
174 Book reviews 

Software Development: Fashioning the Baroque. By Darrel Ince. Oxford University 

Press, Oxford, United Kingdom, 1988, Price X7.95, ISBN O-19-853757-1 (paper- 

back); Price E17.50, ISBN O-19-853757-3 (hardback). 

Handicapped as I am by the lack of formal education in assorted arts and sciences 

of software, I have a nagging feeling I ought to make up for it by reading all sorts 

of deep books that would explain to me the principles of what I have been doing 

for the last thirty years or so. Mercifully, it is becoming impossible to keep abreast 

with the published literature of the subject; apparently, with the increasingly frequent 

replacement of (human) editors by wordprocessors, the publishers’ natural resistance 

to scribblers has been paralysed. Fortunately, among innumerable bantam-weight 

books on software (whatever you do, don’t buy the paperback version: you’d be 

missing the only two solid parts!), Darrel Ince’s clearly stands out. 

A large part of the book is devoted to author’s fervent criticsm of English as a 

means of clear, consistent and complete statement of one’s ideas. The remainder 

provides a splendid example of just how bad the English prose could be. By cleverly 

contradicting himself on every point he makes, Mr. Ince has thoroughly convinced 

me that for the sanity of mankind the use of prose should be licensed even more 

strictly than firearms are in civilised countries. (To fundamentalists, who would 

oppose my conclusion on the ground that the fault lies not with the use of prose 

but with the lack of any ideas to express, I would reply that ideas Mr. Ince has 

aplenty, some truly breath-taking, such as, for example, the proposed solution to 

various software crises by contracting the programming out to hobbyists by mail- 

order, particularly recommended for high-security systems.) 

The overall effect is somewhat spoiled by the fact that the (very few) examples 

of somewhat stricter means of expression in the book all contain gross errors. On 

the other hand, since Mr. Ince insists that no program ever is bug-free, perhaps I 

am being unfair to him: by publishing bug-infested programs he is only making a 

point! 

I also liked the way in which he ridiculed the use of wordprocessors. The book 

contains numerous examples of what can go wrong with it: duplicated words, 

meaningless substitutions hastily accepted from a list of options supplied by a 

spell-checker let loose on a poorly typed text, multiple occurrences of the same 

paragraphs transferred from a chapter to another (but not deleted in the first 

place)-you will find all these and then some! Occasionally, I felt the author carried 

it too far, however. For instance, surely it would be enough to duplicate a drawing 

out of context, replicating it four times seems a bit crass! 

The pitfalls of keeping one’s illustrations in a file separate from the text are 

beautifully shown by the total lack of coordination between the legend on the figures 

and the text that refers to them. (If the Oxford University Press has any human 

copy-editors left, I bet Mr. Ince had a hard time convincing them that all such 

unmarked exhibits were to be left intact, but succeed he did and how!) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82464564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Book reviews 175 

The book is also a valuable source of information. For instance, the term “rapid 

prototype” used to bother me (I am easily bothered by terms everybody but I seem 

to understand perfectly well). Now I finally know that it is a program which (i) 

enjoys the triad of properties: quick, dirty and slow, (ii) is produced by hackers. 

Incidentally, I learned what a “hacker” is, too: he/she is a middleranking, pin-stripe 

executive in charge of substantial budget, with a comfortable office and at least a 

substantial share of a secretary. (This is the contemporary species; the hackers of 

60s dressed like bag-men, lived in cupboards, had to cope with rudimentary 

computing equipment, and were eventually dispersed by pin-striped quality assur- 

ance men.) Oh, if you want to meet a contemporary hacker, Mr. Ince obligingly 

tells you where you can find one: they tend to congregate around UNIX (no trade 

mark!) because it gives them the ability to develop these quick, dirty and slow 

programs. No, Mr. Ince does not recommend hacker-safari parties, most likely 

because he cannot make his mind up whether they should be exterminated, protected 

or bred. 

Penetrating definitions are not restricted to merely software terms. For example, 

for quite some time I thought I knew what the “set theory” was. I did not even 

suspect how terribly inadequate was my snug knowledge. It turns out that, for a 

true-blue software expert, the set theory is that what governs the behaviour of groups 

of objects. 

And so I could continue listing the delights of Mr. Ince’s book. Nothing, however, 

short of reading the original, could exhibit all its charms. So I rest my case. 

PS. I think I can explain (at least to my satisfaction) the reasons of all idiosyncrasies 

of Mr. Ince’s book. All, that is, but one. Mr. Ince seems to be very much impressed 

by Fred Brooks’ publications. He quotes from him at length, he refers to his both 

popular opera. Why does he then invariably misspell the name? (With at least a 

dozen occurrences, a plain typo is out of question; is it perhaps one more helpful 

feature of Mr. Ince’s wordprocessor that I am not aware of? or a result of bebugging, 

so much admired by the author? Experts, please explain!) 

W.M. TURSKI 

Warsaw University 

Warsaw. Poland 


