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1. INTRODUCTION 

Throughout this paper the unqualified term algebra will mean a not 
necessarily associative algebra over a field I. Given two algebras A and B 
there is a natural algebra structure on A @ B given by 

(a @ b)(c @ d) = UC @ bd 

for a, c E A; b, d E B. (All tensor products will be over I.) 
A subalgebra D of an algebra A is an (r-step) subideal of A if there is a chain 

D = Do < D, < a’. < D, = A 

such that each Di is a two-sided ideal of Di+l , for i = O,..., Y - 1. We 
shall use the notation D dr A to indicate this situation, writing D si A 
if the value of Y is unimportant. We write D 4 A to indicate that D is a 
two-sided ideal of A. 

The purpose of this paper is to study the subideal structure of A @ B, 
for suitable algebras B. Several authors have looked at the ideal structure 
of A @B (e.g., Jacobson [5, p. 1091, Kaplansky [6, p. ISO]), but their 
results are not immediately applicable to subideals. Their methods, however, 
can be used. Following them we restrict attention to the case when B is 
central simple. Our key result, here dubbed the Sundzuich Lemma, gives 
conditions under which every subideal of A @ B is sandwiched between 
I @ B and I* @ B where I is an ideal of A and v > 0 is an integer. 

By suitable choice of A and B we can apply our results to the construction 
of algebras of various kinds, especially Lie or Jordan algebras. In particular, 
we obtain an infinite-dimensional residually nilpotent Lie algebra which 
satisfies the maximal condition for subideals. This appears to be the first 
nontrivial example of a Lie algebra satisfying this maximal condition, 
although Lie algebras satisfying the minimal condition for subideals are 
known [14, 171. 
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The integer 7p referred to above can be related to a certain combinatorial 
invariant of B, its spread, defined in Section 3. In that section we discuss 
the calculation of this invariant for certain standard algebras. 

I am grateful to Prof. J. A. Green who found a fatal flaw in a preliminary 
version of the sandwich lemma, and suggested a way of eliminating it. 

2. THE SANDWICH LEMMA 

If B is an algebra and b E B we may define the left and right translations 
bt and b, by 

xbR = xb 
xb, = bx (1) 

(X E B). As b varies throughout B, these translations generate a subalgebra 9X 
of the associative algebra C of all linear transformations of B, called the 
multiplication algebra (Jacobson [5, p. 1071, Schafer [IO, p. 141) or enveloping 
ring (Kaplansky [6, p. 1471) of B. 

Now B is a right %X-module with action (I). The ce-ntroid b of % is the 
aIgebra of all ~-endomorphisms of B, these endomorphisms being regarded 
as left operators on B. If B is simple then b is a field (by Jacobson [5, p. 1071 
and Schur’s lemma), and Jacobson’s famous Density Theorem implies that 
9JI acts as a dense ring of linear transformations of B, considered as a vector 
space over b. 

The algebra B is central simple if it is simple, and if the centroid b is 
the ground field t with its standard action on B. Every simple algebra is 
central simpIe over its centroid, and every finite-dimensiona simple aIgebra 
over an algebr~ca~y closed field is central simple {Kapiansky [6, p. 981). 

We now pick a basis (pWj for 3. Then every m E R @ 3 is uniquely 
expressible in the form 

m = C ma 0 9, (2) 
a 

for m, E A. Given any subset S of A @ B we define 3 to be the subspace 
of A spanned by all the coefficients m, of elements na E S with respect to 
the given basis. 

For any ordinal p we define Ap by setting Al = A, Ap+l = ADA, 

AA = npcA An for limit ordinals h. The nucleus of A is the set of elements 
x E A such that (ub)x = a(bx), (ax)b = a(xb), (xa)b = x(ab) for all a, b E A; 
and the center of A is the set of all elements y in the nucleus of A such that 
ay = ya for all CZE A. (See Schafer [IO, p. 13, 141). The algebra A is 
ambidextrous if every Ieft translation is a right translation and every right 
translation is a left translation. 
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We may now state: 

SANDWICH LEMMA 2.1. Let A be w algebra, B a central simple algebra. 
Let S be a s~bs~ace of A @ 3 which is ~deul~xed by I @ 3 where I is a s~ba~eb~a 
of the nucleus of A. If either 

(1) I is contained in the center of A, 

(2) B has an identity, 

Or 

(3) B is ambidextrous, 

then there exists an ordinal p < w such that 

IQ& @ B < S. 

Proqf. We deal with the simpler case (I) first. Take any nonzero element 

in S. Let W = (y: m, $z 01, and take OL E W such that m, # 0. By the 
density theorem there exists, for any j3, an element tar0 E !lJI such that 

We now modify these tas to obtain elements of the multiplication algebra 
of A @ B having similar properties. Each tEs is a sum of terms of the form 

w* --a (bi), , 

where * denotes either L or R independently. For given (Y, ,8 the lengths i 
of these terms are bounded, say i < n. We select an arbitrary n-tupIe 

6% ,*.*, a,) of elements aj ~1. For each i we split this into i parts, e.g., by 
taking (q) ,..., (a&, (q ,..., a,). Consider now the element 

(4 0 bl)* .** (ai-l @ b,..&(a, *** a, 0 bJ* 

of the multiplication algebra of A @ B, where the *‘s and bj are as in tcya. 
Let t be the sum of all these elements corresponding to the decomposition 
oft,, . Then cIearly 
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Since the a, lie in I the product mt lies in S. But 

mt=(Zm,OP+ 

= m&z, ..- a, @ pB. 

If the integers n occurring as W, CC, ,G vary are bounded by p then we have 

2% @ B < S. 

If the n are unbounded, the same formula holds with p replaced by w. Since 
P&D < @ in case (I) the lemma is proved. 

For cases (2) and (3) we need to find some elements to play the part of 
a, ,..., a, above, but acting on the left as well as the right. This works 
provided there are both left and right translations in each summand of tas . 
We must therefore prepare the ground. 

In case (2) we simply replace taB by 

%T = U)R (l>L b? * 

In case (3) we take tGs as before. Now by density again there exists x E !lR 
such that pYx = p, (r E W}. Then 

%3 = xt,, 

is a sum of terms 

t4>* -‘- (Q* (31 

where each term has at least 2 factors. Since B is ambidextrous we can 
modify this expression so that it contains at least one left translation and 
one right translation. We now have 

P&3 = PB f 

P&3 = 0, a:#ygW 

where u,s is a sum of terms of the form (3) where * = R or L and at least 
one R and one L occur in ea& term. Again i is bounded, say by n. We now 
take n elements rr ,..., Y, E.Z and another n elements Z, ,..., I, E I. For a 
given term we will have j *‘s equal to R and i - j *‘s equal to L, with 
1 < j < i - 1. We partition (rl ,,,., Y,) and (I, ,..., ZJ into j and i - j parts, 
respectively, keeping them in order. Then each (b,), is replaced by (Q @ b,), , 
where 4 is the product in order of the elements in the relevant partition 
of (& ,..., 4) or (ri ,..*, Y,), according as * = L or R. The sum t of these 
modified expressions, corresponding to the decomposition of u,~ , now lies 
in the multiplication algebra of A @ B, and t idealizes S. Further, 
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Hence 

As before, if n is bounded by p we have 

I~% @ B < S, 

and if not then 

The lemma follows. 
We can recover the following result of Jacobson [5, p. 1091: 

COROLLARY 2.2. If B is central simple and A has an identity then every 
ideal of A @ B is of the form U @ B where U is an ideal of A. 

Proof. Take I = f . 1, which lies inside the center. 

Remark. B is obviously ambidextrous provided it is either commutative 
or anticommutative, so that case (3) applies in particular if B is a Lie or 
(commutative) Jordan algebra. 

3. SPREAD 

If B is central simple, the spread of B is defined to be the least ordinal a 
such that every element of the multiplication algebra !M of B is a sum of 
terms 

@I), ... (U* > (4) 

each having \(a factors. From the proof of the sandwich lemma it follows 
that we may take p < u in cases (1) and (3) and p < u + 1 in case (2). 

Clearly every finite-dimensional central simple algebra has finite spread. 
We shall show that for infinite-dimensional algebras the spread may be 
either finite or infinite. 

If B is associative then every expression of the form (4) reduces to one 
of the form (b,), , (b,), , or (6,), (Q , so the spread is at most 2. 

In the case where B is a central simple Lie algebra, we have an improvement 
on the estimate p < 0, obtained by making an alternative preparatory move 
in the sandwich lemma. Thus, starting with 

&XL3 = c PI), ... w* 
as in case (1) (where now each i < u) we use the fact that for all b E B 
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to trade left and right multiplications. For a term where i > I, we make 
half of the *‘s into L’s and the rest into R’s. For a term where i = 1, we 
use the fact that B2 = B to express (b,), in the form C xjyj , for suitable 
xj , yi E B. The Lie identities then imply that 

Now t,, is a sum of terms, each with at least one left and one right multiplica- 
tion, and with at most [(u + 1)/2] of each kind. Thus we may take 

P < Ku + 1)/21* 
The classical Lie algebras of type A,, B, , C, , D, , G, , F4, E6, E, , E8 

can be defined over any field of characteristic not 2 or 3 (Seligman [ll, 121) 
and are then central simple. Calculations using a Chevalley basis (Samelson 
[9, p. 491, Seligman [12, p. 291) h s ow that they have spread <8. Using 
the improved estimate above we find that the sandwich lemma holds with 

p < 5. 
Let G be any additive subgroup off and define ‘& to have basis {w,: g E G} 

and multiplication 

w,wh = k - ‘%b+h . (5) 

Then ‘!I& is a Lie algebra, and if char(f) # 2 it is central simple. If f has 
characteristic p > 0 and G is the additive group of the prime subfield then 
!!BG is the Witt algebra (Jacobson [4, p. 1961). Taking any element 

of length 1 (i.e., having 1 values m9 # 0), we can multiply it by wh , where 
mh # 0, and decrease the length by 1. By repeating this process until the 
length is 1 and then multiplying by one more wj , it follows that the spread 
is at most / G / + 1. 

When G is infinite this bound tells us nothing new. But it is easy to see 
that 2&, for example, has spread w. If we take A to be a free commutative 
associative algebra on countably many generators t, , t, ,... (without an 
identity) then the ideal of A @ ‘!& generated by 

t1Owo 

tz 0 wo + t3 0 Wl 

t, 0 wo + t, 0 w1+ to 0 w2 

. . . 

does not contain A” @ ‘& for any finite n. Thus the sandwich lemma 
does not hold for any finite p, and the spread must be w. 



CENTRAL SIMPLE ALGEBRAS 7 

On the other hand, the infinite-dimensional analogues of the classical 
simple Lie algebras have local systems of classical simple Lie algebras and 
can easily be seen to have spread <S. 

The simple finite-dimensional Jordan algebra of type A, (Schafer [IO, 
p. 1011) has spread at most 2. 

4. SUBIDEALS 

Our main result on subideals follows from the sandwich lemma. 

THEOREM 4.1. Let A be an associative algebra, B a central simple algebra 
of finite spread cr. Suppose that either 

(1) A is commutative, 

(2) B has an identity, 

or 

(3) B is ambidextrous. 

Suppose that D Q A @ B. Let B be dejned as in Section 2 and let I be 
the ideal of A generated by B. Then there exists an integer r = n(u, r) such that 

Im@B<D<I@B. (6) 

Conversely, if there is an ideal I of A and an integer v such that D is a subalgebra 
of A @ B and (6) holds, then D is a subideal of A @ B. 

Proof. We have 

D = D, Q D, 4 ..’ 4 D, = A @ B. 

By the sandwich lemma, 
A 

so that 

APDT-lAD @ B < D,-, 

Ao6Ao @ B < D,-, . 

The left-hand side idealises D,-, , and we may continue inductively, so that 

E, 0 B < D, 

where 

E1 = AoljAq 

E,+l = Ei&Eio, for i>l. 
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We claim inductively that there exist integers 7ri such that Iv* < Ez . Now 
I is the linear span of 

fi+gA+Alj+ALiA, 

so that 

Then 

Since we know that we may take p < cr + 1, this establishes the first part 
of the theorem. 

Conversely, if I” @ B < D < I @ B, we have 

L,=(I~~~B)+Du(I~-~OB)+D~...Q~OB~AOB 

so that I) si A @ B. 
From this we can recover a result of Baer [l, p. 411 which we shall need: 

LEMMA 4.2 (Baer). D is a subideal oj’ the associative algebra A if and 
only if there is an integer rr such that 

I=<D<I 

when 1 is the ideal of A generated by I?. 

Proof. Use 4.1, with B = f. (Baer’s result is in fact more general, and 
applies to associative Gzgs. Baer calls subideals meta ideals of finite iprdex). 
This result does not hold for Lie algebras 113, p. 74; 151. 
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aer uses this lemma to show that in associative algebras the joeiz of 
(subalgebra generated by) two subideals is a subideal. This fails for Lie 

ebras (Hartley [2, p. 2711, Stewart [13, p. 791 and [IS]). We shall 
say that an algebra has the jade ~ro~er~~ if any two subideals gene~te a 
subideal. 

THEOREM 4.3. If A and B are a~ebr~ which satisfy the hypotheses of 4.1, 
has the join prop~ty. 

Proo$ Let D, E si A @ B, Then there exist ideals H, K of A and integers 
r, o such that 

EP@ <D<fI@B 

Ka~~~~~K~~. 

Let F be the join of D, E. Then 

Therefore F si A @ B by 4.1. 
If A is commutative and B is Lie (Jordan) then A is Lie (Jordan). 

Thearem 4.3 provides a wide range of Lie (Jordan) a as with the join 
property. 

An algebra D is nilpo~ent if D is the multiplication 
algebra of D. We define Dlnl = D%W-1. 

Baer’s theorem for rings implies that every nijipotent subideal is contained 
in a niIpotent ideal. This fails for Lie algebras ([13, 15]), but a cfass of aIgebras 
for which it holds is provided by: 

PROPOSITION 4.4. If A, are as in 4.1 d if D is a ~i~potent subideal 

of A @ 23 then D is co~~~~ned ilt a ~~~pot~t ideas. 

Proof. Let I be as in 4.1, so that Ix @R _C D. Since .!I@1 = 0 and B 
is simple we must have Inn = 0, whence I @ B is a nilpotent ideal 3D. 

various general~ations of this are possible: if B is a Lie algebra and A 
is commutative then A @I B is a Lie algebra and every soluble subideal 
is contained in a ~ilpote~t idea1 (so is in fact nilpotent), 
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5. PROPERTIES INHERITED FROM A 

An algebra C is locally nilpotent (locally finite) if every finite subset is 
contained in a nilpotent (finite-dimensional) subalgebra. It is residuazly 
~i~~o~~~ (residually @rite) if it possess a famiiy (NJ of ideals such that 
n NA = 0 and C/N, is nilpotent (finite-dimensional). 

Without difficulty we can prove: 

LEMMA 5.1. Let A be an associative algebra, B a~~~te-d~rn~~~na~ algebra. 
Then A @ 3 inherits the fondling p~op~ties of A: 

(1) Residual nilpotence 

(2) ResidualFiniteness 

(3) Local ni~ot~ce 

(4) Local finiteness 

(5) Nilpotence 

(6) Finiteness of dimension. 

If l3 is infinite~dimensional, (l), (3) and (5) still carry over to A @ B, 
(2) requires residual finiteness of B, (4) local finiteness of 3. 

In [14, 161 we have defined the chain conditions min-si, min- <1’, min- 4, 
max-si, max- qr, max- Q for Lie algebras. The symbols are self-explanatory, 
and we extend their use to arbitrary algebras. 

THEOREM 5.2. If A, B are as in 4.1 and B is jinite-dimensional then the 
following are equivalent: 

(1) A @ 3 satis$es max-si, 
(2) A @ B satis$es max-q2, 
(3) Every ideal of A @ B satisfies max- <I, 
(4) Ev~y ideal of A satis$es max-4, 
(5) A satisjes max-d2, 
(6) A satisfies max-si, 
(7) A satisfies max-4 and if / <3 A, n > 0 then J/J” is jkite- 

dimensional. 

Proof. Clearly (1) + (2) =z- (3) * (4). We show (4), (5), (6), (7) are 
equivalent and that (7) => (1). 

For any associative A (6) S- (5) =, (4). Any nilpotent algebra satisfying 
max-4 is finite-dimensional by the obvious argument, so (4) + (7). To 
show (7) => (6), consider any increasing chain of subideals of A: 

As, c s, c *-’ c As, c *--. 
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By 4.2 there exist ideals I, of A and integers jr such that I+ C S, C I,. . 
Each I$ is an ideal of A, which satisfies max-4. Thus the chain 

stops at Y -= R, say. Then 

sicJ=I,-t*.-+IR 

for any i. Now, 

(4 + ... + JR) h+**.+jR c q + . . . + ‘2 c SR , 

If j =j, + *‘* +j, the factor J/ Ji is finite-dimensional since (7) holds. 
Hence by a dimension argument the chain 

becomes stationary, hence (6) holds. 
It remains to show that (7) =- (1) which follows from an argument similar 

to that given above. Let 

II~Cl’izC --CH,C-- 

be a chain of subideals of A @ B. By 4.1 there exist ideals Ir of A and 
integers rr such that 

As above, we see that 

P@BCHiCJ@B 

for i >, R. J/Ji is finite-dimensional by (7), and 3 is finite-dimensional, 
so J &J B/Jj @ I3 has finite dimension and the chain (Z’&} must become 
stationary. 

Similarly we can prove a “minimum condition” version of 5.2: 

THEOREM 5.3. The properties (l)-(7) of 5.2 are eq~i~~~~~ if max is 
yapped ~~~0~~0~~ by min. 

Remurk. F’or Lie algebras it is known ([14]) that min-si and min-a3 
are equivalent. For characteristic zero min-si and min- <12 are equivalent. 
In fact, the proof in [14] shows that in characteristic 0 if every ideal of a 
Lie algebra satisfies min- CI then the algebra satisfies min-si. The cor- 
responding questions for maximal conditions are open [13, p. 95, Question 81. 
5.2 shows that the algebras A @ B do not settle them in the negative. 
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Another result of this type which we shall find useful is 

THEOREM 5.4. If A, B are as in 4.1 and B is unite-dim~s~ona~ and if 
further every nonzero ideal of A is not nilpotent and is of finite codimension 
in A; then every nonxero subideal of A @ B is of finite codimension. 

Proof. LetO#SsiA@B.Thenlj@B_CSCJ@B.~+Osince 
A has no nilpotent nonzero ideaIs. Then Jj 4 A so is of finite codimension, 
hence 5’ is of finite codimension. Note that the conclusion implies that 
A @ B satisfies max-si; but max-si is strictly weaker since there exist 
infinite-dimensional simple algebras. 

6. SOME ~SOCIATI~ THEORY 

In this section we shall collect some results about associative algebras. 
These are presumably well known, but it is convenient to develop them 
in a form suitable for iater applications. 

The following result should be compared with the well-known theorem 
of Hopkins [3] that for a ring-with-l min- 0 implies max-4. 

PROPOSITION 6.1, For associative algebras (not necessarily having an 
identity) min-si * max-si. 

Proof. Let A be associative with min-si. The radical N of A is nilpotent 
and satisfies min-4, so is unite-dimensional. A/N is a finite direct sum 
of simple algebras so satisfies max-si and min-si. Consequently, A satisfies 
max-si (as in [13, p. 901). 

max-si plus min-si is equivalent to the existence of a composition series. 
We shall prove that the polynomial algebra f[r] satisfies max-si, so that 
max-si does not imply min-<I. We shall show that min- Q plus max-4 
does not imply either mind2 or max- 4s; but first we need a method 
of constructing associative algebras. 

Let X, Y be associative f-algebras, and suppose that X is a Y-bimodule 
(i.e., a left Y-module and a right Y-module such that the actions commute). 
Suppose further that the action is compatible with the algebra structure 
of X in the sense that 

(Y1%)(~2Y2’2) = YlhX2)Y2 

if x1 , x2 E X and y1 , y2 E Y. The Cartesian product X x Y is an associative 
algebra under the multiplication 
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Identifying X with {(x, 0): x E X> and Y with ((0, y): y E Y> X x Y is a split 
extensionofXbyY;i.e.X~XxY,XnY=O,andX+Y=X~Y. 
Further, all split extensions of X by Y arise in this way (cf. the analogous 
case of Lie algebras; [4, p. 171). 

Let f be a field, and S an extension field of infinite degree. Let SV’ denote 
the algebra formed from St by making all products zero. Then si” has a 
natural compatible R-bimodule structure and is irreducible as R-module. 
The split extension si” x fi satisfies max- 4 and min- 4, but its nilradical 
520 is an invite-dimensional zero algebra, so does not satisfy max-u or 
min-<I. Hence R” x R does not satisfy max-si or min-si. 

THEOREM 6.2. The polynomial algebra r[t] in one indeterminate t satis$es 
max-si. Indeed, every ideal is of finite &od~m~ion. 

Proof. Let R = f[t], I 4 R. R is a principal ideal domain so I = (f) 
for f E R. By the division algorithm R/(f) h as d imension equal to the degree 
off, which is finite. 

Polynomial algebras in more than 1 indeterminate do not satisfy max-si. 
The ideal (xy) of f[x, y] contains a strictly increasing chain of ideals 

In = (xy2,..., xy”). 

Another ring of particular interest in applications is the power series 
ring f[[t]]. It is a ~~rn~~ete discrete va~~t~~ ring, so that its only ideals are 
the powers of its unique maximal idea1 (t). Clearly f[[t]]/(t”) is finite- 
dimensional. 

7. EXAMPLES 

If B is a finite-dimensional central simple Lie (Jordan) algebra and 
A = f[t] then since A is commutative A @ B is also Lie (Jordan). By 
5.2 and 6.2 A @ 3 satisfies max-si, and every subideal is of finite codimension. 
By 5.1, A @ 3 is residually finite. 

For a sharper example we replace f[t] by its ideal (t). Then A @B is 
residually nilpotent, infinite-dimensional, but has all subideals of finite 
codimension. This example should be compared with the results of [16, 
p- 329]. 

If we let A = r[[t]] then by 2.2 A @ B has a unique descending chain 
of ideals. By 4.1 every subideal contains a member of this chain. If instead 
we replace f[[t]] by its ideal (t) then A @ B becomes residually nilpotent. 
In the Lie case we have shown that there exists an i~~n~te-dirn~s~onu~ Lie 
algebra L having a unique descending chain of ideals, all of finite &odime~ion, 
and such that every subideal contains a member of the chain. 
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We can use these methods to construct Lie algebras satisfying min-si, 
but by 6.1 these will have a composition series. Lie algebras satisfying min-si 
but without a composition series can be found in [14, 17). The methods 
of [17] provide examples of Jordan algebras satisfying min-si. We can also 
use these methods for min-4 or max-<I. Lie algebras satisfying max-4 
are known (Hartley [2, p. 2691, Moody 18, p. 2261). We have not attempted 
to decide whether or not Moody’s algebras satisfy max-si. 
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