn(HomB(k,Q•(V )))

constructed by Osborne for the proof of [37, Corollary 3.12] is a homomorphism of H-modules. �

4.5. Actions on spectral sequences

Our goal now is to show that the action of a Hopf algebra H on an augmented algebra A with normal subalgebra B is
well-behaved with respect to the Lyndon–Hochschild–Serre (LHS) spectral sequence associated to the pair (A, B). For future
reference in Section 6.2, we recall a construction of the LHS spectral sequence.
Theorem 4.5.1 (Lyndon–Hochschild–Serre Spectral Sequence). Let A be an augmented algebra over k, and let B be a normal
subalgebra of A such that A is right B-flat. Let V be a left A-module. Then there exists a spectral sequence satisfying

E i,j
2 = Hi(A//B,Hj(B, V )) ⇒ Hi+j(A, V ). (4.5.1)

Summary of the construction. We follow the construction of [6, Chapter VI]. Let P•
= B•(A//B) be the left bar resolution of

A//B, and letQ• = Q•(V )be the coinduced resolution ofV . Form the first quadrant double complexC = C i,j
= HomA(P i,Qj).
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There exist two canonical filtrations on C , the column-wise filtration F •

I , and the row-wise filtration F •

II , each of which gives
rise to a spectral sequence converging to H•(Tot(C)), the cohomology of the total complex [33, Theorem 2.16]. The spectral
sequence determined by F •

II collapses at the E2-page and converges to H•(A, V ), while the E i,j
2 -term of the spectral sequence

determined by F •

I is as identified in (4.5.1). Thus, the desired spectral sequence is the one determined by the column-wise
filtration F •

I of the complex C . �

Now letH be aHopf algebra,A a rightH-module algebra, and B a normal subalgebra ofA stable underH . ThenA//B inherits
from A the structure of a right H-module algebra, making P•

= B•(A//B) a complex of right H-modules. Suppose that the A-
and H-module structures on V are compatible. Then, for each i, j ∈ N, (4.3.1) defines a left H-module structure on C i,j, and
this makes Tot(C) a complex of H-modules. Moreover, the filtrations F •

I and F •

II of Tot(C) are filtrations by H-submodules.

Theorem 4.5.2. Maintain the notations and assumptions of Theorem 4.5.1 and of the previous paragraph. Then (4.5.1) is a
spectral sequence of left H-modules. The H-module actions on the E2 page and on the abutment are the adjoint actions of H
defined in Definition 4.3.2.

Proof. This follows from the given construction of (4.5.1) and from the results in Section 4.4. �

Suppose A is a bialgebra and B is a normal sub-bialgebra of A. Then the LHS spectral sequence (4.5.1) admits cup products
[6, VI.3]. Cup products can also be constructed under weaker conditions on A and B, though a different construction for
(4.5.1) is then required. The following theorem will be utilized in Section 6.2.

Theorem 4.5.3. Let A be an augmented algebra over k, and B a central subalgebra of A. Assume that A is right B-free. Then there
exists a spectral sequence of algebras with

E i,j
2 = Hi(A//B, k)⊗ Hj(B, k) ⇒ Hi+j(A, k). (4.5.2)

Let H be a cocommutative Hopf algebra, and suppose A is a right H-module algebra, and B is an H-submodule of A. Then (4.5.2)
is a spectral sequence of left H-module algebras.

Proof. See the construction in the proof of [33, Theorem 9.12]. �

One can show that the spectral sequences (4.5.1) and (4.5.2) are isomorphic from the E2-page onward; see [6, VIII.3].
Implicit in (4.5.2) is the fact that when B is central in A, the action of A//B on H•(B, k) is trivial; see [20, Lemma 5.2.2].

5. Cohomology of the first Frobenius–Lusztig kernel

Our goal now is to study the cohomology ring H•(Uζ (G1), k) for the Frobenius–Lusztig kernel Uζ (G1) of Uζ . The first step
is to compute the cohomology ring H•(uζ , k) for the small quantum group uζ .

5.1. Cohomology of the small quantum group

The strategy for computing the cohomology ring H•(uζ , k)when p := char(k) > 0 is largely analogous to the strategy of
Ginzburg and Kumar for the case k = C. We summarize themain points of the computation for later reference in Section 5.2.
For more details on the case p > 0, see [11].

Theorem 5.1.1. There exists a first quadrant spectral sequence of G-modules satisfying

E i,j
2 = Ri indG

B Hj(uζ (b), k) ⇒ Hi+j(uζ , k). (5.1.1)

Proof. Define functors F1 and F2 from the category of integrable Uζ (B)-modules to the category of rational G-modules by

F1(−) = (−)uζ ◦ H0(Uζ /Uζ (B),−), and

F2(−) = indG
B(−) ◦ (−)uζ (b).

(5.1.2)

Here we have identified the category of rational G-modules with the category of locally finite Dist(G)-modules [39], and the
category of rational B-modules with the category of integrable Dist(B)-modules [9, Theorem 9.4]. The induction functors
H0(Uζ /Uζ (B),−) and indG

B(−) are left exact and take injective modules to injective modules. The fixed-point functor (−)uζ
is right adjoint to the (exact) forgetful functor (−)[1] from the category of of rationalG-modules to integrableUζ -modules, so
maps injective modules to injective modules. Similarly, the fixed-point functor (−)uζ (b) maps injective modules to injective
modules.

In the definition of F1, (−)uζ is considered as a functor from the category of integrable Uζ -modules to the category
of rational G-modules. The right derived functors Ri(−uζ ) are defined in terms of injective resolutions by integrable Uζ -
modules. Since the induction functor H0(Uζ /uζ ,−) is exact by [3, Corollary 2.3], it follows from a standard argument (see,
e.g., [8, Proposition 2.1]) that injective integrable modules Uζ -modules are injective for uζ . Then we may identify identify
Ri(−uζ )with Hi(uζ ,−). Similarly, we may identify the right derived functors Ri(−uζ (b))with Hi(uζ (b),−).
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The functors F1 and F2 are both right adjoint to the functor (−)[1]|Uζ (B), hence are naturally isomorphic. Then by [25,
I.4.1], there exist spectral sequences

E i,j
2 = Hi(uζ ,Hj(Uζ /Uζ (B), k)) ⇒ (Ri+jF1)(k), and

E i,j
2 = Ri indG

B Hj(uζ (b), k) ⇒ (Ri+jF2)(k),

converging to the same abutment. By [38, Theorem 5.5], Hi(Uζ /Uζ (B), k) = 0 for all i > 0. Then the first spectral sequence
collapses at the E2 page, giving (R•F1)(k) ∼= (R•F2)(k) ∼= H•(uζ , k). So the second spectral sequence is the spectral sequence
of the theorem. �

Remarks 5.1.2.
1. In the case p = 0, Andersen, Polo and Wen [4,5] prove by different methods that every (finite-dimensional) injective

Uζ -module restricts to an injective uζ -module.
2. It follows from Proposition 4.4.1 that the G-module structure on H•(uζ , k) in (5.1.1) is equivalent to the adjoint action of

Dist(G) ∼= Uζ //uζ on H•(uζ , k).

By Lemma 4.3.3 and Corollary 3.1.2, the ring H•(uζ (b), k) is a Uζ (B)-module algebra.

Theorem 5.1.3. Suppose ℓ > h. Let S•(u∗) be the symmetric algebra on u∗, with B-module (equivalently, Dist(B)-module)
structure induced by the adjoint action of B on u. Then Hodd(uζ (b), k) = 0, and there exists an isomorphism of Uζ (B)-module
algebras H2•(uζ (b), k) ∼= S•(u∗)[1].

Proof. The argument in [20, Section 2.5] establishing H2•(uζ (b), k) ∼= S•(u∗)[1] as U0
ζ -module algebras in the case p = 0

applies equally well if p > 0. On the other hand, the argument in [20, Section 2.6] for the Uζ (B)-action on H•(uζ (b), k) does
not generalize to the case p > 0, because then Dist(U) ∼= Uζ (U)//uζ (u) is not generated by the images of the ℓ-th divided
powers in U−

ζ . Still, one can show that H2(uζ (b), k) ∼= (u∗)[1] as a Uζ (B)-module; see [11, Section 4.2]. Then Lemma 4.3.3
and the fact that H•(uζ (b), k) is generated in degree two imply that the Uζ (B)-module isomorphism H2(uζ (b), k) ∼= (u∗)[1]

extends to an isomorphism of Uζ (B)-module algebras H2•(uζ (b), k) ∼= S•(u∗)[1]. �

Recall that p = char(k) is said to be good for the root system Φ if p > 2 (resp. p > 3, p > 5) when Φ has a component
not of type A (resp. has a component of exceptional type, resp. of type E8). We now finish the computation of H•(uζ , k)when
ℓ > h and when p = char(k) is good forΦ .

Theorem 5.1.4. Suppose ℓ > h, and that k is algebraically closed of characteristic good for Φ . Then Hodd(uζ , k) = 0, and there
exist G-module algebra isomorphisms H2•(uζ , k) ∼= indG

B S•(u∗) ∼= k[N ], where k[N ] is the coordinate ring of the variety N of
nilpotent elements in g = Lie(G). In particular, H•(uζ (g), k) is finitely generated as a ring.

Proof. Since p is good for Φ , we have Ri indG
B S•(u∗) = 0 for all i > 0 by [28, Theorem 2]. Then the spectral sequence

(5.1.1) collapses at the E2-page, yielding Hodd(uζ , k) = 0, and the G-module isomorphism H2•(uζ , k) ∼= indG
B S•(u∗). The

isomorphism H2•(uζ , k) ∼= indG
B S•(u∗) is an isomorphism of algebras by the argument in [2, Remark 3.2]. For p good, the

map ρ : S•(g∗) → indG
B S•(u∗) induced by Frobenius reciprocity from the restriction map S•(g∗) → S•(u∗) induces a

G-module algebra isomorphism k[N ]
∼
→ indG

B S•(u∗); see the argument in [36, Section 3.5] (cf. also [24, Section 6.20]). �

The G-module structure of H•(uζ , k) can also be determined for most values of ℓ smaller than h; see [7,11]. The last
theorem of this section was obtained in the special case char(k) = 0 by Mastnak et al. [32] as a corollary to their study of
the cohomology of finite-dimensional pointed Hopf algebras. Their techniques apply equally well to the study of H•(uζ , k)
when char(k) > 0, because the group G(uζ ) of grouplike elements in uζ is isomorphic to (Z/ℓZ)n, hence semisimple over k.

Theorem 5.1.5 ([32, Corollary 6.5]). The cohomology ring H•(uζ , k) is finitely generated. For any finite-dimensional uζ -module
M, H•(uζ ,M) is finitely-generated as a module over H•(uζ , k).

5.2. Restriction maps

Let ΦJ ⊆ Φ be an indecomposable root subsystem of Φ corresponding to a subset of simple roots J ⊆ Π . Set Φ ′
= ΦJ ,

and let uζ (g′), uζ (b′), uζ (u′) be the small quantum groups defined in terms ofΦ ′. Then the inclusion of root systemsΦ ′
⊆ Φ

induces injective algebra homomorphisms uζ (g′) → uζ (g), uζ (b′) → uζ (b), and uζ (u′) → uζ (u). For example, the map
uζ (g′) → uζ (g)maps Eα → Eα , Fα → Fα , and Kα → Kα for all α ∈ J . Now suppose ℓ > h, where h is the Coxeter number
of Φ . Then also ℓ > h′, the Coxeter number of Φ ′, so Theorem 5.1.3 applies to both H•(uζ (b), k) and H•(uζ (b′), k), and
Theorem 5.1.4 applies to both H•(uζ (g), k) and H•(uζ (g′), k).

Lemma 5.2.1 ([11, Proposition 5.7]). Suppose ℓ > h. Then under the identifications of Theorem 5.1.3, the restriction map
H2•(uζ (b), k) → H2•(uζ (b′), k) is simply the restriction of functions from u to u′.

Let G′ be the simple, simply-connected algebraic group over kwith g′
= Lie(G′), and let B′

⊂ G′ be the Borel subgroup of
G′ with b′

= Lie(B′). Write N ′ for the variety of nilpotent elements in g′.
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Lemma 5.2.2. Suppose ℓ > h and that k is algebraically closed of characteristic good for both g and g′. Then under
the identifications H2•(uζ (g), k) ∼= k[N ] and H2•(uζ (g′), k) ∼= k[N ′

] of Theorem 5.1.4, the restriction homomorphism
H2•(uζ (g), k) → H2•(uζ (g′), k) is just the restriction of functions k[N ] → k[N ′

].

Proof. Let F ′

1 ,F
′

2 be the functors from the category of integrable Uζ (B′)-modules to the category of rational G′-modules
defined by substituting the symbols g′, b′, B′,G′ for the symbols g, b, B,G in (5.1.2). Any integrable Uζ (B)-module is by
restriction an integrable Uζ (B′)-module. Now define natural transformations η1 : F1 → F ′

1 and η2 : F2 → F ′

2 as follows:

• The evaluation map ε : H0(Uζ (g)/Uζ (B),M) → M is a homomorphism of Uζ (b′)-modules. By Frobenius reciprocity,
there exists a map

H0(Uζ (g)/Uζ (B),M) → H0(Uζ (g′)/Uζ (b′),M).

Call this map ind(ε). Define η1 to be the restriction of ind(ε) to the subspace F1(M) ⊂ H0(Uζ (g)/Uζ (B),M). Then η1 has
image in F ′

1(M).
• The evaluation map ε : F2(M) = indG

B(M
uζ (b)) → Muζ (b) ⊂ Muζ (b′) is a B′-module homomorphism. By Frobenius

reciprocity, there exists a corresponding G′-module homomorphism η2 : F2(M) → F ′

2(M).

Let θ : F1
∼
→ F2 be the natural equivalence arising from the fact that F1 and F2 are both right adjoint to the functor

(−)[1]|Uζ (B). Similarly, let θ ′
: F ′

1
∼
→ F ′

2 be the natural equivalence for F ′

1 and F ′

2 . Then η1 and η2 commute with θ and θ ′,
i.e., θ ′

◦ η1 = η2 ◦ θ .
The natural transformations η1 : F1 → F ′

1 and η2 : F2 → F ′

2 induce morphisms of the higher derived functors,
η•

1 : R•F1 → R•F ′

1 and η•

2 : R•F2 → R•F ′

2 . One checks that under the identifications (R•F1)(k) ∼= H•(uζ (g), k)
and (R•F ′

1)(k) ∼= H•(uζ (g′), k), the morphism η•

1 : H•(uζ (g), k) → H•(uζ (g′), k) is the restriction homomorphism,
and under the identifications (R•F2)(k) ∼= indG

B H•(uζ (b), k) and (R•F ′

2)(k) ∼= indG′

B′ H•(uζ (b′), k), the homomorphism
η•

2 : indG
B H•(uζ (b), k) → indG′

B′ H•(uζ (b′), k) is the G′-module homomorphism induced by Frobenius reciprocity from the
restriction map H•(uζ (b), k) → H•(uζ (b′), k).

By Lemma 5.2.1, the restrictionmap H2•(uζ (b), k) → H2•(uζ (b′), k) identifies with the restriction of functions S•(u∗) →

S•(u′∗). Then by Frobenius reciprocity, the maps

f : k[N ]
∼
→ indG

B H•(uζ (b), k)
η•
2

→ indG′

B′ H•(uζ (b′), k)

and

g : k[N ]
res
→ k[N ′

]
∼
→ indG′

B′ H•(uζ (b′), k)

must be the same, because they are both G′-module homomorphisms whose compositions with the evaluation map
indG′

B′ H•(uζ (b′), k) → H•(uζ (b′), k) ∼= S•(u′∗) are the restriction of functions from N to u′. �

5.3. Cohomology of the first Frobenius–Lusztig kernel

Friedlander and Parshall [17] were able to prove the finite-generation of the cohomology ring H•(G2, k) for the second
Frobenius kernel of G by studying the Lyndon–Hochschild–Serre spectral sequence

E i,j
2 = Hi(G2/G1,Hj(G1, k)) ∼= Hi(G1,Hj(G1, k)(−1)) ⇒ Hi+j(G2, k).

Wenow imitate their approach to study the cohomology ring for the first Frobenius–Lusztig kernelUζ (G1) ofUζ . Throughout
this section, assume k to be algebraically closed, with p = char(k) odd and very good for G (i.e., p is good for G, and p - n+ 1
ifΦ has type An). Also assume ℓ > h, so that the algebra isomorphism H2•(uζ (g), k) ∼= indG

B S•(u∗) of Theorem 5.1.4 holds.

Lemma 5.3.1. Fix integers 0 ≤ r ≤ s ≤ ∞. If s = ∞, set Uζ (Gs) = Uζ . Then Uζ (Gs) is free (in particular, flat) for both the left
and right regular actions of Uζ (Gr) on Uζ (Gs).

Proof. To prove that Uζ (Gs) is free as a left Uζ (Gr)-module, it suffices by [27, Corollary 1.7] to show that the left regular
representation forUζ (Gr) lifts toUζ (Gs). For thiswe follow the strategy in the proof of [27, Theorem5.1(i)]. Then the freeness
of Uζ (Gs) as a right Uζ (Gr)-module follows by applying the antipode S of Uζ .

By (3.5.1) and [12, Lemma 2.1.1], the prℓ-th Steinberg module Stpr ℓ is free as a left Uζ (Ur)-module. Since Uζ (Ur) is a
subalgebra of the Hopf algebra Uζ (Gr), there exists by restriction a Uζ (Ur)-module isomorphism Stpr ℓ ∼= k ⊗ Stpr ℓ. Write
coind(−) = Uζ (Gr)⊗Uζ (Ur )(−).We claim thatUζ (Gr) ∼= coind(k⊗Stpr ℓ) ∼= coind(k)⊗Stpr ℓ as a leftUζ (Gr)-module. IfUζ (Ur)
were a Hopf subalgebra of Uζ (Gr), then this would follow from the usual tensor identity for the tensor induction functor.
Nevertheless, the usual maps giving the inverse isomorphisms of the tensor identity yield in this case an isomorphism
coind(k ⊗ Stpr ℓ) ∼= coind(k)⊗ Stpr ℓ. Specifically, the following linear maps are well-defined Uζ (Gr)-homomorphisms:

ϕ : coind(k ⊗ Stpr ℓ) → coind(k)⊗ Stpr ℓ h ⊗ (v ⊗ w) →

−
(h(1) ⊗ v)⊗ h(2)w

ψ : coind(k)⊗ Stpr ℓ → coind(k ⊗ Stpr ℓ) (h ⊗ v)⊗ w →

−
h(1) ⊗ (v ⊗ S(h(2))w).
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Here h ∈ Uζ (Gr), v ∈ k, andw ∈ Stpr ℓ. The well-definedness here of ϕ andψ is dependent on the fact that the first factor in
k ⊗ Stpr ℓ is the trivial module.

So now Uζ (Gr) ∼= coind(k)⊗ Stpr ℓ as a left Uζ (Gr)-module. Let L1, . . . , Lr be the Uζ (Gr)-composition factors for coind(k).
Then the left regular representation of Uζ (Gr) admits a filtration with quotients L1 ⊗ Stpr ℓ, . . . , Lr ⊗ Stpr ℓ. Since Stℓ is
projective for Uζ (Gr) by Corollary 3.5.3, so is each Li ⊗ Stpr ℓ, hence there exists an isomorphism of left Uζ (Gr)-modules
Uζ (Gr) ∼= (L1 ⊕· · ·⊕ Lr)⊗ Stpr ℓ. Since each Li can be lifted to a simple Uζ -module by Theorem 3.4.3, L1 ⊕· · ·⊕ Lr ∼= V |Uζ (Gr )
for some completely reducible Uζ -module V . Then as a left Uζ (Gr)-module by, Uζ (Gr) ∼= (V ⊗ Stpr ℓ)|Uζ (Gr ), the restriction
to Uζ (Gr) of a Uζ -module. In particular, the left regular representation of Uζ (Gr) lifts to Uζ (Gs). �

By Lemma 5.3.1 and Theorem 4.5.2, there exists a spectral sequence of Uζ -modules satisfying

E i,j
2 (g) = Hi(Uζ (G1)//uζ (g),Hj(uζ (g), k)) ⇒ Hi+j(Uζ (G1), k). (5.3.1)

Applying the isomorphism Uζ (G1)//uζ (g) ∼= Dist(G1) and the results of Section 5.1, we rewrite (5.3.1) as

E i,j
2 (g) = Hi(G1, indG

B S j/2(u∗)) ⇒ Hi+j(Uζ (G1), k). (5.3.2)

In particular, E i,j
2 (g) = 0 unless j is even.

Let ν denote the highest root in Φ . If Φ has only one root length, then ν is the minimal element among the non-zero
dominant weights lying in the root lattice.

Lemma 5.3.2 ([17, Lemma 1.5]). Suppose Φ has rank n. Let w ∈ W be such that −w · 0 = ρ − wρ ≥ sν for some positive
integer s. Then ℓ(w) ≥ n + s − 1.

Proposition 5.3.3. In the spectral sequence (5.3.2), suppose E i,j
2 (g) ≠ 0 with i + j = 2p + 1. Write j = 2p − 2s for some

0 ≤ s ≤ p.

1. IfΦ is of type An, then n − 2 ≤ s ≤ n.
2. IfΦ is of type Dn, then n − 2 ≤ s ≤ 2(n − 1).

Proof. The proof here follows exactly the strategy of [17, Proposition 1.6]. We provide the details in order to show that the
argument extends to good characteristics. (The original result is proven under the assumption p > h.) Set n = rank(Φ), and
writeΠ = {α1, . . . , αn}, with the simple roots ordered as in [23].

Since p is good forG, the rationalG-module indG
B S j/2(u∗) admits a good filtration [26, II.12.12]. The non-vanishing of E i,j

2 (g)

then implies that there exists a weight µ ∈ X+ such that µ is a weight of indG
B S j/2(u∗), and such that Hi(G1,H0(µ)) ≠ 0. If

j > 0, then µ = w · 0 + pλ ≠ 0 for some λ ∈ X+ and some w ∈ W with ℓ(w) ≤ i. Indeed, the proof of [2, Corollary 5.5]
(which establishes the given form for µ in the classical p > h case) remains valid for p good if we apply the stronger form
of [2, Proposition 5.4] proved in [28, Theorem 2].

It follows from the isomorphism k[N ] ∼= indG
B S•(u∗) that any weight µ of indG

B Sp−s(u∗) must satisfy µ ≤ (p − s)ν,
because k[N ] is a quotient of S•(g∗), and weights of Sp−s(g∗) must be less than or equal to (p − s)ν. Since p is very good
for G (by assumption), we have p - [X : ZΦ], hence λ = (µ − w · 0)/p ∈ X+ must belong to the root lattice. This implies
that λ ≥ ν by the comment immediately preceding Lemma 5.3.2. Now we get −w · 0 = pλ− µ ≥ sν + p(λ− ν) ≥ sν, so
Lemma 5.3.2 implies that i ≥ ℓ(w) ≥ n + s − 1. The inequality −w · 0 ≥ sν also implies n ≥ s (resp. 2(n − 1) ≥ s) if Φ
has type An (resp. type Dn), because there are only n (resp. 2(n− 1)) roots greater than or equal to α1 inΦ . Since i = 2s+ 1,
this proves the proposition. �

We can now prove the main theorem of this section.

Theorem 5.3.4. Assume k to be algebraically closed with p = char(k) odd and very good for G. Assume also that ℓ is odd, ℓ > h,
and that one of the following conditions is satisfied:

1. Φ is either of type An or of type Dn, and n > p + 2,
2. Φ is of type An and ℓ ≥ n + 4 = h + 3, or
3. Φ is of type Dn and ℓ ≥ 4n = 2h + 4.

Then for any finite-dimensional Uζ (G1)-module M, H•(Uζ (G1),M) is a finite module for the Noetherian algebra H•(Uζ (G1), k).

Proof. By Theorem 4.5.2, there exists a spectral sequence satisfying

E i,j
2 (M) = Hi(Uζ (G1)//uζ (g),Hj(uζ (g),M)) ⇒ Hi+j(Uζ (G1),M). (5.3.3)

Identifying Uζ (G1)//uζ (g)with Dist(G1), we rewrite (5.3.3) as

E i,j
2 (M) = Hi(G1,Hj(uζ (g),M)) ⇒ Hi+j(Uζ (G1),M). (5.3.4)

Moreover, since uζ is a Hopf subalgebra of Uζ (G1), the spectral sequence Er(M) is a module over the spectral sequence Er(k).
Applying Theorem 5.1.5, we obtain the following situation: H•(uζ (g), k) is a Noetherian k-algebra on which G1 acts

rationally by k-algebra automorphisms, H•(uζ (g),M) is a rational G1-module on which H•(uζ (g), k) acts compatibly, and
H•(uζ (g),M) is a finite module for H•(uζ (g), k). Then by [40, Lemma 3.3, Theorem 3.5], E•,•

2 (M) = H•(G1,H•(uζ (g),M)) is
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a finite module for the Noetherian algebra E•,•
2 (g) := H•(G1,H•(uζ (g), k)). To prove the assertion of the theorem, it now

suffices by a standard argument (cf. [14, Lemmas 7.4.4, 7.4.5]) to show that E•,•
2 (g) is finitely-generated over a Noetherian

subalgebra of permanent cycles.
Define S ⊂ H2p(uζ (g), k) to be the vector subspace spanned by all p-th powers of elements of H2(uζ (g), k), and let

R ⊂ H•(uζ (g), k) be the subalgebra generated by S. Evidently, R ⊂ H0(G1,H•(uζ (g), k)), because G1 acts trivially on all
p-th powers of elements in H•(uζ (g), k). Also, H•(uζ (g), k) is finitely-generated over R. Applying [40, Lemma 3.3] again, we
conclude that E•,•

2 (g) is finitely-generated over the subalgebraH•(G1, R) = H•(G1, k)⊗R.We claim that H•(G1, R) consists of
permanent cycles. Since the differential of (5.3.1) is an algebra derivation, it suffices to show that the subspace S ⊂ E0,2p

2 (g)
consists of permanent cycles.

Denote the differential E i,j
s (g) → E i+s,j−s+1

s (g) of (5.3.1) by di,js (g). To prove the claim for S, it suffices to show that
d0,2p2s+1(g)(S) = 0 for all 1 ≤ s ≤ p. (We have used the fact that E i,j

2 (g) = 0 unless j is even.) Suppose Φ is of type An or
Dn. According to Proposition 5.3.3, if d0,2p2s+1(g) ≠ 0, then s ≥ n − 2. If n > p + 2, then n − 2 > p, so d0,2p2s+1(g) ≡ 0 for all
1 ≤ s ≤ p. This proves the claim when condition (1) is satisfied.

By assumption, rank(Φ) = n. For each m ≥ n, let Φm be the rank m indecomposable root system of the same Lie type
as Φ , and let gm be the corresponding simple Lie algebra over k. Then the inclusion of root systems Φ ⊆ Φm induces an
inclusion of algebras Uζ (g) ⊂ Uζ (gm), hence a morphism of spectral sequences f •,•

s : E•,•
s (gm) → E•,•

s (g), such that the map

f 0,•2 : E0,•
2 (gm) → E0,•

2 (g)

is induced by the restriction map H•(uζ (gm), k) → H•(uζ (g), k) studied in Section 5.2. If ℓ is at least the Coxeter number of
Φm, so that Theorem5.1.4 holds foruζ (gm) aswell as foruζ (g), thenwe can apply Lemma5.2.2 to conclude that S ⊆ im(f 0,2p2 ).

Now suppose condition (2) is satisfied, so thatΦ has type An and ℓ ≥ n+ 4. ThenΦ ⊂ Φn+3, and for each 1 ≤ s ≤ p, we
have the following commutative diagram (where g′

= gn+3):

E0,2p
2s+1(g

′)
d0,2p2s+1(g

′)

//

f 0,2p2s+1
��

E2s+1,2p−2s
2s+1 (g′)

f 2s+1,2p−2s
2s+1

��

E0,2p
2s+1(g)

d0,2p2s+1(g)

// E2s+1,2p−2s
2s+1 (g)

(5.3.5)

According to Proposition 5.3.3, d0,2p2s+1(g) ≡ 0 if 1 ≤ s ≤ (n − 3) or if (n + 1) ≤ s ≤ p, and d0,2p2s+1(g
′) ≡ 0 if 1 ≤ s ≤ n

(because n = rank(Φn+3)− 3). Since ℓ is at least the Coxeter number of Φn+3, we have S ⊆ im(f 0,2p2 ). It follows then from
the commutativity of (5.3.5) that d0,2p2s+1(g)(S) = 0 for 1 ≤ s ≤ n, hence that d0,2p2s+1(g)(S) = 0 for all 1 ≤ s ≤ p. This proves
that the set S consists of permanent cycles whenever condition (2) is satisfied. The proof that S consists of permanent cycles
whenever condition (3) is satisfied is similar, and the details are left to the reader. (Embed Φ in Φ2n+1, which has Coxeter
number 2(2n + 1)− 2 = 4n. Then argue as for type A, using part (b) of Proposition 5.3.3.) �

6. Higher Frobenius–Lusztig kernels

In this section we study the cohomology rings H•(Uζ (Br), k) and H•(Uζ (Ur), k) for the subalgebras Uζ (Br) and Uζ (Ur)
of Uζ (Gr) corresponding to the Borel subgroup B and its unipotent radical U . In the classical situation, finite-generation for
H•(Ur , k) can be proven via an inductive approach, by considering a filtration on Ur by unipotent subgroups. For quantum
groups the approach is similar in spirit, thoughmuchmore technically complicated. The approachwe follow here is inspired
by the techniques of Ginzburg and Kumar [20, Section 2.4].

6.1. Algebra filtrations

For r, s ∈ NN and µ ∈ ZΦ , define the total height of the monomial F rKµEs
∈ Uq by ht(F rKµEs) =

∑N
i=1(ri + si) ht(γi).

Then define the degree d of F rKµEs by

d(F rKµEs) = (rN , rN−1, . . . , r1, s1, . . . , sN , ht(Mr,s,u)) ∈ N2N+1. (6.1.1)

ViewΛ := N2N+1 as a totally ordered semigroup via the reverse lexicographic ordering. Given η ∈ N2N+1, define Uq,η to be
the linear span in Uq of all monomials F rKµEs with d(F rKµEs) ≤ η. Then the collection of subspaces Uq,η for η ∈ Λ forms a
multiplicativeΛ-filtration of Uq [10, Section 10.1]. This filtration induces multiplicative filtrations on Uζ and on Uζ (Gr).

Fix r ∈ N. We transform the Λ-filtration on Uζ (Gr) into an N-filtration as follows. Set θ = 2prℓ. Given r, s ∈ NN and
u ∈ U0

ζ , setMr,s,u = F (r)uE(s). Now define deg(Mr,s,u) ∈ N by

deg(Mr,s,u) = rN + θrN−1 + θ2rN−2 + · · · + θN−1r1 + θN s1 + · · · + θ2N−1sN + θ2N ht(Mr,s,u).

Then deg(Mr,s,u) ≤ deg(Mr′,s′,u′) if and only if d(Mr,s,u) ≤ d(Mr′,s′,u′).
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Lemma 6.1.1. For n ∈ N, define Uζ (Gr)n to be the subspace of Uζ (Gr) spanned by all monomials Mr,s,u ∈ Uζ (Gr) with
deg(Mr,s,u) ≤ n. Then the subspaces Uζ (Gr)n for n ∈ N define a multiplicative N-filtration on Uζ (Gr). The associated graded
algebras arising from theΛ- and N-filtrations on Uζ (Gr) are canonically isomorphic as non-graded algebras.

By restriction, we obtain an N-filtration on Uζ (Ur). Let Φ+
= {γ1, . . . , γN} be an enumeration of Φ+ as in Section 2.3.

Given α, β ∈ Φ+, write α ≺ β if α = γi, β = γj, and i < j. Now define A to be the twisted polynomial algebra with
generators

Xα, Xpiℓα : α ∈ Φ+, 0 ≤ i ≤ r − 1

, (6.1.2)

and relations

XαXβ = ζ (α,β)XβXα if α ≺ β,

XpiℓαXβ = XβXpiℓα, and

XpiℓαXpjℓβ = XpjℓβXpiℓα.

(6.1.3)

Applying [12, Lemma 1.1.1], one sees that the associated graded algebra grUζ (Ur) is generated as an algebra by the symbols
(6.1.2), subject to the relations (6.1.3), as well as the following additional relations:

Xℓα = Xp
piℓα = 0 for each α ∈ Φ+. (6.1.4)

The algebra grUζ (Ur) inherits the structure of a U0
ζ -module algebra, such that Xα has weight −α for U0

ζ , and Xpiℓα has
weight−piℓα for U0

ζ . Similarly, grUζ (U+
r ) is also a U0

ζ -module algebra, with generators

Yα, Ypiℓα : α ∈ Φ+, 0 ≤ i ≤ r − 1


of weights α and piℓα for U0

ζ , respectively. The algebra grUζ (Tr) is canonically isomorphic to Uζ (Tr).

Lemma 6.1.2. The algebra grUζ (Gr) is the smash product of Uζ (Tr) and the tensor product of algebras grUζ (Ur)⊗ grUζ (U+
r ),

that is, grUζ (Gr) ∼= (grUζ (Ur)⊗ grUζ (U+
r ))#Uζ (Tr). The left action of Uζ (Tr) on grUζ (Ur)⊗ grUζ (U+

r ) is induced by the left
adjoint action of U0

ζ on Uζ (Ur) and Uζ (U+
r ).

6.2. Finite generation for nilpotent and Borel subalgebras

Define the algebraΛ•

ζ ,r to be the graded algebra with generators
xα, xpiℓα : α ∈ Φ+, 0 ≤ i ≤ r − 1


,

each of graded degree 1, subject to the following relations:

xαxβ + ζ−(α,β)xβxα = 0 if α ≺ β, (6.2.1)
xpiℓαxβ + xβxpiℓα = 0, (6.2.2)
xpiℓαxpjℓβ + xpjℓβxpiℓα = 0, (6.2.3)

and x2α = x2piℓα = 0. (6.2.4)

ThenΛ•

ζ ,r is a left U0
ζ -module algebra by assigning weight α to xα and weight piℓα to xpiℓα .

Lemma 6.2.1. There exists a graded U0
ζ -algebra isomorphism H•(A , k) ∼= Λ•

ζ ,r .

Proof. See [20, Proposition 2.1] or [32, Theorem 4.1]. �

We now follow the strategy of [20, Section 2.4] to compute the structure of the cohomology ring H•(grUζ (Ur), k). While
we could use results of Mastnak et al. [32, Theorem 4.1] to compute H•(grUζ (Ur), k) directly, the extra information we
obtain as a result of the inductive approach below will enable us to study the cohomology of the ungraded algebra Uζ (Ur).

Enumerate the indeterminates in (6.1.2) as X1, X2, . . . , Xm. If Xj = Xα for some α ∈ Φ+, set Xϵj = Xℓj ; otherwise, set
Xϵj = Xp

j . For 1 ≤ j ≤ m, let Rj be the vector subspace of A spanned by the elements Xϵ1 , X
ϵ
2 , . . . , X

ϵ
j , and let Zj be the central

subalgebra of A generated by Rj. Set uj = A //Zj. Then u0 = A , uj+1 = uj//(Xϵj+1), and um = grUζ (Ur).

Proposition 6.2.2. For each 0 ≤ j ≤ m, there is a graded U0
ζ -module algebra isomorphism

H•(uj, k) ∼= Λ•

ζ ,r ⊗ S•(R∗

j ),

where the elements of S1(R∗

j ) = R∗

j = Homk(Rj, k) are assigned graded degree two.

Proof. We proceed by induction on j, following the strategy of [20, Section 2.4]. In fact, with the exception of Step 4, the
proof is formally the same as that given by Ginzburg and Kumar for the case r = 0.
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If j = 0, the proposition reduces to Lemma 6.2.1, so assume by induction that the proposition is true for all 0 ≤ i ≤ j. Let
A = Aj+1 be the central subalgebra of uj generated by Xϵj+1. Then uj//A ∼= uj+1, and uj is free over A. Then by Theorem 4.5.3,
there exists a spectral sequence of U0

ζ -module algebras satisfying

Ea,b
2 = Ha(uj+1, k)⊗ Hb(A, k) ⇒ Ha+b(uj, k). (6.2.5)

Step 1. For each a ≥ 0, the restriction homomorphism ra : Ha(uj+1, k) → Ha(uj, k) is surjective. Themap r1 : H1(uj+1, k) →

H1(uj, k) is an isomorphism.

Proof. By the induction hypothesis, H•(uj, k) is generated by elements of degree ≤ 2, so it suffices to prove the surjectivity
of r1 and r2. The map r1 is an isomorphism because, for any augmented algebra B, H1(B, k) ∼= (B+/B2

+
)∗. The surjectivity of

r2 follows from [21, Lemma 2.10]. �

Step 2. In (6.2.5), Ea,b
∞

= 0 for all b > 0.

Proof. There exists a commutative diagram

Ea−2,1
2

d2 // Ea,0
2

// // Ea,0
∞

� � // Ha(uj, k)

Ha(uj+1, k)

ra

55kkkkkkkkkkkkkkkk

(6.2.6)

By Step 1, ra is surjective. Then the inclusion Ea,0
∞
↩→ Ha(uj, k)must be an isomorphism, hence Ea,b

∞
= 0 for all b > 0 (because

the spectral sequence converges to H•(uj, k)). �

Step 3. Choose 0 ≠ v ∈ im(d0,12 ) ⊆ H2(uj+1, k). Such v exists because E0,1
∞

= 0 and dimH1(A, k) = 1. Then the kernel of
the restriction map r : H•(uj+1, k) → H•(uj, k) is generated by v.

Proof. From (6.2.6) and the isomorphism Ea,0
∞

∼= Ha(uj, k), we conclude that the kernel of the restriction map r :

H•(uj+1, k) → H•(uj, k) is equal to the image of E•,1
2 under the differential d2. Choose y ∈ H1(A, k)with d0,12 (y) = v. Now an

arbitrary element of En,1
2 canbewritten in the form x⊗y for some x ∈ Hn(uj+1, k). Then d2(x⊗y) = d2(x)⊗y+(−1)nx·d2(y) =

(−1)nx · v is an element of the two-sided ideal in H•(uj+1, k) generated by v. �

Step 4. The algebra homomorphism r : H•(uj+1, k) → H•(uj, k) admits a graded algebra splitting that commutes with the
action of U0

ζ . �

Proof. By induction, there exists a U0
ζ -module algebra isomorphism H•(uj, k) ∼= Λ•

ζ ,r ⊗ S•(R∗

j ). To prove the claim, wemust
lift the generators forΛ•

ζ ,r and S•(R∗

j ) to H•(uj+1, k), and check that the relations among the generators are preserved.
To the pairs (A ,Zj) and (A ,Zj+1), there exist LHS spectral sequences as in Theorem 4.5.3. The natural morphism

(A ,Zj) → (A ,Zj+1) induced by the inclusion Zj ⊂ Zj+1 induces a morphism of spectral sequence, the low degree terms
of which form the following commutative diagram of U0

ζ -modules:

R∗

j+1

����

H1(Zj+1, k)

����

d′

// H2(A //Zj+1, k)

r
����

H2(uj+1, k)

r
����

R∗

j H1(Zj, k)
d′′

// H2(A //Zj, k) H2(uj, k)

The horizontal maps d′, d′′ are the differentials of the appropriate spectral sequences, and the projection R∗

j+1 � R∗

j is the
restriction of functions. Also, the image of R∗

j = H1(Zj, k) in H2(uj, k) under d′′ identifies with the subspace S1(R∗

j ) ⊂

S•(R∗

j ) ⊂ H•(uj, k). Now any U0
ζ -module splitting of the projection R∗

j+1 � R∗

j provides a lifting of the generators of S•(R∗

j )

to H•(uj+1, k). The lifted generators have central image in H•(uj+1, k) by [20, Corollary 5.3].
Next, consider the generators x1, . . . , xm ofΛ•

ζ ,r as elements of H1(uj, k). By Step 1, the restrictionmap r1 : H1(uj+1, k) →

H1(uj, k) is a U0
ζ -module isomorphism. We use the inverse map (r1)−1

: H1(uj, k) → H1(uj+1, k) to transfer the generators
of H1(uj, k) to H1(uj+1, k). Setxi = (r1)−1(xi). To prove the claim of Step 4, it now suffices to show that the elementsx1, . . . ,xm ∈ H•(uj+1, k) satisfy the relations (6.2.1)–(6.2.4)).

Consider, for example, the relation (6.2.1). If α ≺ β , then

r
xαxβ + ζ−(α,β)xβxα = xαxβ + ζ−(α,β)xβxα = 0,

hencexαxβ + ζ−(α,β)xβxα = cv (6.2.7)
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for some c ∈ k by Step 3. So we must show c = 0. Here is where our argument deviates from that of [20, Section 2.4]: Since
the algebra A is defined in terms of homogeneous relations on the independent generators X1, . . . , Xm, we can define an
action of any m-dimensional algebraic torus Tm

= (k×)m on A by declaring the generator Xi to have weight −χi for Tm,
where χi : Tm

→ k× denotes the i-th coordinate function. This induces an action of Tm onΛ•

ζ ,r
∼= H•(A , k) such that xi has

weight χi for Tm. Now suppose xα = xa and xβ = xb with 1 ≤ a, b ≤ m. Then the left side of (6.2.7) has weight χa + χb for
Tm, while the right side has weight ϵ · χj+1 for Tm, where as before we set ϵ = ℓ if Xj+1 = Xγ for some γ ∈ Φ+, and ϵ = p
otherwise. Since a ≠ b, and since ℓ and p are odd, we must have χa + χb ≠ ϵ · χj+1. This forces c = 0. The other relations
among thexi are proved in a similar manner. �

Step 5. The element v introduced in Step 3 is not a zero-divisor in H•(uj+1, k).

Proof. By Step 2, Ea,1
3

∼= Ea,1
∞

= 0, hence the differential da,12 in (6.2.5) must be injective. Now for 0 ≠ x ⊗ y ∈

Ha(uj+1, k)⊗ H1(A, k) = Ea,1
2 , we have 0 ≠ d2(x ⊗ y) = d2(x) · y + (−1)ax · d2(y) = (−1)ax · v. �

The results of Steps 3–5 complete the proof of the proposition. �

The multiplicative filtration on Uζ (Ur) induces a decreasing filtration on the cobar complex C•(Uζ (Ur), k) computing
H•(Uζ (Ur), k), and hence gives rise to a spectral sequence of algebras

E i,j
1 = Hi+j(grUζ (Ur), k)(i) ⇒ Hi+j(Uζ (Ur), k), (6.2.8)

where the subscript on the E1-term denotes the internal grading induced by the grading of grUζ (Ur). Recall the notation
introduced just before Proposition 6.2.2. Set R = Rm and Z = Zm. Then H•(grUζ (Ur), k) ∼= Λ•

ζ ,r ⊗ S•(R∗), where the space
R∗

= S1(R∗) is assigned graded degree two.

Proposition 6.2.3. In (6.2.8), the subspace R∗
= S1(R∗) of H2(grUζ (Ur), k) consists of permanent cycles.

Proof. Consider the LHS spectral sequence for the pair (A ,Z ) constructed in Theorem 4.5.1:

E i,j
2 = Hi(grUζ (Ur),Hj(Z , k)) ⇒ Hi+j(A , k). (6.2.9)

It follows from the proof of Proposition 6.2.2 that R∗
⊂ H2(grUζ (Ur), k) identifies with the image of of E0,1

2 = H1(Z , k) ∼=

Λ1(R∗) = R∗ under the differential d0,12 : E0,1
2 → E2,0

2 . Choose j ∈ {1, . . . ,m}, and let xj ∈ R∗ ∼= H1(Z , k) be dual to
Xϵj ∈ R. Then a cocycle representative for xj in C1(Z , k) ∼= Homk(Z+, k) is the linear map dual to the vector Xϵj ∈ Z+. We
will determine an explicit cocycle representative in C2(grUζ (Ur), k) for d

0,1
2 (xj) ∈ H2(grUζ (Ur), k), and then show that this

cocycle representative is induced by a cocycle in C2(Uζ (Ur), k). Since cocycles in C•(Uζ (Ur), k) become permanent cycles in
(6.2.8), this will prove the proposition.

The spectral sequence (6.2.9) is the spectral sequence arising from the column-wise filtration on the double complex
C = C•,•

= HomA (P•,Q•), where P•
= B•(A //Z ) is the left bar resolution of A //Z , and Q• = Q•(k) is the coinduced

resolution of the A -module k. Write dh and dv for the horizontal and vertical differentials on C , induced by the differentials
for P• and Q•, respectively. Then the total differential d of the total complex Tot(C) is d = dh + (−1)idv (i.e., the vertical
differential along the i-th column is replaced by (−1)idv).

By [33, Theorem 2.7], the E0,1
2 term of (6.2.9) is represented by elements (x, y) ∈ C0,1

⊕ C1,0 such that dv(x) = 0 and
dh(x)− dv(y) = 0, while E2,0

2 is represented by elements of (ker d)∩ C2,0. The differential d0,12 : E0,1
2 → E2,0

2 is then induced
by the total differential of Tot(C). We claim that xj ∈ E0,1

2 is represented by the element f0,1 ⊕ f1,0 ∈ C0,1
⊕ C1,0, and that

d0,12 (xj) ∈ E2,0
2 is represented by f2,0 ∈ C2,0, where the elements f0,1, f1,0, and f2,0 are defined as follows:

• f0,1 ∈ Homk(A+ ⊗ A //Z , k) ∼= C0,1 evaluates to 1 on the monomial Xa
j ⊗ Xb

j if a ≥ 1 and a + b = ϵ, and evaluates to
zero on all other monomial basis elements of A+ ⊗ A //Z .

• f1,0 ∈ Homk((A //Z )+,Homk(A //Z , k)) ∼= C1,0 sends the monomial Xa
j (1 ≤ a < ε) to the linear map g1,0,a ∈

Homk(A //Z , k), and evaluates to zero on all other monomial basis elements of (A //Z )+. For 1 ≤ a < ϵ, the linear
map g1,0,a ∈ Homk(A //Z , k) is the function dual to the basis vector Xϵ−a

j ∈ A //Z .
• f2,0 ∈ Homk((A //Z )

⊗2
+ ,Homk(A //Z , k)) evaluates to zero on the vector Xa

j ⊗Xb
j (1 ≤ a, b < ϵ) if a+ b ≠ ϵ, evaluates

to the counit ε : A //Z → k on the vector Xa
j ⊗ Xb

j if a + b = ϵ, and evaluates to zero on all other monomial basis
elements in (A //Z )⊗2

+ .

One can check from the definitions that dv(f0,1) = 0, dh(f0,1) − dv(f1,0) = 0, and f2,0 = dh(f1,0) = d(f0,1 ⊕ f1,0). Then
f2,0 ∈ (ker d) ∩ C2,0. In particular, f2,0 ∈ ker dv|C2,0 . Also, the projectivity of P2 as a module for A //Z implies that

ker dv|C2,0 ∼= HomA //Z


P2, ker


dv : QZ

0 → QZ
1


∼= C2(A //Z , k), (6.2.10)

because the kernel of dv : QZ
0 → QZ

1 is the one-dimensional subspace of Homk(A , k) ∼= HomA (A ⊗ A , k) = Q0(k)
spanned by the counit ε : A → k.
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Wemust check that the image of f0,1 ⊕ f1,0 in E0,1
2 is xj. Since A is flat (in fact, free) as a right Z -module, the cohomology

ring H•(Z , k)may be computed by applying the functor −
Z to either an A -injective or a Z -injective resolution of k. Write

Q•(k) for the coinduced resolution of k as an A -module, and write Q ′
•
(k) for the coinduced resolution of k as a Z -module.

Then E0,•
1

∼= Q•(k)Z , and d0,•1 : E0,•
1 → E0,•+1

1 is induced by the differential of Q•(k). On the other hand, Q ′
•
(k)Z ∼= C•(Z , k)

as complexes, and under the restriction homomorphism Q•(k)Z → Q ′
•
(k)Z , f0,1 is mapped to the cocycle f ∈ C1(Z , k)

that is dual to the vector Xϵj . This proves the claim for f0,1 ⊕ f1,0.
We now define a cocycle f2 ∈ C2(Uζ (Ur), k) that induces f2,0 ∈ ker dv|C2,0 ∼= C2(A //Z , k). If Xj = Xα for some α ∈ Φ+,

set Fj = Fα . If Xj = Xpiℓα for some α ∈ Φ+ and some i ≥ 0, set Fj = F (p
iℓ)

α . Now define f2 ∈ C2(Uζ (Ur)) ∼= Homk(Uζ (Ur)
⊗2
+ , k)

to be the linear map that evaluates to 1 on themonomial F a
j ⊗ F b

j if a, b ≥ 1 and a+b = ϵ, and evaluates to zero on all other
monomial basis elements of Uζ (Ur)

⊗2
+ . We claim that f2 is a cocycle in C•(Uζ (Ur)). Indeed, let δ be the differential of the

cobar complex C•(Uζ (Ur)), and let F (a), F (b), F (c) ∈ Uζ (Ur)+ (a, b, c ∈ NN ) be monomial basis vectors for Uζ (Ur). Consider
c := (δf2)(F (a) ⊗ F (b) ⊗ F (c)) = f2(F (a) ⊗ F (b)F (c) − F (a)F (b) ⊗ F (c)). If c ≠ 0, then by the definition of f2 wemust have (up to
a unit in k) F (a) = F a

j and F (c) = F c
j for some a, c ≥ 1. If c ≠ 0, then [12, Lemma 1.1.1] further implies that, up to a unit in k,

F (b) = F b
j for some b ≥ 1. Now (δf2)(F a

j ⊗ F b
j ⊗ F c

j ) = f2(F a
j ⊗ F b+c

j − F a+b
j ⊗ F c

j ), and this evaluates to zero for all possible
combinations of a, b, c. Thus f2 ∈ ker δ. Finally, it is clear that f2 induces the map f2,0, hence that xj ∈ R∗

⊂ H2(grUζ (Ur), k)
is a permanent cycle in (6.2.8). �

Remark 6.2.4. Bendel et al. prove the previous proposition in the special case r = 0 by a weight argument, though they
must assume ℓ > 3 wheneverΦ has type B or C; see [7, Proposition 6.2.2]. Our proof does not require the extra assumption
on ℓ.

Corollary 6.2.5. The cohomology ring H•(Uζ (Ur), k) is finitely generated.

Proof. This follows from Proposition 6.2.3 and [32, Lemma 2.5]. �

Let A be an arbitrary augmented algebra over k, and let M be a left A-module. Then H•(A,M) = Ext•A(k,M) is a right
graded H•(A, k) = Ext•A(k, k)-module via the Yoneda composition of extensions.

Theorem 6.2.6. Set A equal to either Uζ (Ur) or Uζ (Br), and let M be a finite-dimensional A-module. Then H•(A,M) is a finite
module for the Noetherian algebra H•(A, k).

Proof. First suppose A = Uζ (Ur). Then H•(A, k) is Noetherian by Corollary 6.2.5. By [12, Section 2.1], the trivial module k is
the unique simple module for A. Then there exists a filtration of M by submodules M = M0 ⊃ M1 ⊃ · · · ⊃ Ms ⊃ Ms+1 = 0
such that, for each 0 ≤ i ≤ s, Mi/Mi+1 ∼= k. Now by a standard argument using induction on the dimension of M and the
long exact sequence in cohomology, H•(A,M) is a finite module over the Noetherian algebra H•(A, k).

Now suppose A = Uζ (Br). Then H•(A,M) = H•(Uζ (Ur),M)Uζ (Tr ) and H•(A, k) = H•(Uζ (Ur), k)Uζ (Tr ), as can be seen by
considering the LHS spectral sequence for the algebra Uζ (Br) and its normal subalgebra Uζ (Tr), and by using the fact that
all finite-dimensional representations of Uζ (Tr) are semisimple [13, Lemma A 3.4]. Since the right action of H•(Uζ (Ur), k)
on H•(Uζ (Ur),M) is a Uζ (Tr)-module homomorphism, and since Uζ (Tr) acts completely reducibly on H•(Uζ (Ur), k) and
H•(Uζ (Ur),M), the theorem then follows from [17, Lemma 1.13]. �

6.3. Finite complexity

Let V =


n∈N Vn be a graded vector space having finite-dimensional homogeneous components. Define the rate of
growth γ (V ) to be the least non-negative integer c ∈ N such that there exists b ∈ R for which dim Vn ≤ bnc−1 for all n ∈ N.
If no such c exists, set γ (V ) = ∞. Then, for example, if Vn is the vector space of homogeneous degree n polynomials in the
polynomial ring k[x1, . . . , xs], then γ (V ) = s.

Let A be a finite-dimensional algebra. Recall that the complexity cxA(M) of an A-moduleM is defined as the rate of growth
γ (P•) of a minimal projective resolution P• forM . In particular, cxA(k) = γ (H•(A, k)). If H•(A, k) is finitely-generated, then
cxA(k) < ∞. If A is a Hopf algebra, then cxA(M) ≤ cxA(k) for all finite-dimensional A-modulesM [15, Proposition 2.1].

Friedlander and Suslin [19] proved that the cohomology ring H•(Gr , k) for the Frobenius kernel Gr of G is finitely-
generated. They did this by embedding the group G into GLn for some n ∈ N, and then reducing to the case of Frobenius
kernels for GLn. Unfortunately, such a strategy for quantum groups is problematic, because there is no obvious embedding of
an arbitrary quantum group into one for which the underlying root system is of type A. Still, the following theorem provides
circumstantial evidence for the finite generation of H•(Uζ (Gr)), k), by showing that the complexity of the trivial module is
finite.

Theorem 6.3.1. Let M be a finite-dimensional Uζ (Gr)-module. Then

cxUζ (Gr )(M) ≤ (r + 1)(dim(g)− rank(g)).

If ℓ > h and if p = char(k) is good forΦ , then cxUζ (Gr )(M) ≤ (r + 1) · cxuζ (g)(k).
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Proof. By [15, Proposition 2.1], it suffices to treat the case M = k. The multiplicative filtration on Uζ (Gr) described in
Lemma 6.1.1 gives rise to the spectral sequence

E i,j
1 = Hi+j(grUζ (Gr), k)(i) ⇒ Hi+j(Uζ (Gr), k).

Then cxUζ (Gr )(k) = γ (H•(Uζ (Gr), k)) ≤ γ (H•(grUζ (Gr), k)). The algebra Uζ (Tr) is semisimple over k, and grUζ (Gr) =

(grUζ (Ur)⊗ grUζ (U+
r ))#Uζ (Tr) by Lemma 6.1.2, hence

H•(grUζ (Gr), k) = H•(grUζ (Ur)⊗ grUζ (U+

r ), k)
Uζ (Tr ).

Then γ (H•(grUζ (Gr), k)) ≤ γ (H•(grUζ (Ur)⊗ grUζ (U+
r ), k)). By Proposition 6.2.2,

H•(grUζ (Ur)⊗ grUζ (U+

r ), k) ∼= H•(grUζ (Ur), k)⊗ H•(grUζ (U+

r ), k)

is finitely generated over a polynomial ring in (r + 1)(dim(g) − rank(g)) indeterminates. Finally, if ℓ > h and if p is good
forΦ , then cxuζ (g)(k) = dim(g)− rank(g). �

Remark 6.3.2. One can compare Theorem 6.3.1 to a result of Nakano [35, Theorem 2.4], which states that cxGr (k) ≤

r · cxG1(k). If p > h, then cxG1(k) = dim(g)− rank(g).
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