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1. Introduction

In earlier years, some pioneer researchers studied and devel-
oped the boundary integral equation (abbreviated as BIE) in elas-
ticity and some relevant topics (Rizzo, 1967; Cruse, 1969; Jaswon
and Symm, 1977; Brebbia et al., 1984; Hong and Chen, 1988). An
article reviewed the early history of the boundary element method
up to the late 1970s (Cheng and Cheng, 2005).

It is a rare case that those BIEs can be solved in a closed form.
After discretization for the BIE along the boundaries, the relevant
boundary element method (abbreviated as BEM) is thus formu-
lated. A particular advantage of the BEM is that the numerical dis-
cretization is conducted at a reduced spatial dimension. In the BEM
formulation, there is no need of dealing with the interior mesh.
Therefore, the BEM is more effective in the mesh preparation.

The composites are widely used in industry nowadays. Gener-
ally, the composites may contain some inclusions, which have dif-
ferent elastic properties with the matrix medium. The stress
distribution in the composites may not be uniform. Particularly,
if the inclusion is softer, the stress concentration must exist along
the interface boundary at the matrix side. Therefore, it is an impor-
tant problem to investigate the stress distribution in the medium
with the dissimilar elastic inclusions. Because of its importance
in elasticity many researchers attracted this problem.
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Based on the conformal mapping functions, some problems for
the elastic medium with dissimilar inclusions were solved by
Chang and Conway (1969), Luo and Gao (2009). The used tech-
nique relies on the conformal mapping closely, and it is not easy
to develop the suggested technique to the arbitrary configuration
for the embedded inclusions. Solution for the problem of an isotro-
pic elastic half-plane containing many circular elastic inclusions
was proposed, where the complex-variable hypersingular integral
equation was used (Legros et al.,, 2004). The obtained solution
was for the case of circular inclusion.

A boundary-domain integral equation in elastic inclusion prob-
lems was introduced by Dong et al., (2002). In the formulation, the
inclusion portion is assumed in a discrete form, and the strain com-
ponents in the inclusion were unknowns. In addition, some inte-
gral equation approaches were used to solve some particular
problems with involved inclusions (Dong et al., 2004; Dong and
Lee, 2005).

Based on the body force method, a singular integral equation
method for interaction between elliptical inclusions was suggested
by Noda and Matsuo (1998). The problem is formulated as a sys-
tem of singular integral equations with Cauchy-type or logarith-
mic-type singularities, where the unknowns are the body force
densities. As an extension, the method was used to a similar prob-
lem in the longitudinal shear loading (Noda and Matsuo, 2000).
Those solutions are suitable and effective to solve the inclusion
problem with elliptical configuration.

A null-field integral equation was derived. The equation was
used for an infinite medium containing circular holes and/or
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inclusions with arbitrary radii and positions under the remote anti-
plane shear (Chen and Wu, 2007; Chen and Li, 2009). By using the
collocation method, the null-field integral equation becomes a set
of algebraic equations for the Fourier coefficients.

It is seen from the motioned references that the inclusion prob-
lems have not been solved very well previously. For example, some
solutions depend on the conformal mapping function, and they are
not derived from an arbitrary configuration of inclusion. Here we
only cite a portion of references for the inclusion problems, and
may lose some publications in this field.

A complex variable boundary integral equation (CVBIE) for
plane elasticity was suggested by Chen and Lin (2010). However,
the paper only proposed basic governing equations for the interior
and the exterior boundary value problems (BVPs). Those equations
are not sufficient to solve the problem of dissimilar inclusions
studied below.

This paper studies the boundary value problem for a finite plate
containing two dissimilar inclusions. The matrix and the two inclu-
sions have different elastic properties. The loadings applied along
the outer boundary are in equilibrium. The mentioned problem is
decomposed into three BVPs. Two of them are an interior BVP for
the elastic inclusions, while the other is a BVP for the triply-con-
nected region. Three problems are connected together through
the common displacements and tractions along the interface
boundaries. Explicit forms for the CVBIE is derived.

In the original formulation, the tractions along the interfaces of
matrix and the inclusions are two unknowns. After the discretiza-
tion of BIEs, a numerical solution technique is suggested. In the
technique, an inverse matrix technique is suggested which can
eliminate the two unknown vectors in advance. This can consider-
ably reduce the work for assembling the matrices and the size of
resulting matrix. Three numerical examples for different elastic
constant combinations are provided. From a wide range of the ratio
for the two shear moduli of elasticity changing from near 0 (107>),
0.1,0.5 1,2 to 10, it is found that the stress distributions in the ma-
trix and inclusions are rather complicated.

2. Analysis

Analysis presented below mainly depends on two forms of
integral equation. Among them, one is used for a single-con-
nected region, and the other is used for a multiply-connected re-
gion. After linking two kinds of the integral equation together, the
solution for dissimilar elastic inclusions in a finite plate is
obtainable.

2.1. Complex variable boundary integral equations (CVBIE) for interior
region and multiply-connected region

There are two kinds of formulation for the BIE in plane elastic-
ity. Among them, one is based on the real variable (Rizzo, 1967;
Cruse, 1969; Jaswon and Symm, 1977; Brebbia et al., 1984; Hong
and Chen, 1988; Cheng and Cheng, 2005). However, it is more
straightforward to formulate the BIE with the usage of the complex
variable. In the complex variable boundary integral equations
(CVBIE), all involved kernels are expressed in an explicit form.
Therefore, the singular portion in the kernels of CVBIE is easy to
distinguish. Some relevant formulations based on complex variable
can be referred to (Kolte et al., 1996; Mogilevskaya and Linkov,
1998; Mogilevskaya, 2000; Chen and Chen, 2000; Chen et al.,
2002; Linkov, 2002; Chen and Wang, 2010).

In the present study, one needs to propose two forms of CVBIE.
One is used for a single-connected region, and the other is used for
a multiply-connected region.

For the single-connected region (Fig. 1), a CVBIE for the interior
problem is introduced below (Chen and Lin, 2010)

Fig. 1. Interior boundary value problem, (@) region defined.

@ + Bli/r (’:__; U(t)dt — Ly (t, to)U(t)dt + Ly (¢, tO)U(t)dt>

:Bzi/r <2K1n|t7t0|Q(t)dt+§_?’@df) (t,eT), (1)
—to

where I' denotes the boundary of the interior region and the in-
crease “dt” is defined in the anti-clockwise direction. Generally,
the increase “dt” takes a complex value, which is indicated in
Fig. 1. In addition, df is a conjugate value with respect to the in-
crease “dt”. In Eq. (1), U(t) and Q(t) denote the displacement and
traction along the boundary I', which are defined by

U(t) = u(t) +iv(t), Q(t) =on(t) +ionr(t) (teT). 2)

In Eq. (2), u(t) and «(t) take the real value and U(t) = u(t) +iy(t) is a
complex value. Similarly, on(t) and opn(t) take the real value and
Q(t) = on(t) +ionr(t) is a complex value. Those notations have been
indicated in Fig. 1.

In addition, two elastic constants and two kernels are defined
by

1 1
b=y BT @mow 1 3)

df t-t 11 de
Ll(t,r)zfa{lnﬁ}:,ﬁﬁ_fﬁ

d(t-1 1 t—t dt
LZ“*T):a{ﬁ}:ﬁ*ma (4)

where k = 3 — 4v (for plane strain condition), k¥ = (3 — v)/(1 + v) (for
plane stress condition), G is the shear modulus of elasticity, and v is
the Poisson’s ratio. In this paper, the plane strain condition and
v =0.3 are assumed. In Eq. (4), T denotes a domain point or a point
on the boundary.

Similarly, the relevant BIE can be formulated for the multiply-
connected region (Fig. 2). Without losing generality, we consider
triply-connected region only. In this case, from a modification to
Eq. (1), the relevant BIE will be

X 3 _ _
Utk g,is- (“ tlUkmdt—u(t,ro>uk(t>dr+Lz<r,ro)uk(wdt)
k=1Jr, \[—
JE: t— o
—B,iy <2Kln\t7t0|Q,((t)dt+_ - Qk(t)dt>
k=1.Jr, t—t,
(taerjvj:]7213) (5)

where the kernels have been defined previously. In Eq. (5) or Fig. 2,
if one goes forward with the increase “dt”, the considered medium
must be at the left hand side. That is to say for the outer boundary
I's, the integration path “dt” should be in the anti-clockwise direc-
tion, and for the inner boundaries I'; and I'; in clockwise direction
(Fig. 2). In addition, it is noted for Eq. (5) that only for t, € I';, and
the integration “dt” along the same I'; (j = 1, 2, 3), there are singular
kernel 1/(t — t,) or weaker singular kernel In |t — ¢t,|.
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Fig. 2. Boundary value problem for triply-connected region, (mm) region defined.

Some differences between the complex variable BIE and the real
variable BIE may be found in some aspects. First of all, there is a
difference for operator defined in the right hand of Eq. (1) (Chen
et al., 2009; Chen and Lin, 2010). Those operators, or the kernel
functions, have a difference of constants in the different formula-
tions (Chen et al., 2009). If the loadings on the contour in an exte-
rior BVP are not in equilibrium, the regularity condition at infinity
shown by (Brebbia et al., 1984, Eq. (5.82)) is not satisfied by the rel-
evant operator in the real variable formulation (Chen et al., 2009).
However, in the same condition, the regularity condition at infinity
is satisfied by the relevant operator in the complex variable
formulation.

Secondly, the properties of some kernel functions in the com-
plex variable formulation are easy to recognize. For example, it is
assumed that we perform integration along a line element on the
boundary. If we denote t=se?” (dt=e"’ds) and t,=s.e”, and we
can find Ly(t, t,) = 0 defined by Eq. (4) immediately.

In addition, it is slightly easier to formulate the program if one
uses the kernels based on the complex variable formulation. For
example, in the discretization for the left hand side of Eq. (1), we
simply put U(t) =1 or U(t) =i, and separate the real and the imag-
inary portions and the influence matrix will be formulated
immediately.

Simply because the loadings on contour are in equilibrium in
the present study, the computed results must be the same from
two kinds of formulation.

2.2. Formulation for the problem of two dissimilar inclusions in a finite
plate

The original problem for a finite plate with two dissimilar elas-
tic inclusions is shown by Fig. 3(0), where the loading oy, onr are
applied along the outer boundary I's. Those loadings must be in
equilibrium. The dissimilar inclusions may have different shapes.
In addition, the dissimilar inclusions are defined such that one or
two of the elastic constants are different. The matrix medium in
finite plate bounded by contours I'y, I'; and I'5 has the elastic con-
stants (Gs, v3), where Gs, v3 denote the shear modulus of elasticity
and Poisson’s ratio, respectively. Two inclusions have the elastic
constants (Gy, v1) and (G, v,), respectively. The problem can be

decomposed into three problem shown by Fig. 3(a), (b) and (c),
respectively.

The problem shown by Fig. 3(a) is devoted to an interior
boundary value problem with the outer boundary I'y and the
elastic constants (Gy, v1). The applied displacement and the trac-
tion along the boundary I'; are denoted by {u;} and {q;}, respec-
tively. Generally, the boundary integral equation is solved
numerically in a discrete form. In this case, {u} is a vector com-
posed of many “u” and “v” components at many discrete points,
which is expressed as

{ur} = {uq va Um v} (6)

In Eq. (6), for example, u,; denotes the “u” component at the jth
node. Similarly, {q} is a vector composed of many oy and oyt com-
ponents at many discrete points, which is expressed as

. ux] Z)*j “ee

{1} = {ONn.1 Ontr - On.j Onrj - ON.m OnT.m} (7)

In Eq. (7), for example, oy,,; denotes the oy component at the jth
node.

Similarly, the problem shown by Fig. 3(b) is devoted to an inte-
rior boundary value problem with the outer boundary I'; and the
elastic constants (G, v,). The applied displacement and the trac-
tion along the boundary I'; are denoted by {u,} and {q2},
respectively.

In addition, the problem shown by Fig. 3(c) is devoted to a prob-
lem of the triply-connected region bounded by the inner bound-
aries I'y and I', and the outer boundary I's. For the region, the
elastic constants are denoted by (Gs, v3). From the continuous con-
dition for the displacement and reciprocal property of traction, the
same displacement {u;} and traction {q,} in Fig. 3(a) are applied on
the boundary I, and the same displacement {u,} and traction {q»}
in Fig. 3(b) are applied on the boundary I';. In addition, the traction
vector {qs} applied along the outer boundary I's is given
beforehand.

For two interior BVPs shown by Fig. 3(a) and (b), after discreti-
zation to Eq. (1), the BIEs can be converted in the following matrix
representation form

[Hi{u1} = [G1]{q:},

Hal{uz} = [G2]{qa}

where [H;] is a matrix derived from a discretization of left hand
term of Eq. (1), and [G;] from the right hand term of Eq. (1). In
Eq. (8), the vector {u;} is composed of many u and v components
for discrete points along I';, which has been defined previously
by Eq. (6). Similarly, the vector {q;} is composed of many gy and
onr components for discrete points along I'y, which has been de-
fined previously by Eq. (7). In addition, the matrices [H-], [G2] and
vectors {u,} and {g,} have a similar meaning. Clearly, one should
use the elastic constants G; and v; for the formulation of the matri-
ces [Hq] and [G4], and G, and v, for [H;] and [G;].

It is known that, it the real size does not reach the degenerate
scale, the matrices [G;] and [G,] are invertible (Vodicka and Mantic,
2004, 2008). In this case, from Eqgs. (8) and (9), we have

{q:} = [Ai{ur},  with [Ay] = [G{'][H1] (10)

(t, € I'y in Fig. 3(a)) (8)

(t, € I, in Fig. 3(b)) 9)

{62} = [Af{ua},  with [A] = [G,"][H] (11)

In Egs. (10) and (11), [G;'] and [G,"] are the inverse matrix for
[G1] and [G,], respectively. In Eq. (10), the matrix [G;'], or the in-
verse of the matrix [G,], is obtained numerically by using a subrou-
tine in the FORTRAN program. In any personal computer, it is easy
to obtain the inverse of a matrix.

For the problem of the triply-connected region shown by
Fig. 3(c), after discretization for BIE shown by Eq. (5), we have
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Fig. 3. Decomposition of the original problem “o0” into three boundary value problems “a”, "b” and "c”: (o) a finite plate with elastic constants (Gs, v3) having two dissimilar
inclusions with elastic constants (Gy, v1) and (G, v2), (a) a finite plate with the boundary I'y and the elastic constants (G, v1), (b) a finite plate with the boundary I'; and the
elastic constants (G, v2), (c) a boundary value problem for a triply-connected region with elastic constants (Gs, v3) bounded by boundaries I'y and I'"; and I'3, () region defined.

[HuJ{u1} + [Hiol{u2} + [His[{us}

= [Gul{q1} + [Gr2]{q2} + [Gi3l{qs} (Lo € I'1 in Fig. 3(c)) (12)
[Ha{u1} + [H{u2} + [Has]{us}

= [Gal{q1} + [G22[{q2} + [Ga3]{g5} (to € I inFig. 3(c)) (13)
[Hs1]{u1} + [H2{u2} + [H31]{us}

= [G31l{q1} + [G2[{q>} + [G33]{q5} (to € I's in Fig. 3(c)) (14)

In Eq. (12), [H11], [H12], [H13] are three matrices derived from a dis-
cretization of left hand terms of Eq. (5), and [G11], [G11], [G13] from
the right hand terms of Eq. (5). The other matrices in Egs. (13) and
(14) are derived in a similar manner.

In all matrices, the first footnote denotes where the observation
point t, is located, and the second footnote denotes where the inte-
gration point “t” and dt are located. For example, in the matrix
[Hq2], t, is located along the contour I'y, and the integration point
“t” and “dt” are located on the boundary I';.
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Clearly, the matrices [Hy;] and [G;1] are evaluated from ¢, on I';
and “t”, “dt” on I'y. In this case we will meet singular kernel 1/
(t — to)or weaker singular kernel In |t —¢t,| in the discretization.
Particularly, the matrix [Hy;] contains the term U(t,)/2 in Eq. (5).
Clearly, the matrices [Hjz], [G22], [H33] and [G33] have the same
property.

The matrices [Hq2] and [G;;] are evaluated from t, on I'; and “t”,
“dt” on I',. In this case, all integrals are regular in the discretiza-
tion. In addition, the matrices [Hjx] and [Gj] (j # k) possess the
same property. Clearly, one should use the elastic constants Gs
and v3 for the formulation of all the matrices from [Hy], [Hi2],
... to [G33].

Substituting Eqs. (10) and (11) into Egs. (12)-(14) yields

(Buiil{ur} + [Br2J{tz2} + [His[{us} = {r1} (15)
[BarJ{u1} + [BoJ{u2} + [Has]{us} = {r2} (16)
(Bs1){u1} + [Bs2J{u2} + [H33]{us} = {rs} (17)
where

(Bi1] = [H] = [Gui][A1],  [Bi2] = [Hi2] — [Gr2][A2] (18)
[B21] = [Ha1] = [G1][A1],  [Bz2] = [Haa] — [Gaa][A2] (19)
[Bs1] = [H31] — [G31][A1],  [Bs2] = [H32] — [Gaa][A2], (20)
{ri} =[Gis[{qs}, (21)
{ra} = [Gasl{qs} (22)
{rs} = [Gss){qs} (23)

Note that, the vector {gs} is given beforehand, which is from the
boundary condition along the outer boundary I's.

Finally, Egs. (15)-(17) become the governing equation for eval-
uating three vectors {u;}, {u} and {us}. The solutions for {u;}, {u}
and {us} can be obtained from the linear algebraic equations shown
by Egs. (15)—(17). From {u;} and Eq. (10), we can get the vector
{q1}. Similarly, From {u,} and Eq. (11), we can get the vector {q,}.

For evaluating the hoop stress or, the following technique is
suggested (Chen and Wang, 2011). In fact, in the plane strain case,
the strain component ¢r (in T-direction) can be expressed as (Figs. 2
and 3(c))

er = }1:_ (ar(1 = v¥) —v(1 +v)oy) (24)

or

Eer +v(1+v)on
Ao

where E is the Young’s modulus of elasticity. In Eq. (25), the compo-
nent gy is from the vector {q}, and &y is the strain in the T-direction,
which can be evaluated from the numerical solution of displace-
ments along the boundary. The elongation of a boundary element
can be found from the displacement solution, and the strain ey
can be evaluated accordingly. In fact, the strain er along boundary
can be found in the following way. It is assume that there is an
interval AB on the boundary, which is denoted by a vector dt with
the length ds (Figs. 2 and 3(c)). In addition, assume that the end
point “A” is fixed (us =0, v4=0) and the end point “B” has a dis-
placement Au +iAv, where Au=ug—us=ug and Av=1vg — 4= vp,
The projection of Au +iAv on the direction for the vector dt is de-
noted by AL. Finally, we can evaluate ¢ by the following equation

A
T ds

(25)

er (26)

Thus, the values of o1 at many discrete points along the bound-
ary can be evaluated.

From computed vectors {u;} and {q,} along I'y, we can evaluate
the o at both sides of I'; by using Eq. (25). If one evaluates o at
the inclusion side, one should use the elastic constants G; and v,
for the right inclusion. On the contrary, if one evaluates o7 at the
matrix side, one should use the elastic constants Gz and vs. Simi-
larly, from the computed vectors {u,} and {q,} along I';, we can
evaluate the ot at both sides of the interface I',. In addition, from
{us} and {gs} along I's, we can evaluate the o along the boundary
Is.

3. Numerical examples

Several numerical examples are provided to prove the efficiency
of the suggested method. In the examples, the shear moduli G;
(i=1,2,3) are subject to change, and v; = v; = v3 =0.3. The plane
strain condition is assumed. Stress concentration factors (SCFs)
along the contour and the non-dimensional stress for or at both
sides of interface are evaluated in all examples.

3.1. Example 1

In the first example, one elliptic inclusion with the elastic con-
stants G, v; is embedded in the matrix medium with the elastic
constants G, v, (Fig. 4). Simply deleting some terms in the formu-
lation for the case of two inclusions, the derivation introduced in
second section can be used to the present case accordingly.

The plate is applied by the loading oy = p, onr = 0 along the out-
er boundary I',. The elliptic interface boundary I'; has two half-
axis a,by, and the ellipse I'; has two half-axis a,,b,. We assume
by/a, = by/a, in the example. In computation, M = 96 divisions are
used for the discretization for the contour I', and M =48 (or 72)
divisions are used for the discretization for the interface boundary
Iy

In the example, for the following cases: (a) G;/G,=107>, 0.1,
0.5,1, 2 and 10, (b) by/a; = by/a, =0.25, 0.5.0.75 and 1.0, (c) a;/
a, =0.1, 0.2, ..., 0.6, the non-dimensional stress component ot at
the points D, E and F are expressed as (Fig. 4)

0rp = $p(G1/Ga, b2 /02,01 /a2)p, O = Sp(G1/Ga, by /az, a1/a2)p,
OTF :SF(G1/Gz7b2/a2,a1/a2)p (27)

The computed non-dimensional stresses for or, or sp(G1/Ga, ba/
a5, a1/a3), Se(G1/Ga, bafas, ai/az) and s G1/Go, ba/ay, a;/ay) are listed
in Table 1.

From the tabulated results we see following results. In the case
of G1/G,=1075,0.1, 0.2, or 0.5, or in the softer inclusion case, gen-

G =0 (along T,)

NT

c,
YN
detail N
i

Fig. 4. A finite elliptic plate with the elastic constants (G, v;) containing one
dissimilar elliptic inclusion with the elastic constants (G;vq).
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Table 1 Table 1 (continued)
The non-dimensional stresses (=61/p) sp(G1/Gz, ba/az, a1/a5), se(G1/Ga, ba/as, a;/a;) and
SHG1/Ga, baJa,, ai/ay) at the point “D” (in inclusion) and “E” and “F” (in matrix), under byla, a/az
different G,/G ratios (see Fig. 4 and Eq. (27)). 0.1 0.2 0.3 04 05 0.6
byla,  aifa; 0.75 1.1303 1.1239 1.1151 1.1085 1.0995 1.0915
01 02 03 0.4 05 06 1.00  1.1604 1.1546 1.1451 1.1338 1.1174 1.0980
. _ 5b) Sg values in G;/G, = 2 case
(1a) Sp values in G;/G, =107 case (
025 00001 00002 00002 00003 00005  0.007 g'ég g'g?g; g'égig g'ggﬁ g;g;é g';gg‘z‘ g';ggé
050  0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 075 08219 0.8175 0.8110 0.8046 0.7965 07882
0.75  0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 100 08304 0.8262 08194 08107 09990 09851
1.00  0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 : : : - - : :
(1) ¢ values in Gy/G; =102 case E)Szci)a . va(l)ugegzlg Gl/cf);;zcgse 09829 09830 09831 09835
025 96284 133771 18.6930 254187  34.4539  46.7233 050 09942 0.9944 0.9943 09935 0.9913 0,985
050  4.2920 4.9901 6.1622 7.8780 105604  14.9508 075 09955 09917 0.9849 0.9744 0.9593 09379
0.75  2.7750 3.0074 3.4323 4.1098 5.2547 7.2523 100 09943 0.9844 0.9680 09457 09176 08844
1.00  2.0455 2.1102 22277 2.4035 2.6946 3.1628 : : : : : : -
1.00°  2.0202 2.0833 2.1978 2.3810 2.6667 3.1250 (6a) Sp values in G;/G, = 10 case
(195 e 10 c R
025  0.9830 0.9832 0.9843 0.9875 0.9879 0.9200 075 12643 12515 12334 12187 12012 11873
050  0.9883 0.9643 0.8959 0.7156 02482  —0.9634 100 13324 13188 15967 13704 12341 11924
075  0.9948 0.9850 0.9514 0.8560 0.6098  —0.0009 : : : : : : :
1.00  1.0181 1.0819 1.1978 1.3812 1.6696 2.1333 (6b) Sg values in G;/G, = 10 case
1.00°  1.0202 1.0833 1.1978 1.3810 1.6667 2.1250 025  0.8667 0.8333 0.7921 0.7545 0.7213 0.6934
(2a) Sp values in Gy/Gy = 0.1 case 050  0.7265 0.7148 0.6977 0.6785 0.6579 0.6383
025 05639 06167 06363 06242 06078 05951 ?’(7)3 gg;g; 8'?2;75 g'gggé g'g‘l‘;; g'gg;‘g 8";233
050  0.3895 0.4175 0.4553 0.4906 0.5186 0.5324 : : : : : : :
075 03188 0.3315 0.3523 0.3788 0.4117 0.4455 (6¢) S values in G;/G, = 10 case
1.00  0.2854 0.2918 0.3031 0.3190 0.3443 0.3813 025  0.9829 0.9829 0.9830 0.9831 0.9834 0.9841
. 050  0.9940 0.9932 0.9913 0.9874 0.9800 0.9659
(2b) Sg values in G1/G, = 0.1 case
025 44052 48041 48750 47166 45172 43668 ?’(7)3 gggzg 8'3%2 ggg;g 8'23‘3‘2 8'2;;‘1‘ 8’??33
050  2.8706 3.1143 3.4241 3.6927 3.8613 3.8960 : - : : - - :
0.75 2.1530 2.2626 24412 2.6709 2.9411 3.1973 ¢ From an exact solution for the thick-walled cylinder.
1.00  1.7467 1.7857 1.8549 1.9554 2.1105 23372
(2c) S values in G;/G, = 0.1 case erally, sp < sg. In this case, the point “E” is under more dangerous
025  0.9830 0.9830 0.9832 0.9834 0.9829 0.9779 situation.
050 09911 0.9797 0.9533 0.9030 0.8235 0.7260 _1n-5
075 0.9967 0.9956 0.9896 0.9753 0.9582 05764 In the case of G1/G? = 10. , the sp values are nea.lr.ly equal .to
1.00 1.0122 1.0573 1.1370 12587 1.4379 1.6997 zero. Since a very soft inclusion, or G; ~ 0, has no ability to resist
. B the deformation, this phenomenon is easy to understand. In this
(3a) Sp values in G1/G, =0.5 case N A o A
025  0.8953 0.9033 0.9016 0.9055 0.8998 0.8945 case, the interface portion at the matrix side is nearly under trac-
050  0.8454 0.8561 0.8673 0.8757 0.8784 0.8781 tion free condition, and the non-dimensional stress concentration
075 08073 0.8148 0.8258 0.8379 0.8501 0.8616 factor, or the value a7/p can reach a huge value. For example, we
1.00  0.7819 0.7871 0.7960 0.8079 0.8249 0.8467 have s; = 46.7233 in the case of G1/G, = 10, byJa; = 0.25 and a;/
(3b) Sg values in G;/G, = 0.5 case a,=0.6.
02> 14733 14847 14763 14841 14687 14539 It is known that for an elliptic notch with two half-axis a;, by
050 13715 1.3907 1.4089 1.4221 1.4211 1.4137 d th . - - h ~
075 12868 13001 13189 13400 13583 13731 and the remote tension o =gy =p, we have s¢=8, 4, 2.667
1.00 1.2267 1.2349 1.2488 1.2684 1.2951 13293 and 2 for b{/a; =0.25, 0.5 0.75 and 1, respectively. In addition, in
(3¢) Sr values in G1/G, = 0.5 case the case of a1/a? =0.1, we have s;=9.2684, 4.2920, 2.7750 and
025 09829 0.9830 0.9830 0.9830 0.9828 0.9820 2.0455, respectively. Clearly, two sets of the results are
050  0.9937 0.9923 0.9898 0.9866 0.9839 0.9849 comparable.
075  0.9975 1.0002 1.0053 1.0147 1.0314 1.0611 Secondly, when by/a; = byJa, =1 and G/G,=1075, the studied
1.00  1.0021 1.0154 1.0381 1.0709 1.1144 1.1702 - . . .
problem will approximate a problem for a thick-walled cylinder
54;; Sp Vii‘;‘;szlln Gl/Gé ;7128358 0ora1 09872 06873 00874 with oy = p applied along the outer boundary I',. From the solution
0.50 0.5932 0.9931 09930 0.9969 0.9969 0.9969 for the thick cylinder, we have sg =2.0202, 2.0833, 2.1978, 2.?810,
0.75 0.9976 0.9975 0.9974 0.9987 0.9986 0.9986 2.6667, 3.1250 for a1/a2 =0.1,0.2,0.3,0.4,0.5 and 0.6, respectlvely.
1.00  0.9992 0.9991 0.9990 0.9994 0.9993 0.9992 In the meantime, the relevant values are sg=2.0455, 2.1102,
(4b) Sg values in G1/G, =1 case 2.2277,2.4035, 2.6946 and 3.1628, respectively. Two sets of results
025 09721 0.9720 0.9721 0.9872 0.9873 0.9874 coincide closely. This can partly prove that accurate results have
0.50 0.9932 0.9931 0.9930 0.9969 0.9969 0.9969 been achieved in the paper.
0.75  0.9976 0.9975 0.9974 0.9987 0.9986 0.9986 I _
n the case of G;/G, = 1, the problem becomes a perfect plate un-
1.00  0.9992 0.9991 0.9990 0.9994 0.9993 0.9992 ; 1/G2 p p tp
| der the tension gy = p along the outer boundary I',. In this case, the
(4c) Sr values in G1/G, =1 case i i =S.=Sp=
025 0.9829 0.9829 0.9829 0.9829 0.9829 0.9830 exlact solutlorll1 is sp s; sp=1. However, the reltfavan;computec}
050 0.9942 0.9942 0.9942 0.9942 0.9943 0.9943 values are changing from 0.9932 to 0.9968, for the case o
0.75 0.9967 0.9967 0.9966 0.9966 0.9965 0.9964 b,/a; > 0.5. That is to say a higher accuracy has been achieved
1.00 0.9976 0.9975 0.9973 0.9973 0.9971 0.9968 in the present method.
(5a) Sp values in G1/G, =2 case In the case of G;/G,=2 and 10, or in the more rigid inclusion
025  1.0265 1.0206 1.0195 1.0398 1.0444 1.0495 case, generally, we find sp > sg. sp > sr. In this case, the point “D”
050  1.0912 1.0842 1.0770 1.0786 1.0780 1.0804

is under a higher level of stress. From tabulated results we see that
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b, /a, =b,/a,=b;/a,

a; =a, =0.25a,

Fig. 5. A finite elliptic plate with the elastic constants (Gs, v3) containing two
dissimilar elliptic inclusions with the elastic constants (G;v{) and (G, v).

we have sp > 1, sg< 1, sp< 1 in general. In the case of G1/G,=10, the
sp values vary within the range of 1.1053-1.3324, the sg values
vary within the range of 0.8667-0.5807, the s values vary within
the range of 0.9940-0.7770. That is to say a more rigid inclusion
does not cause a serious situation for the stress distribution.

3.2. Example 2

In the second example, two elliptic inclusions with the elastic
constants Gq, vq, G, v, are embedded in the matrix medium with
the elastic constants Gs, v3 (Fig. 5). Therefore, the derivation intro-
duced in second section can be used to the present case directly.

The plate is applied by the loading oy = p, onr = 0 along the out-
er boundary I's. The elliptic interface boundaries I'y, I'; have two
half-axes ay, by, and a,, b,, respectively. For two inclusions, we as-
sume a; = a and by = b,. The ellipse I'; has two half-axes as, b3, and
we assume bq/a, = bo/a, = bs/as and choose a, = a = 0.25a3 in the
example. The spacing between two inclusions is denoted by “2c”.
In computation, M =96 divisions are used for the discretization
of the contour I'3, and M = 48 divisions are used for the discretiza-
tion for the interface boundaries I’y and I'».

In the example, for the following cases: (a) G1/G5 = G/G3 =107,
0.1, and 10, (b) b1/a; = b2/a, = bs/as = 0.5 and 1.0, (c) c/as = 0.05, 0.1,
0.15,...,04, the non-dimensional stress component or at the
points Cy, Dy, E4, Fy, Gy are expressed as (Fig. 5)

orc =5c(G1/Gs, bs/as,c/az)p, orp =sp(G1/Gs,bs/az,c/as)p,
org = Se(G1/Gs,bs/as,c/as)p, orr =Sp(G1/Gs,bs/as,c/as)p,
orc = S¢(G1/Gs,bs/as, c/as)p (28)

Clearly, at the points C,, D5, E3, F2, G, the relevant values are the
same.

The computed non-dimensional stresses for a7, or sq(G1/Gs, bs/
as, c/as), sp(G1/Gs, bsfas, c[as), si(Gi/Gs, bsfas, cas), SHG1/Gs, bs/
as, c/as) and sg(G1/Gs, bs/as, c[as) are listed in Table 2.

From the tabulated results we see following results. In the case
of G1/G5=1072, the s¢ and sp, values are equal to zero. Since a very
soft inclusion, or G; ~ 0, has no ability to resist the deformation,
this phenomenon is easy to understand. In addition, in the case
of bs/as=0.5 and c/as=0.05, for two points Ejand F; embedded in
the matrix medium, we have sg = 8.817, sp= 6.266 (Sg > Sf), respec-
tively. This is indeed the phenomenon of the stress concentration.
However, in the case of bs/as=0.5 and c/as=0.4 we have sg = 6.008,
sp=9.079 (sg < sg), respectively. That is to say when c/as changes
from 0.05 to 0.4, the stress distribution in the matrix medium will
be changed significantly.

In the case of G1/G3=0.1, the inclusion is softer than the matrix
medium. In this case, we have sc<sg and sp <sg in general. For

Table 2

The non-dimensional stresses (=o1/p), SdGi1/Gs, bs/as, c[as), sp(Gi/Gs, bs/as, c/as),
se(G1/Gs, bsfas, clas), s{G1/Gs, bsfas, claz), sq(G1/Gs, bs/as, c[as)at the points C;D; (in
inclusion, i = 1, 2) and E;, F; G;, (in matrix, i = 1, 2), under different G;/Gs = G,/G3 ratios
(see Fig. 5 and Eq. (28)).

bsjas  clas
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(1a) S values in G1/Gs = Go/G3 = 107> case
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(1b) Sp values in G1/Gs = G,/G3 = 107> case
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(1c) Sg values in G;/Gs = G3/G3 = 107> case
0.5 8.817 6.581 5787 5464 5390 5477 5.683 6.008
1.0 4859 3593 3.070 2.762 2,556 2412 2311 2.245

(1d) S values in G;/Gs = G5/G3 = 107> case
0.5 6.266 5929 5934 6.112 6433 6924 7.694 9.079
1.0 2984 2735 2619 2568 2570 2.632 2.801 3.242

(1e) Sg values in G;/Gs = G,/G3 = 107> case
0.5 0.773 0.777 0.757 0.721 0.673 0.616 0.569 0.632
1.0 1.303 1446 1.603 1.801 2.073 2475 3.130 4354

(2a) S values in G;/G3 = G,/G3 = 0.1 case
0.5 0577 0493 0460 0444 0438 0438 0441 0.447
1.0 0429 0370 0346 0333 0326 0322 0323 0329

(2b) Sp values in G1/G3 = G»/G3 = 0.1 case
0.5 0460 0451 0451 0456 0465 0478 0498 0.531
1.0 0340 0331 0329 0331 0337 0349 0374 0427

(2c) Sg values in G1/Gs = G3/G3 = 0.1 case
0.5 4.560 3.747 3417 3260 3.193 3.179 3.193 3.218
1.0 3268 2.615 2324 2150 2.032 1950 1.891 1.853

(2d) S values in G;/Gs3 = Go/G3 = 0.1 case
0.5 3.449 3396 3414 3473 3568 3.703 3.902 4.236
1.0 2215 2116 2.069 2.054 2.070 2.128 2.262 2.591

(2e) S¢ values in G1/G3 = G3/G3 = 0.1 case
0.5 0912 0913 0911 0910 0915 0935 1.001 1.203
1.0 1239 1325 1423 1547 1715 1955 2325 2951

(3a) S, values in G1/G3 = G»/G3 = 10 case
0.5 1.063 1104 1.132 1.151 1.164 1.175 1.183 1.191
1.0 1161 1.187 1227 1258 1.284 1306 1327 1350

(3b) Sp values in G1/Gs3 = G/G3 = 10 case
0.5 1.138 1.140 1.137 1.130 1.117 1.095 1.058 0.984
1.0 1216 1224 1220 1205 1177 1131 1.056 0.928

(3c) Sk values in G1/G3 = G»/G3 = 10 case
0.5 0.831 0749 0722 0710 0.702 0.697 0.693 0.688
1.0 0.766 0.683 0654 0641 0632 0627 0622 0618

(3d) Sk values in G;/G3 = Go/G3 = 10 case
0.5 0.706 0.699 0693 0687 0.678 0.665 0.645 0.611
1.0 0.626 0620 0613 0605 0593 0.577 0.555 0.521

(3e) S¢ values in G;/G3 = G/G3 = 10 case
0.5 0967 0958 0944 0923 0.891 0845 0.773 0.659
1.0 0.846 0832 0809 0777 0.733 0.676 0.601 0.507

example, in the case of b3/az=0.5 and c/a3=0.05, we have s=0.557
and sg=4.560. Note that, for example, s¢, sg denote the non-dimen-
sional stress at two sides of interface boundary. Since a softer med-
ium has a lower stress for the same amount of deformation (or
stress = G * stain), this phenomenon is easy to realize. In addition,
the role of the softer inclusion is significant. For example, in the
case of bs/az=0.5 and c/as =0.05, we have sg=8.817 (for G,/
Gs=107%) and sg=4.560 (for G;/Gs =0.1), respectively. That is to
say even a rather softer inclusion is adhered to the matrix medium,
the stress concentration factor will be lowered significantly.

In the case of G;/Gs =10, the inclusion is more rigid than the
matrix medium. In this case, we have sc > sg and sp > sg in general.
For example, in the case of bs/as=0.5 and c/as = 0.05, we have
sc=1.063 and sg = 0.831. However, in the studied ranges for bs/as
and c/as, all values for s, sp, S, Sr and sg change within the range
from 0.507 to 1.350. That is to say a more rigid inclusion does
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Table 3

The non-dimensional stresses (=01/p), Sc1(G1/Gs, G2/Gs, bs/as, ¢/as), sp1(G1/Gs, G2/Gs, bs[as, c[as), se1(G1/Gs, G2/Gs, bz[as, c[as), sp1(G1/Gs, G2/Gs, bs/as, c[as), s¢1(G1/Gs, G2/Gs, bs/as, ¢/
a3), Sc2(G1/Gs, G2/Gs, bsfas, claz), spa(G1/Gs, G2/Gs, b3[as, c[as), Se2(G1/Gs3, G2/Gs, bsfas, cas), sp(G1/Gs, G2/Gs, bsfas, ¢/as), sa(G1/Gs, G2/Gs, bsfas, ¢faz), at the points G, D; (in
inclusion, i =1, 2) and E;, F; G;, (in matrix, i = 1, 2), under conditions (a) G;/Gs = 10> G,/G3 = 10°, (b) G;/G3 = 0.1 G,/G3 = 10 (see Fig. 5, Egs. (29) and (30)).

bs/as clas

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
(1a) S¢y values in the case of G;/G3 =107° and G,/Gs = 10°
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1b) Spy values in the case of G;/G3=107> and G,/G5 = 10°
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1c) Sg; values in the case of G1/Gs3 = 107> andG,/Gs = 10°
0.5 4.487 5.017 5.307 5.518 5.704 5.892 6.109 6.396
1.0 1.500 1.740 1.871 1.971 2.049 2.113 2.170 2.230
(1d) Sgy values in the case of G;/Gs =107° and G,/G3 = 10°
0.5 5.608 5.836 6.070 6.344 6.692 7.174 7.916 9.268
1.0 2.024 2.136 2.230 2.325 2.437 2.591 2.840 3.365
(1e) Sg; values in the case of G;/G3=10"> and G,/G; = 10°
0.5 0.838 0.798 0.752 0.699 0.639 0.574 0.524 0.586
1.0 1.469 1.559 1.684 1.860 2.114 2.502 3.145 4364
(1f) Sez values in the case of G;/G3=10"> and G,/G; = 10°
0.5 2.459 1.806 1.504 1.333 1.235 1.185 1.164 1.161
1.0 2.009 1.859 1.741 1.657 1.598 1.555 1.527 1.510
(1g) Spz values in the case of G/G3 =107° and G,/G3 = 10°
0.5 1.106 1.100 1.100 1.103 1.093 1.077 1.035 0.950
1.0 1.448 1.380 1.315 1.250 1177 1.089 0.969 0.793
(1h) S, values in the case of G;/Gs = 107> and G,/Gs = 10°
0.5 0.828 0.867 0.854 0.830 0.801 0.772 0.743 0.718
1.0 0.241 0.386 0.472 0.519 0.547 0.563 0.571 0.575
(1i) Sk, values in the case of G/G3 =107° and G,/G3 = 10°
0.5 0.730 0.723 0.710 0.695 0.677 0.657 0.629 0.589
1.0 0.554 0.557 0.555 0.549 0.539 0.524 0.503 0.475
(1j) Sgz values in the case of G;/G3 =10"> and G,/G; = 10°
0.5 0.946 0.930 0.910 0.885 0.849 0.796 0.716 0.591
1.0 0.927 0.875 0.820 0.760 0.693 0.616 0.526 0.429
(2a) S¢q values in the case of G;/G3 = 0.1 andG,/G3 =10
0.5 0.388 0.412 0.424 0.432 0.438 0.444 0.449 0.455
1.0 0.246 0.270 0.282 0.290 0.298 0.305 0.315 0.327
(2b) Sp; values in the case of G;/G3 =0.1 and G,/G3 = 10
0.5 0.437 0.445 0.452 0.461 0.471 0.483 0.502 0.533
1.0 0.292 0.301 0.309 0.318 0.330 0.348 0.376 0.432
(2c) Sgq values in the case of G;/G3=0.1 andG,/G; =10
0.5 2.682 2.953 3.088 3.170 3.225 3.265 3.294 3.311
1.0 1.290 1.491 1.598 1.673 1.729 1.773 1.811 1.851
(2d) Sg; values in the case of G1/G3 = 0.1 and G,/G3 =10
0.5 3.296 3.370 3.444 3.526 3.623 3.752 3.940 4.262
1.0 1.738 1.806 1.867 1.931 2.008 2.116 2.295 2.664
(2e) Sg; values in the case of G;/G3 = 0.1 andG;/G; = 10
0.5 0.935 0.924 0.914 0.907 0.908 0.927 0.992 1.195
1.0 1.322 1.382 1.465 1.580 1.740 1.976 2.343 2975
(2f) S, values in the case of G1/G3=0.1 and G,/G3 =10
0.5 1.786 1.472 1.327 1.245 1.200 1177 1.169 1171
1.0 1.761 1.652 1.566 1.507 1.465 1.435 1415 1.403
(2g) Spy values in the case of G;/G3 = 0.1 andG,/G3 =10
0.5 1.128 1.121 1.116 1.113 1.102 1.085 1.050 0.980
1.0 1.366 1.318 1.273 1.226 1172 1.105 1.012 0.869
(2h) Sk, values in the case of G;/G3 = 0.1 andG;/G; = 10
0.5 0.761 0.775 0.766 0.753 0.739 0.725 0.713 0.701
1.0 0.465 0.553 0.597 0.619 0.630 0.636 0.637 0.637
(2i) Sk, values in the case of G;/G3 =0.1 andG;/G; = 10
0.5 0.709 0.706 0.700 0.691 0.681 0.667 0.646 0.611
1.0 0.623 0.620 0.614 0.605 0.593 0.575 0.550 0.514
(2j) Sc2 values in the case of G1/G3=0.1 and G,/G3 =10
0.5 0.964 0.952 0.936 0.915 0.884 0.838 0.767 0.655

1.0 0.921 0.879 0.835 0.785 0.727 0.659 0.577 0.482




1772 Y.Z. Chen/International Journal of Solids and Structures 49 (2012) 1764-1772

not cause a serious situation for the stress distribution in the com-
posite medium.

3.3. Example 3

In the third example, all notations in second example are used.
However, two ratios G{/Gs and G,/Gs may not be same. In the
example, for the following cases: (a) G1/G3=1075, G,/G3=10°
and Gl/G3 =0.1, Gz/Gg =10, (b) b1/01 = bz/az = b3/a3 =0.5 and 1.0,
(c) c/az =0.05,0.1,0.15, ..., 0.4, the non-dimensional stress com-
ponent o at the points G, D; (in inclusion, i = 1,2) and E;, F; G; (in
matrix, i = 1,2), are expressed as (Fig. 5)

or.c1=5c1(G1/G3,G2/Gs,bs/az,c/as)p, arp1 =5p1(G1/G3,G2/Gs,bs /as,c/az)p
o1 =Se1(G1/Gs,G2/Gs, bz /az,c/as)p, o1 =5r1(G1/G3,G2/Gs,bs /as,c/as)p
o161 =561(G1/G3,G2/Gs,bs/as,c/as)p (29)

orc2=5c2(G1/G3,G2/Gs,bs /as,c/az)p, 0102 =5p2(G1/G3,Ga2/Gs,bs /az,c/as)p
0152 =562(G1/G3,G2/G3,b3 /as,c/az)p, 012 =5r2(G1/G3,Gy/Gs,bs /as,c/az)p
0162 =562(G1/G3,G2/Gs,bs /az,c/as)p (30)

The computed non-dimensional stresses for a7, or sc1(G1/Gs, G/
Gs, bs/as, clas), ... to sga(Gy/Gs, Gy/Gs, bs/as, clas) are listed in
Table 3.

From the tabulated results we see following results. In the case
of G1/G3 = 107> and G,/Gs = 10°, the left interface I' is nearly under
the traction free condition and the right inclusion is a very rigid
one. As in the second example, the sc; and sp; values are equal to
zero. In addition, in the case of bs/as =0.5 and c/as = 0.4, for two
points Eiand F; embedded in the matrix medium, we have
sg1 = 6.396, sk = 9.268, respectively. This is indeed the phenome-
non of the stress concentration. At the right portion, in the case
of bsfas=0.5 and c/as;=0.05, we have sc =2.459, sg=0.828
(Sc2 > Sg2), Sp2 = 1.106, sp =0.730 (spy > Skz). Since the stress o in
the softer side to interface must have a lower value, this phenom-
enon, or S > Sgy and Sp; > Sgy is easy to understand.

The second set of computation is under the condition of G,/
G3=0.1 and G/G3 =10. In the case of bs/as=0.5 and c/asz =04,
for two points E;and F; embedded in the matrix medium, we have
sg1 = 3.311, sp; = 4.262, respectively. Comparing with previous case
(or for case G;/Gs = 107°and G,/Gs = 10°), the sg; and sg; values are
considerably reduced. In addition, in the studied ranges for bs/as
and c/as, all values for sco, Spa, Sg2, S, and sgz change within the
range from 0.482 to 1.786. That is to say a more rigid inclusion
does not cause a serious variation for the stress distribution in
the composite medium.

4. Conclusions

This paper provides a universal way to solve the dissimilar
inclusion problem in a finite plate. There is no limitation for the
configurations of inclusions and the surrounding plate. Because
of limitation of space, only problems for the elliptic inclusions
are carried out in the present paper.

The mentioned problem is decomposed into two forms of BVP.
One is for an interior region, and other is for a triply-connected re-
gion. The CVBIE is suggested for two forms of BVP. The CVBIE in
plane elasticity has some particular advantages. In the CVBIE, it
is easy to distinguish the singular kernel from their expression.
In addition, the suggested CVBIE belongs to a direct formulation
of BIE. Once the displacements are evaluated from the solution of
BIE, the hoop stress, or the component o, is easier to evaluate,
which is shown by Egs. (24)-(26).

If one normally formulates the BIEs in matrix representation
form for the case of two inclusions, the vectors {ui}, {q:}, {uz},
{q2} (assumed on the interface boundaries I'y and I';) and {us}

(assumed on the outer boundary I'3) are five unknown vectors. It
is a complicated work to assemble the relevant matrices into the
appropriate places. To overcome this difficulty, the inverse matrix
technique is suggested in the present study. In the technique, the
vectors {q,} and {q,} are expressed by the vectors {u;} and {u,},
respectively. After taking this step, only the three vectors {u;},
{u,} and {u3} become unknowns, and the relevant governing alge-
braic equations are expressed by Eqgs. (12) and (14). Therefore, we
can considerably reduce the effort in the FORTRAN program.

Many possible examinations are carried out in the present
study. For example, in the case of G;/G, =1 in the first example,
all o7 components should take the unit value (or=1). From Table
1 we see that, the computed results are gr~1 (from 0.9932 to
0.9968 for b, /a, > 0.5). This can partly prove that accurate results
have been achieved in the present study.
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