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Introduction 

Ill this paper we make a compretiensive survey of the first-order pro- 
perties o f  abelian groups. The principal method is the investigation of  
saturated abelian groups. As a result of  our determination of  the struc- 
ture o f  saturated groups we are able to give new model-theoretic proofs 
of  the results o f  W, Szmietew [ 12 ] ; moreover we obtain new results on 
the existence o f  saturated models of  complete theories o f  abelian groups; 
and we also generalize our results to modules over Dedekind domains. 

One of  tile principal results of  Szmielew is the determination o f  group- 
theoretic invariants which characterize abelian groups up to elementary 
equivalence (The decidability o f  the theory of  abelian groups follows re- 
latively easily from this result), Now elementarily equivalent saturated 
groups o f  the same cardinality are isomorphic; so our  method is to look 
fi_~r invariants which characterize saturated abelian groups up to isomor- 
phism. We prove that any ~:-saturated group A(tc >_ ~ ) is built up in a 
specified way from the groups ZQ~'), Zp, Z(p n) and ~ and that the 
number o f  copies of  these groups which occur are determined by the 
elementarily definable dimensions dim(p n- ! A[p]  ), dim(p n- l A / o n A  ), 
and dim(p n=l A[p ] /pnA [p] ) and by the exponent  o f  A (for explanations 
o f  the notation and more details, see § l ). These dimensions, which arise 
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naturally in considering the structure of  saturated groups, are, respective- 
ly, the Szmielew invariants p~3 ) [P, n ~ (A), pO~ IP, n I (A), and ,o ~3) lp. n I (,4). 
Thus we are led to ~zmlelew s theorem. In fact, we work with slightly 
different invariants viz. 

D(p ,A)  = lim dim(/,"A lpl ) ,  

which determines the number  o f  copies of  the divisible group Z(p ~ ) in 
a saturated group A; 

Tf (p ;A)  = lim dim(p"A/p"+lA), 

which determines the number  o f  copies o f  the torsion-free group Zz~ in 
A; 

and U(p, n -~- 1 ; A ) = dim(p n~ ! A ipl/pnA lt ' l  ) ,  

the Ulm invariants, wtlich determine tile number of  copies of  ZIp '~ ) in A. 
We begin in section 0 by reviewing tile theory of  v.aturated structures 

and take advantage of  tile opportuni ty  to distinguish carefully between 
two notions of  homogeneity which have sometimes been conlMsed in 
the literature. Section 1 deals with the structure of  ~:-saturated groups: 
in section 2 we prove the criterion tbr elementary e,itfivalence o f  groups 
and tile decidability result and also give a criteriot~ for elementary em- 
bedding of  groups which is implicit in [ i 2]. In section 2 we also prove 
that any group which has the structure described in section 1 is in fact 
K-saturated. Using this we are able, in section 3. to ~ietermine precisely 
the cardinals in which a given complete theory o f  abelian groups has sat- 
urated models. The table in section 3 summarizes this information and ,  
gives a complete analysis of  the categoricity and ~l-s tabi l i ty  o f  complete 
theories of  abelian groups. In section 4 we give a model-theoretic proof  
o f  the existence o f  an elimination of  quantifiers for a conservative ex- 
tension of  the theory of  abelian groups. Finally in section 5 we general- 
ize many of  the preceding results to theories of  modules over Dedekind 
domains. 

We would like to thank S, Feferman iL~r some helpful conversations 
on the subject o f  elimination of  quantifiers. We are also gra~eful to Eli 
Bers for helping to clear up our  confusion about the notion o f  ho~,loge- 

neity. 



§ O, Preliminaries 1 l 7 

§ O. Preliminaries 

In this section we will review some of  the basic lacts about  saturated 

and hot~logeneous-universal models, For even mort: basic model-theoret-  
ic notions such as "'elementary substructure",  " formula" ,  " l - type",  etc., 
we refer the reader to Shoenfield l I 1 ], Bell and Slomson [ 1 ], and Chang 
and Keisler [3] .  All results not otherwise cledited can be found in the 
papers o f  Morley and Vaught [91 and Vaught [ ! 31. 

We will use latin capitals A, B, C, .... to denote sets and German capi- 
t~tls, ~[, ~ ,  ff .... .  to denote structures on these respective sets. A struc- 
ture 9[ is ,,;aid to be for  a language L or to be an L-structure if ~{ has an 
interpretation for each non-logical constant of  L (and no other  relations, 
functions, and individualsJ, In later sections, when we deal with abelial~ 
groups we will follow custom and use latin capitals for both sets and 
structures. We think of  a language as the set o f  (first-order) formulas in 
its vocabulary: thus, a language always has infinite cardinality, x and 
will be used exclusively to denote cardinals, and Card(A) will denote  the 
cardinality o f A .  9~(A) stands for {S c A ICard(S) < x}. 

Given a structure ~I we say that 91 is elementarily x-universal or (since 
no confusion can arise for our purposes) just x-universal if every struc- 
ture ~ which is elementarily equivalent to Pl. and of  cardinality less than 
~: can be elementarily embedded in ~{, Pl is said to be (elementarily) 1c- 

homogeneous  if every isomorphism between elementary substructures 
o f  91 o f  cardinality less than ~: can be extended to an automorphism of  

Given subsets S and T of  str,~ctures Pl and ~ respectively for a com- 
mon language k we say that a function f :  S -~ T is a local e lementary  

isomorphism if for every formula ¢(v~ .. . . .  v n ) of  the language L and 

every s I . . . . .  s,) ~ S. 

Pi ~ ¢ l s  t . . . . .  .%1 iff ~ 3 ~ ¢ [ f ( s  l )  . . . . .  f ( s  n)] . 

Clearly such a local elementary isomorphism admits a unique extension 
to a local elementary isomorphism between the substructures generated 
by S and 7 i.e., the c losu~s  of  S and T under the fup~tions (if any) 
named i0 L~ 

A structure Pl is said to be poit l twise g-homogeneous if for every pair 
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S, T ~  9~(A),  element a ~ A, and local elementary i~xmlorphism f :S  ~ T, 
there exist a' ~ A and a local elementary isomorphism g :S u {a} -~- 
T o {a'} which ex tends l :  

A ~-expansion of  a language L is a language which is obtained from L 
by the addition o f  < ~: new individual constants, A ~:-expansion o f  an L- 
structure is defined analogously. We .~ly that a structure ~t is ~.saturated 
if for every ~-expansion 91~' of  9!, .q[' reMizes ever'2,' type o f  Th(Pl' ~. An 
elementary theory T is said to be ~c-stable if for every ~:-expansion ~)I' o f  
a model  ~if o f  T there are < ~: l - types in Th(?['). 

A structure ~[ is said to be universal if it is Card(A )*-oniversal, homo- 
getwous if it is Card(A )-homogeneous, pohttwise homogeneous if it is 
pointwise Card(A )-homogeneous, and saturated if it is Card(A )-saturated. 

These notions are related through the following well-known theorems. 
We assume throughout  that ~!~. '~, and ~ are L-structures and that 
~: >_ ~ = Card(L) <- Card(A ). 

O. 1. Theorem. ?f is r~-saturatcd i f f  ?1 's po#ttwise ~-homogeneous and 
~ *-universal. 

0.2. Theorem. ?If is saturated i t f  ~.~[ is pohttwise homogeneous and uni- 
versal. 

0.3. Corollary. A n y  two el~ ,nentarily equivalent saturated structures o f  
the same cardinaliO' are isomoq~hic 

0.,1. Theorem. I f  ?[ is po#ltwise ~-hom~eeneous attd a E A. then eveo" 
local elementary isomorphism between subsets S and T o f  A s,tch that 
Card(S) = Card(T) < ~ cJn be ex tended to an isomorphis:n beiween ei~ ~ 
mentary substrttctures '~ and ~ o f  ?If such tha~ a E B. 

0.5. Theorem. lfC,~rd(A ) > ~, then ?[ is saturated ( f f  ~,l i,~" hom~eeneous 
and universal. 

It should be clear that every structure ?l tbr a countable language 
such that Card(A ) = t-~ 0 is homogeneous, but l~ot every .~ach structure 
is pointwise t~omogeneous. We now give a counter-example, due tO 
Morley, to the possibility that these two notions coincide !br um-ount- 
able structures in countable languages. 
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Let A = [0, I ] u { -  1}. For each positive intege~ n, let U n be the sub- 
set o f  A consisting o f  those real numbers in [0, I ] which have a 1 in the 
n-th place under some,binary expansion (the binary rationals ¢- 0 have 
two binary expansions), Let ~ be an equivalence relation on A such that 

0 ~ - I a n d f o r a l l a E A , a ~ 0 o r a ~ . - l , a n d { a l a - 0 }  a n d { a l a - - l }  
are both  dense in 10, I ], We claim that 91Z = (A, - ,  U l , U z . . . .  ) is homo- 
geneous, but  not pointwise 2-homogeneous. 

Indeed, let f :  ,~1 ~ ~ be an isomorphism between elementary sub- 
structures o f  PI. Then f must clearly ieave every element of  B n (0, 1 ] 
fixed. Also, if 0 E B, then there exists a ~ B n (0, 1 ] such that 0 -= a .  

Then .f(O) -= f~a) = a, and f{O) = O. Similarly if --- 1 ~ B, then f ( -  1 ) = - 1. 
In any case, '8 = ~ and f is the restriction of  the identity automorphism 
of  ~1, On the other  hand, 0 and - 1 satisfy the same l-type. This is per- 
haps best seen by taking a saturated elementary extm:~ion ,~t* of  ~i and 
constructing an automorphism of  *)I* which takes 0 to - I .  

0.6. Theorem, Let Pi be ~'-tmiversaL and h't do be a set o f  fbrmulas  such 
that .fi~r all ¢ E do the ,l?ee rariabh,s o f  so art, in {v~ I~ < ~.}. Then i f  do is 

consistent with Th(PD, do is realized by a ~¢-sequence in 9[. 

Proof. Let Z be the result o f  replacing the free variables in ~ by  new in- 
dividual constants {ct : ~ < ~¢}. Then Th(PD u Z has a model o f  cardina- 
iity I¢. By ~¢*-universality, this model can be elementarily embedded in 
Pl, and the theorem is proved. 

The previous theorem is particularly useful in conjun, tion with the 
next one. 

0.7. Theorem. t f  91 is ~-saturated. then erery ~-expansion o f  ~ is ~-sat- 
uratcd. 

0.8 Theorem. I f  P[ is ~¢-saturatcd. then ere,3' re&wt  o f  ?~ is ~-saturated, 

0.9, Theorem. t f  9[ is ~¢-saturated ar, d ~ is" a substructure o f  PI such that 
B = {a ~ ,4 1 ~t 1= ~ola]} f o r some , fo rnmla  ~, then 2~ is to-saturated. 

0. I 0. Theorem, Erery structure has a tc-sagurated elementary extension. 
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Corollary 0.3 above shows that  if there exists a ~ tu r a t ed  model o f  a 
complete theory T with cardinality ~: ~ Card(T), then it is unique up to 
isomorphism, Existence is provided by the following theorem, 

Let x~ = E~ < ~ ~:~, and call a cardinal K a saturation cardinal if ~ = ~. 

0.11. Theorem. Every theoo, T having hafinite models has a saturated 
model in every saturation cardinal ~ > Card(T). 

Every strongly inaccessible cardinal and every cardinal such that 
= ~* = 2 x is a saturation cardinal; moreover, it is consistent to assume 

that 2 ¢0, for example, is very large and yet  is a ~ tu ra t ion  cardinal. 
The reader who needs a justification for an appeal to the existence of  

arbitrarily large saturated models lbr a theory T can follow one of  four 
routes. First, he can assume that there are arbitrarily ~arge inaccessibles. 
Seco~ldlyo he can assume something like the generalized cont inuum hy- 
pothesis, Thirdly, he can assume no more thaq the usual axioms fi~r set 
theo:.7 and employ an argument involving the construct ible universe. 
For example, suppose that '?l c ~ ,  and that one can show that Pt -< '/3 if 
a saturated elementary extension of  ~ exists in some cardinal ~: > Card(Bj. 
Let T' be Th(2~') where ~.~' is an expansion of  ~ in which every element 
of  B has a name. Let S be the ~ransitive closure of  {'~l', T'} and let L(S) 
be the G6del universe obtained by constructing sets in the usual way but 
starting with S instead o f  the ~:~pty set. in L(S) it is true that 

Vt~fK >- Card(S) -~ 2 ~ = t~*), 

Reasoning in L(S) we conclude painlessly that 9~ -< ~ holds in L(S) and 
therefore absolutely, i,e., in V. A last approach which tile reader can at- 
tempt to follow is to modify the original proof  and use ~-saturated 
structures which are not saturated: in other  words, a rich supply of  local 
elementary automorphisms must replace the automorphism in the origi- 
nal argument.  

0.12. Theorem. Let ~,[ and ~ be L-structures, amt let ~ be a saturation 
cardinal >- Card(A ) + C~lrd(B) + Card(L)'. Then the~ tura ted  elementary 
extensions ?[' o f  ~l a~ld '~' o f  '~ o f  cardinality ~: are such that ~[' ~ ~ '  
is a saturated elementary extension o f  ~ X '~. 
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Proof. We may assume that A,  11, and A x B are pairwise disjoint. Let 

t5 --" (A X B ~3 A u B, VA× R, V A , \"B" rq , rr2, , , . ) ,  

where VA×/~, V A , and V/~ are unary relations holding for the mem:~ers 
o f A  × B, ,4 and B respectively, rr l and rr 2 are the projections ,'q : ,t × B-* 
,4, rr 2 : A × B ~ B, and the remaining relations are those o f  9[ x '~5, 91, 
and ~.  Now a saturated elementary exte~sion if' o f  ~ exists haw~g 
cardinality ~: and the obvious relaIivized reducts are readily seen to be 
elementary extensions of  91 X ~,~, Of, and ~ which are saturated by 
Theorems 0.8 and 0.9 above. 

O, 13. Corollary l Feferman-Vaught [41 ). Giren L-str;wtures ~,~1, PI 2, ~1 a.,td 

k~ 2, (t'91 ! =- ?[~ and ~1 ~- '~2 thcn Ptl X \~1 ~ Pt2 X ~2 .  and i f  

The method used in the proof  of  Theorem 0.12 can be employed to 
show that the theory of  the limit of  any finite diagram (in the category- 
theoretic sense) is determined by the theories of  the structures in the 
diagram. 

Our last application will be needed in a later section. 

0.14. Theorem (Macintyre [ 7] ). I f  ~ and ~ are L-structures such that 

Th(?l) and Th(' .~)are r,-stabtefor K > Card(L)~, then Th(9I X kB )is  ~:- 
stabh,. 

Proof. We may assunlc that Card(A ) = Card(B) = a saturatien cardinal 
t¢ and float 9[ and '~ are saturated. Since 9[ × ~ is saturated (by 0.1 2) 

it suffices to show that, for every subset S o f A  × B with Card(S) < to, 
there are fewer than n¢ 1-types realized in the ~¢-expansion o f  9[ × s~ in 
which the members o f  S have names. We may assume that S is o f  the 
form S t X S 2 with S~ c A and S 2 c B. Define (a, b) ~ (a', b ' )  i ra  satis- 
fies the same type as a' in the S l -expansion o f  ,~t and b sati.~fies the same 
type as b' in the S2-expansion o f  ~ .  The number  o f  equivalence classes 
is clearly le~ than I¢, while on the other  hand, given (a, b).~ (a', b'), 
there exist au tomorph i smsf  ! and f2 o f  ,~1~ and ',B which fix the members 
o r S  1 and S 2 and move a to a' and b to b', respectively. 3"1 × f2 thus fixes 
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the members o f S  = S l X S 2 and moves (a, b) to (a', b'), showing that 
(a, b) and (a', b') realize the same type in the S-expansion of  91 x ~ .  and 
completing the proof. 

The following two results will be useful m a later section. 

0.15. Theorem (Vaught [ ! 31 ), An co I -stable theory in a countable lan- 
guage has a countable saturated model, 

I f f l  " ~[1 ~" ~1 and f2 : 9,l, ~ ~_~ are elementary monomorphisms,  
we say t h a t f  l is equivalent t o f  2 if there exist isomorphismsg: ,~lt 
~2 and h: ~ l  ~ ¢~-~ such that 

.6 
~I l . . . .  > '.8) 

i i .  g h 

J "2 

commutes. 

0.16. Theorem. Let T be a theoo'  in a countable language. Suppose that 
there exists a countable set S o f  triph, s (P[, f .  '~ ) such that every elemen- 
tary monomorphism g: ?l' -" ~ '  between countable models o f  T is eqtd- 
valent to some f :  ~,~ -~ '~ wit;: (~A,]', ~ ) E S. Then T is O~l-Stable. 

Proof. If T were not co I -stable there ~ould  exist a countable model Pi o f  
T with an co I -expansion ~ '  such that uncountably many I-types m'e in 
Th(,~I'). Putting together the facts that (i) every 1-type can be real;zed 
in some countable elementary extension o f  '~[, (ii) only countably many 
types can be realized in a given countable elementary extension, and 
(iii) equivalent elementary extensions realize the same types, we get the 

desired contradiction. 
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§ 1. The structure of saturated abelian groups 

Our goal is to characterize all the co~hplete theories of  abelian groups. 
This problem is equivalent (giver the existence of  saturated models of  

every complete theory)  to characterizing the isomorphisna classes of  sat- 
urated groups (of  ~ fixed cardinalityL In order to solve this problem, 
we proceed, through a series of  ~emmas, to give a complete structure 
theory, aml to isolate a complete set o f  elementarily definable invariants, 
for saturated abelian groups. 

Most of  the algebraic tools we need can be found in the very readable 
book by Kaplansky 16]. We will review many of  the alg~ braic definitions 
and theorems we use, but we refer the reader to [6 ~ for ,urther details. 
~Rel\'renccs in parentheses are to [6] unless otherwise specified). We be- 
gin by recalling some fund:mlental definitions. First. "group"  will always 
mean abclian group, i f  A is a group and n ~- Z, nA = {na:a ~ A}. I f p  is 

a prime, A Ipl = {a ~. A :pa = 0}. (We will write nA [p] instead o f  (nA)[p]) .  
l f a  E A, u ~ Z, we ~ y  n divMcsa (we write nta) if there exists b E A 
(not neces.,~rily unique) such that ~tb = a. A is called di~,isible if for every 
a E  A and every n ~: 0, n divides a (§5) .  A subgroup B of  A is called a 
divisible subgroup o fA  i fB  is a divisible group in its own right. I f B  is a 
divisible s u b ~ o u p  of  A, B is a direct summand of  A (Theorem 2). A is 
called reduced if A has no non-zero divisible subgroups. 

Tluxmghout this section we wilt be working towards the goal o f  deter- 
mining the structure of  a ~-saturated group S, where t¢ is an uncountable  
cardinal, However, some of  the results along the way will be true under 

weaker hypotheses,  which we will point out  for the purposes o f  later 
sections, In fact our first structural results use only the fact that S is to l- 
equationally compact  i.e, any cotmtable system of  equations (in any 

number of  unknowns)  with constants from S which is finitely solvable 
m S is solvable in S, tt is known that a group is co ! -equationally compact  
if and only if it is a direct summand of  every group in which it is con- 
tained as a pure subgroup ([ 5 ], Theorem 38.1 and Exercise 5, p. 162). 
Such groups are called pure-injective (or algebraically compact) and their 
structure is known ([51,  Prop, 40,1). However in order to keep our  dis- 
cussion as sell-contained as possible we will give a simple direct analysis 
o f  the structure o f  an w l-equationally compact  group S. 
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Let S a be the maximal divisible subgroup o f  S i.e. the union o f  all tile 

divisible subgroups o f  S. We may write S = R @ S a where R is reduced 
(Theorem 3). S a is uniquely determined; R is not uniquely deter:nined 
in general but  it is unique up to isomorpifism because it is isomorphic to 

S/Sa. 

Let S r = S/Sa:  we will frequently.witl~out further ten, ark ide~til:y S r 

with a (not uniquely determined) subgrt~up of  S so that $ = 3; ~ S d. On 

occasion it will be neces~wy to identify 5" r with a more cxplici~!y defined 
subgroup of  S. 

Let D = the set o f  all elements o r S  ~hich are divisibk by every inte- 
ger 4: 0. Clearly S a ~ D. but  the opposite  inclusion is false in general. 
However it is true in an w I -equationally compact  group: 

1.1. Lemma. Let  S b e a n  co I -equationally compact  gro~q~, Then S d. the 
maximal divisible subgrotq~ o f  S, equals D. the set o f  all ele,~,nts o r S  
divisible by every htteger 4: O. 

Proof. D is clearly a subgroup o f  S. To prov,  D g2 S,t it suffices to prove 
D is a divisible subgroup o r s  Given a ~ D, n ~ Z ~ {0}, consider the 
set o f  equations 6 = {tn v m = x :m ~ Z - (0}} u {nx = a}. C is finitely 
solvable in S; indeed, it suffices to prove that ibr any m ~ Z -- {0}, 
m y  m = x and nx = a are simultaneously solv-'.b~e in S, which is clear since 
mn divides a ~ D. Therefore C is solvable in S i.e. there exists b ~ S 
such that b E D and n b =  a. This completes the proof  of  Lemma 1.1. 

Consider tile reduced group S, = S/Sd (which we identify with a sub- 

,re'cup of  S). For each prime p, define a "semi-norm'" I I t, on S, by: 
lalp = 0 i f p  n divides a tbr every n > 0; otherwise, lalp = p -n  if  n is the 

largest integer >_ 0 such that pn divides a. Define, for every a ~ S r, 

lal = l~p lalp 2 -p" this defines a norm oil S r, i.e., 

( i )  lal = 0 , = ~  a = 0 ,  

(i i)  l a + b l ~  l a l + l b l ,  

(iii) lal = I - a l :  
(i) follows from Lemma 1.1 because i f a  ~ S r and lat = 0 then p"  divides 
a for every prime p and every n 2 0; hence a ~ S r n S a = {0}, 

It is easy to see that a sequence (an )n<,~ it~ S r is Cauchy with respect 
to 1 I if and only if it is Cauchy with respect to every semi-norm i 1o: and 
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a is the limit o f  (a,, ~,~<,o iff it is the limit ~ i th  respect  ~'o every IIp. In the 

lk~ltowing temma, we are assuming S is co I -equat ional ly c ompa c t  and S r 
is def ined as above:  

1.2. Lemma.  S r i.¢ COml~lctc it~ the topoh~gv induced  by I t. 

Proof.  Let (a,),~<,o be a Cauchy  sequence  in S r. Then for each p and 

each r > 0 there exists Nt,, ~ such that t~, m ~ Ap, r implies la~z --am Ip < p-~ 
It suffices to show that there is an x in S such that  for each p and r, 
i . v_aNprlp  < p--r: if this is the  case, then for any n >- Np, r, Ix --a n Ip <- 
max(lx'/_a~vprlp, laA~r_a ,  ' iv ~ < p - r  i.e. x is a limit o f  (a,~),z<~ with 
respect  to I It," Thus  wc consider  the set o f  equat ions  6 = {t'".Vp. r = 
,x" -a~,, t~r}p.r" 6 is finitely solvable in S: indeed, ~iven primes p~,  ..., p,~ 
hnd integers r t . . . . .  r,~ > 0, let m = max{Npi .r i : i  = 1 . . . . .  n}; then a m sa- 
tisfies t~ ri b i = a, ,  .... a¥l,i.ri {i = 1 . . . . .  tt) for s o m e  b i E S. Therefore  since S 
is w t -equat ional ly compac t  6 is solvable ia S and S r is comple te .  Thi:~ 
comple tes  the p roo f  o f  Lemma 1.2. 

Now consider  the subset  S~ o f  at! e lements  o f  S r divisible by  every 
integer relatively prime t3 l.~ i.e. 5~ = {a ~ R "lalq = 0 for every pr ime 
q ~ p}. (The reason for the nota t ion  3rp will b e c o m e  clear later.)  

By an argume~,.t like that  in Lemma 1. ! we can prove that ,  since S is 

w I -equat ional ly  compac t ,  i f a  ~ Sj, and i f q  4: p,  there exists b ~ S-p 
- -  r /  

such that qb = a i.e. Sp can be regarded as a nzodule over Z r = { ~  : (re,p):  
1} ( the valuat ion ring ol the p-adic valuat ion on Q). The t o p o l o g y  in- 
duced  on ~S~i~ by IIp is czdled the p-adic topo log)  on ~p; the submodu le s  

P"Se  form a fundamenta l  sys tem o f  ne ighborhoods  o f  0; lip is a norm 

on S D i.e. for  any a ~ S),, lalt, = 0 ~ a = 0. Since S'-p is closed in S r, Sp 
is comple te  in the ,~-adic topology .  

1.3. Lemma. Let S be co t -equationall)' compact. For any p and any 
a E S r, there is a tt~liqlte ap ~ Sp such that l a -ap  lp = O. 

Proof. Uniqueness is easy since i fap,  bp ~ Sp such that l a -ap  Ip = 0 = 
t a - b p  lp, ther, tap_--bp [p = 0;  therefore .since lap - b p  I q = 0 for p 4: q 
(by definition o f  So) ,  we have ap = bp by (i). To prove existence it suf- 
fices to prove {pn), n = a - x  :n < ~o~ u {mz m = x "(m, p)  = 1} is finitel~ 
solvable in S. But for any n < ~ and any m relatively prime to p, there 
exist s, t such that sm + tp n = 1. Taking x = m~a we eee that m divides 
x and a - x  =pn(ta) ,  
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1.4. Lemr:m. l f  S is co l-equationa~ly compact, S r is ~omorphic to the 
direct product Hp Sp. 

Proof. Define f :  S r ~ l lp~,  by : f (a)  = (% ~, where ap is the unique ele- 
ment of/ffp such that l a -  at, Ip = O, Clearly .1" is a homomorphism. . f  is 
one-one since if (ap) = f(a)  = f(b~ lhen for each p, 0 ~ la-~ hip ~ la~.~aplp + 
lap - blp = O, i.e. la-~ bl = 0 or a = b. To prove f is onto.  consider an e!e- 

• - '~ apt  where Pt ..... P.  are the ment (ap) ~ l l ~ p .  For any n let s,, - ~ i =  i 

first n primes. The sequence (s,~).<~ is Cauchy because tbr any p, i fn .  
m are such that Pn, Pm >- P" then Is n - sm lp = O. Let a be the limit o f  
(s.)n<~o • Then f (a)  = (a~). because for any r > 0 there is n r such that 
Pnr > P and la -  snr lp < l/r; hence l a - a .  lp = Ja- st~r ll: < l /r for every r. 
This completes the proof  o f  Lemma 1.4. 

To sum up: we have proved that i fS  is co I -equationally compacL then 
S is isomorphic to the direct sum of  a divisible group and a direct prod- 
uct, over the primes p, o f  modules complete over Zp :S = llpSp ~ S a. It 
may be proved that. conversely, any group with this structure is ~o i - 
equationally compact i.e. pure-injective (I51, Theorem 38.1). We will 
not use this result, but we will use the term pure-injective to designate 
a group with the structure described above. 

Now we turn our  at tent ion to Sp, for a fixed prime p. As we have ob- 
served, Sp has !1o elements o~" infinite height, and it is complete in its 
p-adic topology. There is a co~.~plete structure theory lk3rsuch modules: 
Sp is the ,:ompletion o f  a direct sum of  cyclic Zp-modules 
@n Z(p")':'n~ ~ Zp~a) (where Z(/~ n) is the cyclic group o f  order p") and the 
cardinal numbers a , ,  13 are uniquely determined by Sp and form a com- 
plete set o f  invar|ants for $p (Theorem 22). Since we will have to analyze 
this structure in more detail, we will sketch briefly the basic ideas which 
are involved in this structure theory. (The structure theory may be de- 
veloped for complete modules over any discrete valuation ring A. For 
our purpose we may take A = Zp for a fixed prime p). 

We begin with the notion of  a pure submodule ( § ) .  A submodule B 
o f a  Zp-module A ispure inA if for any n, B n pnA =pnB.  It may be 
proved that any Zp-module which is not divisible contains a non-zero 
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pure cyclic submodule (kemma 205. A subset {Xi}i~ t t)f elements of  A 
is a pure independent subset if it is independent ( i . e  ~ i H i x i  = 0 implies 
nix~ = 0 for all i) and the submodule generated by {xi~ i is pure in A. 

A st:bn:odule B o f  a Zp-module A is called basic" if t 1 ) B is a direct 
sum el" cyclic Zr-modules;  ~25 B is pure in A : a n d  (35 .,t/B is divisible 
(§ 16), Any Zp-module contains a basic subnlodule: in t~ct any maximal 
pure independent subset of  A gcnerat¢,s a basic submodule (Lemma 21 (a)). 

Now i f A / B  is divisible, then B is dense in A (because for a n y a  ~ A 
and any n, there exists b ~ B and x ~ A such that a - p n x  = b i.e. pn di- 
vides a - b ) .  Hence i r a  is a complete Zv-module without elements of  
infinite height, ,4 is the completion of  any basic submodule of  A, More- 
over it can be proved that if A is the c3mpletion o f  a direct sum of  cy- 
clic modules B, then B is a basic submodule of  A (proof of  Theorem 22). 

To see that any two basic submodules are isomorphic, ;t suffices to 
show that the % "s and fl are invariants of  A. We do this by expressing 
these cardinals in terms o f  d mensions  of  certain vector spaces (over the 
field Z/pZ) associated with A. 

One can readily check that %) = d i m ( p "  l BIp] /p"B[p]  ) = 
dim(P"- IA IP]/P" A [pl ) = the n -  1-st Ulm invariant c f  A = f (p ,  n -  1 ;A ) 
(proof  o f  Lemma 21 (b)). 

Let T=  the torsion submodule o f A .  Fo see that B is uniquely deter- 
mined by A, one observes that/3 = dim(B/(T n B) + pB) = 
dim(Zp (o)/pZp(a)) and one proves that B/(T n B) + pB is isomorphic to 
A/T+ pA (proof  of  Lemma 21 (bS), Thus/3 --: dim(A/T+ pA). 

We now return to our consideration of  the pure-injective group 
S = HpSI, @ S d. Let 

Sp =®.  Z(p n )("P'") ~ Zp (#P) 

be a basic subnlodule of  ~ , , s o  that ~p is the completion of  Sp. Sp is 
not uniquely determined but we have just seen that the cardinals av,,l" 
t3p are completely determined by ~ , .  In the case that S is ~-saturated we 
are going to derive additional information about the structure o f  S, We 
maintain the above ~,,otation throughout  the rest of  this section. As far 
as the cardinals ~p,, are concerned we have the following lemma: 
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1.5. l.emma. Let S'= fft,Sp • S d be a pure-in/ecth,e group, and let %.n 
be defined as above. 

(a) ~p,n = dim (pn-  l St  , [p ] / p n  St , [p ] } = d i m (pn~ l St, [p ]/pn ~'p i P ] ) = 
dim(pn.- l S[p I ]PnS[P t ), 

(b) l f  S is ~-satumted attd ap, n is infinitt, then at," ~ ~, 

(a) The first two equalities were already observed above. As for the third 
equality, we ltave to prove that f (p ,  n: S) -- !QT, n: Sp ) for every n < w. 
First observe that i f S  = S r • S a where S r is reduced and S a divisible, 

then f (p ,  n; S) = f (p ,  n; St)  because pk S a = S a for all k. Now Sr = tie s,t 
and f (p ,  n; S r) = f (p ,  n: l laS  q } = ~ q f ( p ,  n; So ) = f t l , ,  n: ,~p ) because 
pX~q = ~q for all q :/: p and all k. 

(b) Let {x~: ~,< K} be a set o f ~  free variabtes awd let 7 be the set o f  all 
formulas 

3Y (P" - ly  = x,, ) ^ px r = 0 

for each v < ~ plus all formulas of  tile lbrm 
k 

¥ y  [p"y 4: ~ mix,~] 
i= 1 

where k ->- !, ~'l < v_~ < ... < v x ::nd {tn 1 . . . . .  m k ) E { 0 ,  1 . . . . .  p _  i }k  _ 

1(o,o . . . .  , 0 ) } .  

9 r is clearly finitely satisfiable ;,:ecause dirnq~" l S l p ] / p ' T S l P l  } is in- 
finite. Therefore since S is ~saturated, 5 r is satisfiable in 5;, which means 
dim(pn-t S[p l /p"S[p]  >- K. 

We now turn our attention to ~p = tile number o f  copies o1" Zp in the 
direct decomposition of  Sp. '~e have observed above that ~l, = 

dim(S~,/(T n Sp ) + pS  v )= dim(~,/( r n S-p) + l,Sp ) where T=  tile torsion 

subgroup of  S The canonical proiection ~r "S " II S -.- ,g_ i~lduces an . . . . .  - ' ~  p_" r q q r _~ 
isomorphism: Sr/(T .q S r) + p S  r -~ Sp/(T n Sp ) + pSp, since pSq = Sq for 
all q ¢ p. Furthermore the projection rr r :S  ~ S r induces an isomorphism: 
S/T+ p S  -~ Sr/(T n 5 r) + p S  r, because p S  d = S~I. Therefore/3p = 
dim( S/T~ pS). 

For any k >- 1, maltiplication by p defines an isomorphism: 
p k - I  S/pk-1 T + p k  S "* pk S/pk T + p~,'÷l S, so that/3p = dimq~ ~," Sip k T + 
pk+l S). In general we would not expect  this dimension to be elementarily 
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definable, but  i f p  t¢ T=  pk+l T for some k, then dim(pkS/p k T + pk+lS) = 
dimq~kS/p x'+l S); and there is a first-order sentence (or set o f  sentences) 
which expre~'~es the fact that this dimension is a given finite cardinal (or 
is infinite). We will prove that in the opposi te  case ~.o~ i.e. if for all k, 
pk T ~ pk÷l T ~-~ i f  S is ~:-saturated then ~3p ~ ~. First we investigate what  
it means to have pk T = p~.+! 7" (Note that  i fp  k T = pk+l T then p" T = 
pk T for all n >- k). 

1.6. Lemma.  Let A be a group and let T = tile torsion subgroup o f  A. 
For ato' integer k ~ 0: 

(i) pk T = p~-+l T i f  and only i f  for every n ~ k, 
dim(p" T[pl ~phil TIp] ) = O. 

(ii) dim(pkA/p~+t A ) = dimq.~ k÷l A/pk+2A ) + dim(pkA [p]/pk+l A [p ] ). 
(iii) l f  p k T = pk÷l T. then dim(pkA/pX-+l A ) = d i m ( p ' A / p  n+l A ) .for all 

n>_ I,'~ 
(i~) l f for a!t integers k ~ O, pk T 4: pk q T, t li e n d i m (p" A /p" + l A ) is in- 

finite for all integers n 2 0 .  

Proof. (i) The implication from left to right is obvio~as. To prove the 
converse, first write T =¢~q Tq where T o is the q-primary part of  T 
(Theorem i ). If pk T 4~ pk +! T. then also pk Tp 4: pk q Tp (because p Tq = 
Tq for q ~ p ). Choose x ~ pk Tp - p t  +l Tp such that  the order o f x  is 
minimal, say pn. We assert pn- I x ~ pk+n-1T[p] - pk+n Tip] ; if not,  
then p n - i x  = pk÷nO for some a ~ T and pn-- I ( x _ p k + l a )  = 0 ,  a contradic- 
t ion of  the choice of  x. 

(ii) (of. [ 121, Theorem 1.7) The following sequence is exact: 
0 ~ pk A[p  ]/pk~1.4 lp ] -~ pkA/ t  "k +1A L pk+l A/pk +2 A ~ 0 where f is 
mult iplication by p. The results (ii) follows immediately.  

(iii) follows from (ii) and the fact that  p ' A  [pl/p"+lA [p] is isomorphic  
to p ,  T[p]/pn+! Tip] for all n. 

(iv) We can prove by induct ion,  usiqg OiL that 

dim(l'n A/p  "+l A ) >- ~ d im(p /T ip  ]/p/+l T[p l ) 
/=n 

for any integer m >- n. Then (iv) follows immediately from (i). This com- 
pleles the p roof  o f  Lemma 1.6. 
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For any group A, since dimq~kA/pk+l A ) is a monol ~nically decrea~ 
ing function o f  k. w e  can  define 

(eventual value o f  dim(p~'A/p t¢+~ A ) if that value is 
=¢t finite 

Y f ( p : A )  [~ otherwise 

1.7. Lemma. Let  S be a pure-in]ective group and let T be the torsion sub- 
group orS.  Let  {3p be deyhted as #t the remarks preceding Lemma !.5. 

(a) For any integer k >- O, ~p = dim(p~S/p x ]" + pk+l S). 

(b) I f  p k T = pk+l TJbr  some k >- O, then t3t, = the eventual value o f  
dim(p" S/p n+l S). 

(c) l f T f ( p ;  S) isf inite,  then ~,~ = Tf(p,  S).  
(d) l f  S is K-saturated (~ ~ 60) and Tt'(/); S) = ~, theft ~3p ~ K. 

Proof. (a) was proved in tile remarks preceding Lemnla I.(~ 
(b) I f p  k T = p  k+! T, then by (a), ~,  = dim(le'S/p'~÷lS) for any n _.> k. 
(c) If Tf (p ;S)  is finite then because of  Lemma 1.6(iv) there is a k 

such that pk T = pk+l T, the result follows from lb). 

(d) Let {x,,: v <  K} be a set o f  K free variables and let 7 be tile set of  
all formulas of  tile form 

t 

v.v [n(( ~ mix,, i) -- l, v) ~ 01 
i=1 

w h e r e n > 0 ,  t > 0 ,  v I < . , . < v  t , ( m  I . . . . .  m~)~  {3, 1 . . . . .  p - l } t - { ( O  ..... Ot} 
We prove that 5 r is finitely satisfiable in S: to prove this it suffices to 
prove that for a fixe,] n and t the set o f  formu!as 

t 

V y [ n (  ~ m i x  i - py~ ~ Ol 
i = t  

is satisfiable in S (where (mt . . . . .  m t) ranges over all non-trivial t-tuples. 
as above). Suppose n = p~d, where (d. p)  = 1" caoo .e  "~ ~ a ! . .... a t ~ S such 
that pka I . . . .  , p ka ,  represent independent elements o f  pkS/pk÷l S (this 
is possible by hypothesis). Because 

t 

pk+l ~ ~ tt mia i, 
i=t 
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we can conclude that  O r is finitely satisfiable in S. Therefore since S is 
~-saturate4 9" is satisfiable in S which means that/3p = dim(S/T+pS)> K 

Remark. Note that  (d) is false wi thout  the assumption that S is ~-satu- 
rated. In fact if S is the complet ion o f ® ,  Z(p" ) in the p-adic topology,  
then S is pure-injective, and Tf(p:  s) = oo (by Lemma 1.6 (iv)) but/3p = 0. 

Next we look at S d, the maximal divisible subgroup ofS.  S d is iso- 
morphic  to a direct sum o f  copies o f  the rational numbers  Q and of  
Z(/f* ) for various primes p:  

where Z(p ~" ) = the group of  all pn . th  roots of  unity,  n = 0, !, 2 . . . .  
(Theorem 4). We consider first the number  o f  copies, 7p, of  Z(p * ) in 
the direct decomposi t ion of  S a, Clearly ~t, = d imSa [P]" (Recall that  
"d im"  means dimension over Z/pZ.)  Let T = the torsion subgroup of  S 
and ~f i te  T=~q Tq, where Tq = the q-primary part o f  T (Theorem 1). 
Hence for any k >- O, pk T = pk+! T ¢=* pk Tp = p::+! Tp ¢=~ pk Tp is divi- 
sible. Thus  i f p  k T = pk+l T, then "?p = dim(p k Tip] ) = dim(pkS[p] ). If  
for all k >- 0, pk T ~ p~-+l T and if S is ~-saturated, we will prove that  
~,p ~ ~:. First we prove a preliminary lemma about  the meaning of  
pk  T = pk+! 7". 

1.8. Lemma. Let A be a group and T the torsion s.:~bgrolm o f  A. For any 
#~teger k > 0: 

(i) l f  pk T = pk÷l T, t/ten dim(pk A IPl ) = d im(p"A [p] ) f o r  all n >- k. 
(ii) d im(p tA [p ] ) = dim(p ~'+l A [p l ) + dim(pkA [p I/p.~-+l A [p ] ). 
(iii) lf.f[~r all integers k ~ O, pk T ~ pk+l T, then dim(pnA [p] ) is infi- 

nite for all integers n >- O. 

Proof. (i) is easv~ because pnA lPl  = pn Tip] for all n >_ 0, and if 
I ~ T = p~-+l 7". t.~ea pn T = pt¢ T for all n ~ k. (ii) (cf. [ 12 ], Theorem ! .7) 
lbtlows immediately from : o exactness o f  the sequence 

0 -~ pk+lA [p] --, p k 4  IP] ~ PkA [P]/Pk+IA [P] "" 0 

(iii) By induct ion,  using OiL we prove 
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m 

dim(pnA [p] ) >- ~ dim(p/A [pl/pi÷~A [Pl ) 
/--n 

for any m >- n. Then the result follows easily from Lemma !.6 (i). This 
completes the proof of Lemma 1.8. 

Since dim(//:A [p] ) is a monotonically decreasing function of k it 
makes sense to define 

eventual valae of dim(p~tA [p] ) if that value is 

D(p; A )  = finite 

oo other~vise 

1.9. Lemma. Let S = IlqSq • S a be a pure-in/ective group amt T the 
torsion subgroup o f  S, Let  ~ip be Fefined as in the remarks preceding 
Lemma 1.8. 

(a) Forany  integer k ~ 0, 7t, " dimq~tt'Sa IF] ) 
(b) f f  pt¢ T = pk+l T for  some k ~ O, then ~lt, = the eventual vahw o f  

dim(pn S[p ] ). 

(c) I f  D(p : S) is finite, then 7p = D(p: S), 
(d) l f  S is g-saturated (g ~ co) and D(p,S) = ~,,, then 7t , >- x. 

Proof. (a) was proved in the remakrs preceding Lemma !.8. 
~b) I fp  k T = pk+l T, then pn T c__ 3d for all n >- k and hence pnS[p] = 
;~n T[p ] = pn S a [p]. 

(c) If D(p, S) is finite, then because of Lemma 1,8 (iii) p~" T = pk+l T for 
some integer k >- 0; the result foliov~,s from (b). 
(d) We have to prove that dim(S a lp]  ) >- ~, 
Because S is sc-satura~ed it suffices to prove that the set of  formulas 

= { p x  v = 0 : v <  

U { ~  t m,x. ¢ 0 " t > 0 : v  I < . . . < v  t < ~ : ( m  l ,  m t) 
L'Ji=l ' ~'i . . . . .  

e {0,  1, . . . , p - I } '  - {¢0 . . . . .  

o {-3y(p:v = x~)" v < ~: I <- r < ~ }  
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is finitely ~lisf iable in S. (Because o f  Lemma I. 1, the last set of  
formulas insures that the x,, are in S a). But this follows from the as- 
sumption that d i m ( l ~ S l P l  ) is infinite for all integers k (cf. the proof  

o f  Lemma 1,7(d)). 

R e m a r k  Lemma I.O (d) is false witllout the assumption that S is ~-sa- 
turated. (Use the same example as in the remark following Lemma 1.7). 

As the last stag,'~ in an analysis o f  the structure o f  S, we consider 6 = 
the number  of  copies o f  Q, A group A is said to be of  bounded order if 
there is an integer n such that nA = 0. Define 

, 0  ifA is o f  bounded order ! 
Exp(A ) 

=f ~ otherwise 

1.10. Lemma. Let S bc pure4n/ectil,e and ~ be as above. 
(a) l.t 'Exp(S) = O, then ~ = O. 
(b) l f  S is x-saturated (~ >_ co) and Exp(S) = ~,  then 6 >- ~. 

In tile proof  o f  Lemma 1.10 (b) we will use the following Well-Known- 
Fact: Let V be the vector space oi" dim n over an infinite field F and let 
t t  I . . . . .  II r be hyperplanes in V (i,e. H i is the set o f  zeroes of  a non-zero 

linear polynomial 1~, ~ F [ X I ,  ... , Xn] ). Then U~= 1H i ~ K 
This well-known fact is implied by the even-better-known tact that 

the only polynomial  over F which vanishes at every n-tuple of  elements 
o f  F is the zero polynomial.  

Proof  of  Lemma 1.10, (a) is obvious. 

(b) We have to prove that there is a set o f  independent torsion-free ele- 
ments in S d of  cardinality •. Since S is ~:-saturated it suffices to prove 
that 

5r = { 3 y ( r y  =x~)  : ! <- r <  c o ; u <  ~} to 
t 

{~ t t l iXv i  ¢ 0" t < W; U l < ,.. < U~ < ~; (m I . . . .  , m t) :~ (0 . . . . .  0)} 
i--1 
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is f ini tely satisfiable in  S .  T o  prove this, it suffices to prove tha t  for  a 

fixed r and n and a n y  (mlq) ..... mtO)~ ( 0 ,  . . . .  0 ) , j  = 1 . . . . .  k, 
t 

{ ~ m i O x i ~  0:1 = 1 . . . . .  k} U { 3 y ( r y  = x i ) : / =  I . . . . .  t} 
i = 1 

is satisfiable in S. 

By the well-known fact,  we m a y  choose r~ . . . . .  r t ~ Z so tha :  

ff_~:=l miq)ri 4: O for j = l ,  .,., k. L e t s _  k t " aria  hoose 
a ~ S such that  sa 4: O. Then if  x i = rria, we have 

t i 

i= 1 i:: 1 

for  each ] = 1 . . . . .  k; since r divides x i, for  i = 1 . . . . .  t, the p roo f  o f  Lem- 
ma 1.10 is complete.  

W e  are now • " ~, gom~ to summarize  the in tbrmat ion  we have gained abnut  
the structure o f  a x-saturated group S, First,  we define,  for any  group A 

dim(pkA !p l !pk+lA  [p] ) i f  finite l 
U(p, k : A )  = { 

oo ~ (h e rwise 

T f ( p ; A )  and D(p ;A ) have been tie fined before Lemmas  1.7 and 15) res- 
pectively. 

1.1 1. Theorem.  Le t  ~ be an uncountabh,  cardfl~a! and let  S be a ~:-sat:t- 

rated group° Then S is a pure-in]ectire group i, ~; i t  is isomor#hic to a 

product  IlpSp ~ S d, where S a is divisible and Sp is tit,, comple t ion  in 

the p-adic topology o f  a direct stun o f  cyclic groups. 

Sp = %  zq," {%") ¢ Z,(~ ~ . 

Furthermore 

[ ~p.n = UIp, n -  I : S )  ( fU(p ,  n -  1 ;S)  i syht i tc  

(~p,n >- ~ otherwise  
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attd 

where 

{ /~p = Tf(p;  S) i fT f (p;  S)" is !~nite 

~t~ >-- v~ otherwise 

Sd % Z(p" • 

[3'p = D ( p ; S ) / f  D(p; S) istTnite 

1 7p ~ ~ otherwise 

{ ~ = 0  (f Exp(S)=0 

> t¢ otherwise 

The p roof  is conta ined in the sequence o f  lemmas preceding the  theo- 
rem. The results about  C~p, n ,/3t~, 7p al~d 6 are conta ined,  respectively,  in 
Lemmas  1.5, 1.7, 1.9 and 1,10. 

!. i 2. Corollary.  Let S I and S 2 be saturated groupo o f  cardinality K >- co. 
S 1 is isomorphic to S 2 i f  and only i f  Exp(S 1 ) = Exp(S 2 ) and for  every 
p, n. U(p, n; S 1 ) = Uq~, n; S 2 ), Tf~p: S l ) = Tf(p;  S 2 ) and D(p; S 1 ) = 
Dq~: S ,  ), 



i 136 P.C. Eklof  and E.R. Fisher. The dementao" theoo' oj'abelian grcntp~ 

§ 2. Elementary embeddings and decidability 

We now take up the task o f  giving a convenient criterion for deciding 
when one abelian group is elementarily embedded in another, As a by- 
product of  this work, we will be able to deduce quickly the main results 
o f  Szmielew's paper. The finer details of  her paper seem to require a 
little more delicate work, which we pursue in section 4, 

Given a group. A we refer to the associated iavariants UIp, n - 1 ; A ), 
Tf(p;A),  D(p ;A)  and Exp(A) defined in Section l as the e lementary  

invariants ofA.  This terminology will now be justified. 

2.1. Theorem. I r A  is e k m e n t a r i l y  equiralent  to B. then the  elcmentaO,  

invariants o f  A and  B ate the same. 

Proof. U(p, n -  1 ;A)  >- k iff  there exist a i . . . . . .  1~ E A sucl~ that 
p n -  1 a I . . . . .  p*l- l a k are each o f  order p and independent modulo pn. In 
other words, the following sentence holds in A if and only if 
U(p, n -, ! ) >- k : 

k 

=Ix I . . . . .  "¢,tc [/~! (cp n !  Ix i ^ pX i = Ot ^ 

k 

,, ^ -, (,,° , ,,,,.,-,)] 
( I l l  1 . . . . .  ~'nk) ~ ": i = 1 

where S is the set of  all non-trivial k-tuples o f  natural numbers such that 

0 <- m i < p.  
If A is elementarily equivalent to B, then clearly lbr each k, 

U(p, n - 1 ;A)  >- k iff Uq, ,  n "- 1 ; B)  ~ k. Thus, Uip, n - ! : A ) = 

U(p, n -  1 : B). 
(ii) Similarly, dim(p '~ l A / p " A  } >- k iff the following sentence holds 

i n A :  
k k 

[A ' )] 3xl  . . . . .  xk p . - I  !xi ^ IA q [p" I ~ ,n~x, . 
- ( ' ~  l . . . . .  i n k )  ~ S i ffi t 

(2.1.2) 

Thus, for each n dim(p"-  1Aipn A ) = d i m ~  n- 1B[pnB), in the finite-~* 

sense, and the eventual values Tf(p; A) and Tftp;  A } are equal. 
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(iii) Also, dim(pn-lA tbl ) >- k iff the following sentence holds in A : 

3Xl  . . . . .  Xk I A  (pn=ll,vi A PX i = 0 )  A 
i = ! 

A m xi 0] ^ 

(m 1 ..... mk)~S i=1 
J 

Thus, for each n d im(p ' - IAIp ] )  = d im(pn- lB[p]  ), in the finite-oo sense, 
ar, d the eventual values D(p: A) and D(p; B) are equal. 

~iv) Finally, A has exponent  dividing n iff the following sentence 
hoids: 

Y x ( n x  = O) : 

(2.1.3) 

and therefore Exp(A) = Exp(B) .  

The proof of  Theorem 2, I is thus complete. 

Tile converse o f  Theorem 2.1 is an immediate consequence o f  Corol- 
lary 1.1 2. given that any group is elementari!y equivalent to a saturated 
group. One may eliminate the latter assumption in the manner indicated 
in section 0. However we will prove the converse of  Theorem 2.1 below 
(as Theorem 2.6) witt 'out making any assumption about the existence 
of  mturated groups. Later, in section 3, we will prove that saturated 
models of  any complete theory o f  groups exist in all cardinals t~ such 
that K ~0 = K:, 

Let us note that i fA is an elementary substructure of  B, then A is 
elementarily equivalent to B and A is a pure .~;ubgroup of  B. The next 
two lemmas are needed to show th~ converse of  this statement,  which 

we derive as Corollary 2,5 below. 

2.2. Lemma. Let A and ,9 be pure-#tjective groups with A a pure sub- 

group o f  R Then given a decon~osi t ion o f  A of" the f o rm  A = IlpAp s A  d, 

there exists a divisible group C d and for  eack prime p a direct sum o f  

cyclic Zp-modules Ctj such that B = IIp(Ap ~ Cp) • (A a • Ca). 

Proof. Clearly A a is a divisible subgroup o f B  d = {b ~ B ' ¥ n  4: 0, nlb} 
and therelbre there exists a C a such that B a - A a ,~ C a. 
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Let A, =+fp’ By purity A, n ad = (01, and fetting BP be a n&ma1 
subgroup of B such that A, C Br and B, n Bd = CO). we have B =Br @3,. 

Letting BP = (b E Br : Vm, fm. p) = t =* mib), we know ~rorn the 

results of section 1 that we can identify 8, with H&p* Given A,, a basic 
submodule of A>, we can find tl basic submodule BP of BP, of which 
A, is a direct summand, by Lemma 21 (c) of [a]. We let Cp be the 
complementary summand of A, in BP ) and the proof of Lemma 2.2 is 
complete. 
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(i) E d • E~t = A d, and F d • Far = C a ; for each p, 
E .  eE~  = A . ,  and Fp ~F ' .  = C~; 

(ii) IEa l<  ~: and 1Fall< ~" for eachp,  IE_t< ~c ~;nd IF~I< ~. 
(iii) S c i'Ip L~, • F d and T c l lr (E p • 1~ ) • E a • I;;i, 

[Note that in (ii) we can claim that IEpl < - ISI . s  O < n: since every ele- 
ment of Ap is a limit of a countable sequence of elements ofAp.  ] Thus 
we have 

B=II.(Ep ~E' ~F,  ~ ) s E  a~E'  d ~ F  d@F' a. 
e P. l P 

"% G Ad ca 
t~ t t s  

We now claim furfl~vr that there exists groups E~, E~' and Ep, Ep 
such that E'~'~' .~ F d (say, by Xd ), E'd = E~ • E~', Ep ~- Fp (say, by Xp), 
and E., = ~ .  * E., . We illustrate the reasoning for a prime p. Let 
Fp =@. Z(p" ¢" P'") ~ Zp (@1, Then el;,n (B) 2 t~p, n (A) + ep,. and 
rio(B) ~ [3t,(A ) + ~;~. Thus. i f  e'p,,, is greater titan 0, then ap.n(A ) >- ~; 
t\w otherwise txp, n(A) = U(p. n -  I : A )  = U(p, n -  I ,B)  = e~p,n(B) > 
ar,.(A), a contradiction. Similarly. if/3p is greater than 0, then 
~p~A) 2 ~c. Thus, since lEpl < tc there is ample room in E~ to split off a 
copy of Ft~. 

Our desired automorplaism can now be obtained by putting together 
automorphisnas ¢d of B d and Cp of Bp, for each prime p as follows: 

Ca is the sum of the identity maps on E a, E~ and F~ and the maps 
X-d and X~i I on E~' and F d respectively. %, is defined by taking the sum 

~ t t  .o  r t r  of the identity maps on Ep. Ep and Fp and the maps Xp and X~ I on E_~ 
and Fp respectively, and extending by continuity to the completion Bp 
of Bp. Schematically 

xa 

~ i t t  t t  

B = l l p ( E p @ l S p ~ E  r oFp @F'p)@E d@E d@E' ' '~F ~F'd 

xp x a 

That this automorphisnl has tile requi~-ed properties is immediate. 
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2,4. Theorem. Let  A be a pure subgroup orB,  m~d let A m,d B have the 

same elementary invariants. Then A is an elementary substntcture orB.  

Proof. By blowing up the situation A c B (for example, by an ultra- 
power) we get the following commmal ive  diagram: 

A ' C B '  

¥ Y 
A C B ,  

where A' and B' are wi-saturated,  and all inclusions are pure. It thus 
suffices to establish the result under  the hypothesis that A and B are 
¢o~ -saturated, 

By Tarski's Lemmai t  suffices to show that given a 1 .. . . .  a ,  ¢: A and 
b E B, there exists an automorphism ¢ o f  B such that ¢{a t ) = a t ..... ¢(a,, ) 
a n and ~p(b) E A. But this is immediate from Lemma 2.3,, using the fact 
that, by Theorem 1. ! I, an oa I -saturated group appears to be oa t -mtu- 
rated. 

2.5. Corollary. I rA  is a pure subgnmp ~(t'B which is ehmwntarily equiv- 
alent to B. then A is an elementary substructure orB.  

2.6. Theorem (Szmielew [ 1 "] ). l f  A and B have the same e l e m e n m o  

invariani's then A is elemen;ariO" equil'alent to B, 

~ o o f .  By taking 001 -saturated elementary extensions of  A and B, we 
see that we need only prove the result for oal 'saturated groups A and B. 
Let A' be obtained from A by choosing a decomposition for A accord- 
ing to Theorem i. 1 I and ~hmwing away all- but ~ i copies o f  a,',:' sum- 
mand o fA  v or A d which occurs at least ~ ~ times. Clearly A'  is a pure 
subgroup of  A with the same elementary invariants: thus, by Theorem 
2.4, A' -< A. Let B' be obtained from B in the ~mle way. Clearly B' -< B 
and moreover A'  -~ B'. Finally A is elementarily equivalent to B. 

2.7. Theorem. Let  ~ be uncm, ntable. Every group which appears to be 

~-saturated is ~-saturated, 
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Proof. Let A appear to be ~:-saturated. Let B be an elementary extension 
o f  A which is ~:-~turated. Giyen a subset S o f A  with cardinality < t~ we 
must show that any type o f  Th(A, S) is realized in A. Since B is a k:-sat- 
urated elementary extension o f  A, any such type is realized by an ele- 
ment h of  B. By Lemma 2,3, there i.~ an automorphism of  B which leaves 
S fixed and moves b into A. This shows that the type is realized in A, 
and the proof is complete. 

The reader who is familiar with infinitary languages should recognize 
that Lemma 2.3 actually establishe,~ the following: i r a  is a pure sub- 
group of  B, A and B have the same elementary invariants, and A and B 
both appear to be ~-s~,turated, then A -<=,~ B. 2.4 and 2.7 are thus im- 
mediate consequences of  2,3. 

We are now in a position to demonstrate the decidability of  the theo- 
rr o f  abelian groups, Let us define a core sente~we to be a sentence of  
one o f  the forms 2. !. I, 2. i .2, 2.1.3 (see Theorem 2.1) or o f  the form 
v,v(nx = 0), or a negation of  one of  the above. 

2.8. Theorem (Szmielew [ 12] ). Let T be the theory o f  abelian groups. 
Then erery complete ext~ nsion o f  T can be ,;,x'iomatized by adding a set 
o f  core sentences to T. Also, each sentence which is consistent with T is 
a consequence o f  T together with a consistent f inite conjunction o f  core 
S(~tlI¢'tlCeS 

Proof. This is a trivial consequence o f  Theorem 2.6 and the compactness 
theorem. 

# 

Let us now define a S:mielew-grottp A to be one which can be writ ten 
in the following form: 

(*) A =@!'," Z{Pn )tap,,,) ~q~p Zp(ap) ~ p  Z(p" )(Vp) ~ Q(8) , 

where each o~p.,, ~, and 3'p is finite or countably infinite and ~ is 0 or 1. 

2,9, Theorem (Szn~ielew [ 12] ), E~ery group is elementarily equivalent 
to a Szmielew group. 
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Proof .  One can routinely check that the dimensmns o f  the vector spaces 
which we associate with groups add over direct sums;. Similarly one can 
check that the dimensions o f  the building blocks used in (*) above are 
just what one would expect  (see [ t21, p. 219). Now given a group B 
we define: 

l U(p, n -  I ; B) if finite 
O[p,t! t ~o otb.erwise 

[ Tf(p; B) if finite 

I 
~0 otherwise 

{ Dfp;B)  if finite 

0 otherwise 

/ 0 if Exp(B) = 0 

t 1 if Exp(B~ = ~o 

Using these exponents  we form the g;oup A in ~*) above. A thus has the 
same invariants as B, and by Corollary 2.6. A is elementarily equivalent 
to B. 

A Szmielew-group o f  f ini te  rank is ,. Szmiek, w-group in s~ hich every 
exponent  is finite and all but finitely many are zero. 

2.10. Theorem (Szmielew [ 1 2] ). l f  o is a c~nststent sentenc¢ i,t the theo- 
rv Qf abelian groups, then there exists a Szmielew group o]" f ini te  rank 
which is a model  o f  o. 

Proof, By Theorem 2.8 there exists a consistent finite set o f  core sen- 
tences C which implies o. Let A as in (*) above be a Szmielew-group in 
which C holds. We will define a " tnmcat ion '"  o f  A o f  finite r~ank in which 
the sentences o f  C hold. If o' is a sentence o f  C o f  the form 2, I ~2 (resp, 
2.1,3) - i.e. if o' says "'dim(l~n~lA/p"A ) >: k"  (resp. "'dimtpn-I A [Pl ) >- 
k")  - then since o' holds in A 
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(resp, ~ %~ + 3'p ~ k) 
j~n 

143 

(where %,3' ~t,' 3'p, 8 arc as in (*)). Hence 3M such that 

M 

,i= n 

M 

~ k ) .  (resp. ~ %.i + %  ~ • 

Choose an M which works for each o' of  Ihe form 2.1.2 or 2.1.3 in C; 
then iet N be the maxin, um of  M and of  the n's occurring in sentences 
of  C w h i c h  are o f  the form 2,1.1, 2.1.2 or 2 .1 .3 ;and  let K be the maxi- 
mum of  the k's occurrirg in such sentences (where n and k are as in 
2. I. 1, 2.1.2 or 2.1.3) Let F be the finite set o f  primes which pertain to 
sentences of  C. Then let 

A ' =  ® ®Z(p,,)(~},.,, @ @ Zp(ai')@ ® Z(R=)('Yp)@Q(6) 
Rc~.F \ n = !  R~:F R~F  

where %.,, = min(%, , ,  Kh #~, = min(/3p, K), and yp = min(3,p, K). A rou- 
tine verification shows that  C holds in A' ,  and the theorem is proved. 

2 11. Theorem (Szmielew [ 121 ). The elementary theoo' ofabelian 
groups is a decidabh, theory. 

Proof. It suffices to show that the set o f  consistent sentences is r.e. For 
this we effectively enumerate  sequences (S, 6 ) where 8 is 0 or I and S is 
a set o f  the form: 
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where F is a f'mite set of  primes, each 13 u and "t'p is a natural number,  
and each ~-p is a finite sequence (up, l ,  .... at, n ) of  natural numbers. For  
each sequence (S, 8) we can (uniformly) effectively enumerate the fi- 
nite conjunctions o f  core sentences (and hence by Theorem 2.8 all sen- 
tences) which hold in the Szmielew-group of  finite rank with invariants 
given by <S, 8 ). Finally, by Theorem 2.10 an~J a diagonalizatior, we see 
that the set of  consistent sentences is r.e., and Szmielew's theorem is 
prove,d. 

For the sake of  completeness we give one more result which will be 
improved considerably in sectien 4 below. 

2.12. Theorem (Szmielew [ 12] ). Let  o be a sentence in the language o f  

group theory. Then a is equivalent in the theory o f  abelian gro~tps to a 

sentence which is a disjunction o f  conjunctions o f  core sentences. 

Proof. Consider the set S o f  all finite conjunctions o f  core sentences 
which imply a. Suppose that e is not equivalent to any finite disjunction 
of  members of  S. Then o u {-1 ~ : ~ ~ S} is consistent with tt~e theory of  
groups. If we now let A be a group which is a model o f  this set o f  sen- 
tences we see, as in Theorem 2.8, that some conjunction ¢ o f  core sen- 
~ences true in A implies a. Thus ~0 ~ S, contradicting the fact that A is 
a model o f  {-q ~o : ¢ ~ S}.  
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§ 3. The existence of satura~ed abelian groups 

Let A be an infinite group (we exclude the finite groups since their 
theories are trivial), In this section we are going to determine the cardi- 
nals in which the theory of  A, Th(A ), has a saturated model. If ~ is an 
infiqite cardinal, let S = "~;t.~ be tile h:-saturated model of  Th(A ) defined 
by 

where 

SA.~ = FI  sp  e s d 
p 

Sp =®n Z(P n')(ap'n~ @ ZV (#p) 

where 

a/,.n = min{U(p.n  .... I :A) ,  ~} 

~3~ = min{Tfip: A ), ~¢} 

"rp = min{D(pzA ), g} 

(~ is defined to be > ~:) and 

0 if,4 is of  bounded order 

~ otherwise. 

By Fncorcm 2.7, SA, ~ is g-saturated and by Corollary 2.6, it is a model 
of  Th(A). It is clear that Th(A ) has a saturated model of  cardinaiity x if 
and oidy if tile cardinality o fSn .  ~ is ~. For example, the condRion 
~¢s0 = ~¢ is easily seen to be sufficient for Th(A) to have a saturated mod- 
el of  cardinality t¢. Whether or not it is necessary depends on properties 
o f  the group A. We sum up the results in the following table in which we 
also determine for each group A whether  or not  Th(A) is ~0-categorical, 

l-categ°rical and ~l-s table .  The results on b~ 1-categoricity and co I - 
stability are due to A, Macinty[e [71. An explanation follows the table. 
(By tile "reduced part o f  A"  we mean A/A  d, where A a is the maximal 
divisible subgroup o f  A ). 
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Table 

A is an INFINITE group Th(A ) is Th(A ) is Th(A ) is T s'(.4 ~ has a sa |uraled 
satisfying: ~0-cate- ~l-cat¢~ ~l-S~able model o f  Card ~ iff 

gorical gorical 

(I) A is o f  bounded order yes - yes ~ ~ s O 

(a) U(p, n;A ) = ,o for only . . . . . .  
one pair (17, n) yes 

(b) not (a) "' no . . . .  

(II) Not (!) i.e. A is not  o f  
n o  . . . .  

bounded order 

(a) reduced part of  A is o f  ,, 
- yes ~ ~ ~0 bounded order 

(i) V p  (the number of  
elements o f  order p i., '" yes . . . .  
finite) 

(ii) not (i) ' "  n o  . . . .  

(b) not (a) . . . .  no 

(i) Wp, Tf (p ;A)  ~ ~ and 
zl only finitely m a n y p  . . . . . .  ~> 280 
such tha t / In  for which 
U(p, n;A ) = 

(ii) not (i) . . . .  ~ 0  = 

Explanation o f  the table,: 
First, observe that for any infinite group A. all tile models o f  Th(A ) 

belong to the same row o f  the table as A. The conditions on A stated" 
in the first column are not  elementary statements in general, but  ii" a 
given group A satisfies one of  these conditions it satisfies an e le . lentary  
statement, or set of  statements, which imply the condition, For  exam- 
ple, if the reduced part of  A is o f  bom~ded order, then there is an n such 
that nA is divisible; for a fixed n, tile latter is an elementary s ta tement  
and so every model G of  Th(A) is such that nG is divisible i.e. the r e  
duced part o f  G is of  bounded order. 

(I) If A is of  bounded order,  then so is every mode~ o f  Th(A ), and even" 



§ 3, The existow¢ ol'.~tl~mted abelian e, oups 147 

model o f  ThIA) is a direct sum o f  fiqite cyclic groups (Theorem 6 of  

16! ). Say A =®t,,n Z~I~n l~'~/~n): there are only a finite number o f  pairs 
(p, n) such that ~xo,n ,~ 0. For  each (p, n) there is a sentence (or set o f  
sentences) o f  Th(A) which says that U(p, n -  1; A) is a given finite car- 
dinal (or is infinite), l f B  is a countable model of  ThtA)  and if 
U(p, n-= 1 : A ) = U(p, n ..... ! ; B) = ~ ,  then necessarily 

dimpn'~tB{p] #)" B[pl = s 0 i.e. the number of  copies of  Z(p" ) in the 
direct decomposit ion o f  B is So. Hence the countable model o f  Th(A) 
is uniquely determined tip to isomorphism. 

In order to prove that Th(A) is w I -stable it suffices to prove that if 
B =®p.n Z(P n)'t3p'") is the countable model o f  Th(A ) there are only coun- 

tably many inequivalent elementary embeddings of  B into itself (Theo- 
rem 0. t6) .  t f f :  B ~, B and g :B ~ B are elementary embeddings they 
are pure embeddings and since B is of  bounded order, f (B)  and g(B) are 
direct summand~; o f  B (Theorem 7 of  [61 ): B = f (B)  • C, B = g(B) • C'. 
Clearly l a n d  g are equivalent if and only if C and C' are isomorphic. But 

('=~ @~.,, Z(p" )~'r ,''~. where 7p.,, g/3v,~, : since/3t,,, , = O for all but  a finite 
number of  pairs it~, n) there are only a countable number of  isomorphism 
classes o f  groups to which C can belong. 

We shall prove below ti~at if the reduced part o f  A is o f  bounded order, 
then Th(A) has a saturated modei m every cardinal ~ >- t~ 0. 

(17 (a) Since A is infinite but  o f  bounded order, there is at least one 
pair (p, n) such that U ( p , ,  - 1 ; A ) = oo. If there is a unique (P0, n0) such 
that U(p 0, n o - 1; At = 0% then lhe unique (up to isomorphism) model 
of  Th(A ) o f  cardinality ~ ~ S 1 is 

$ Z(p '~ )(%'~) . Z(po nO )(~). 
q,, n) * (Po' no~ 

(I) (b) On tile other  hand, if "here exist (P0, no) ¢ (Pl ,  ni ) such that 
U(p 0, n o .... 1 : A) = o, = U(pl ' , ,  ._ ! ; A ), then the following are two non- 

isomorphic models o f  Th~A) o: cardinality ~ >- S l (Let  I = {(P0, n0), 
W 

(Pl,  nl )} and o~p., = min{~p.,,, ~0 }): 

and 

@ Zq:,")'p.") • Z(p0"o)¢SO • Z(p I' 'l )c~ 
tp, n)~ l 

® Z(p,)~.,., ) e Z(po'oy:,,,, ~ Z( lhnl  )tSo) 
(p, n)~ / 
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(II) I fA is not  o f  bounded order, let t~t,., = min{U(p, n: A), ~o},  

tip = min{Tf(/~;A), ~0},  "/o = min{D(p;A),  80} (where we define 
oo> R0). 

Then the following are two nonqsomorphic countable models o f  Th(A 
(see §2):  

B =®p.,, Z(p  n )talon) *®l, Zp (ap) *®t, Z( l , "  ) t*'t'i '~ Q 

and 
B ' = B * Q  

(B and B' are both model ,  o f  Th(A) because they are not o f  bounded 
order and have the same invariants as A ). 

(II) (a) Write A = A r • A a wl,.ere A r is reduced and A d is divisible. 
Condition (IJ) (a) says A, is o f  bounded order. We have proved above 
that Th(A r) is co!-stable. In order to prove Th(A ) is col-stable, it suffice~ 

by Theorem 0.14, to prove that Th(A d)  is col-stable. Let D o, D i , D 2 be 
countable models of  Th(A d) with D O ~ D l , D O ~ D 2. We will prove 
that i f a  i E D i (i = 1, 2) then a I and a 2 have the same type over D o if 
and only i f{n  E Z : na t E Do} = {n E Z : va 2 E Do} (= dZ ,  say) and 
da I = da 2. If  this is the case then clearly there are only a countable 
number of  types in Th(D o, x)xEOo.  Now the conditions are obviously 
necessary; on the other  hand, il a I and a 2 satisfy the conditions, then 
there is an i s o m o r p h i s m f : D  0 e Za I -~ D o + Za 2 (where D o + Z a  i is 
the subgroup o f D  i generated oy D O and a i) such that f ( d  + na I ) -- 
d + na 2 (d E D O ). f extends to an isomorphism 

f : E ( D  o + Z a  I ) -~ E ( D  o + Za 2) 

of mjcctive envelopes o f D  0 + Za I and D O + Za 2 contained in D 1 and 
D 2 , respectively. E ( D  o + Z a  i) is an elementary subt;tnlcture o f  D i 

(i = 1, 2) (by  Theorem 2.4) and f ' ( a  I ) = a 2 and f ' ( d )  = d for d ~ D 0, so 
a I and a 2 have the same type over D O . Therefore Th(A) is col -stable. 

Since Th(A) is co I -stable it has a countable saturated model (Theo- 
rem 0.15). For  ~ >- S l ,  we prove that $4. ~ (see the remarks before the 
table) is o f  cardinality <- ~:. (Since A is infinite, '~4.~: has cardinality ~ tO. 

Indeed if we write S~,~ = I t ,  S v * S d then certainly S a has cardinality 
<_ to. For  all but  a finite number  o f  p, S~, = {0} and for MI p,  Sp is of  
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bounded order and ha... ~'ardinality ~ ~:. Since St, is of  bounded order. 
Sp is complete in its p-adte topology. (Any Cauchy sequence is eventual- 
ly const:mt because p n S p  = 0 for sufficiently large n .} Therefore Sp = Sp 
for all p,  and we conclude thai Card(,~.L~ ~ = ~. 

(11t (a} (iJ If for every p there are only a finite mm~ber of  elements of  
order p, then U ( p ,  ~t: :i ) < ~ ;,tl~tl I)(p: A ) < ~ lbr all p. n. Therefore the 
unique model o f  Th(A ) o f  cardinality t¢ ~ ~ I is: 

®p.. Z(pn )tap,,,) e®p Z(p ~ )('~i o) ,~ Qt~) 

where at,, .  = U ( p ,  n .... 1 : ,4 }, ~/t, = D(p: .4 ). 
(!I) (a) (ii} On the other  hand if there is a Po suck that Dq~ o :A ) = 

(respectively: such that there exists n o such that U(%,  n o - I: A ) = ~) ,  
t h e n i f a t u  ~ = m i n { U ( p , n  ~ l : A ) , 8 o } , T p  = m i n { D ( p ; A ) , ~ o } , t h e f o l -  
lowing are non-isomorphic models of  Th(A ) of  cardinality ~: >- 8 1 : 

amt 
®q,..) Z(p" )~(~P.") .~ 0 Z(p~)(~r ') • Z(p(;~)(,o 

l" ~Po 

(respectively: @ Z(p" )~at',") ~ Z(po"O)¢K)~@p Z(p~)(~P ) • Q) 

(ll) (b} If the reduced part of A is not of bounded order we arc going 
to prove that Th(A ) does not have a countable saturated model and 
therefore certainly Th(A) is neither ~ l -s table  nor col-categorical, There 
are two cases: if the reduced part of  A is not of  bounded order either: 
(1) there are infinitely many p such that there is an n t~r which 
UI]:,, n ..... 1, A ) .  0; or  (2) thtrre is a p such that Tf(p; A) 4: 0. (To see that 
these are the only cases look. at an ¢0 i -saturated model S = l ip  Sp  * S a 

of  Th(A ) and note that llpSp is of  unbounded order if and only if there 
are infinitely many p such that S v * {0} or there is a p such that Sp is 
of  unbounded order: in the latter case it follows from Lemma 1.6 (iv) 
that we must  have Tf(p: A ) ¢ 0). in Case ( t ) ,  if & = p: 3 n ( U ( p , n -  1 ;A)¢  
0)}, ,~' is infinite and for any subset ~ '  o f  A 

~ A , ( x ) =  {3v(pv x) :pE ~'} u {7 ~3 q: = x )  13~ ~ - - ~ ' }  
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is consistent ( i f S  = IlpSp e S a, is an co t -mturated model o f  Th{A ), the 
element f =  fa, ~ llvSt, c_C_ S defined by: J'(p) = 0 ibr p c  zX'. jO~) = an ele- 
ment  o f  Sp of height 0 for p ~ A -  A'. satisfies -v a,(x)). Hence there are 
uncountably many l- types in Th(A).  If we are in Case (2), let B be a 
model of  Th(A) such thai Zp ~ B. Let b ~ B be a generator  of  a copy 
of Zp in B. We are going to prove that  Th(B. b) has uncountab ly  many 
1-types, from which it follows that  there is no countable .~turated mod- 
el, In fact we define a consistent set o f  tbnnulas  X,,(x) for any C:~uchy 
sequence tr = (a n ) in Zp such that  if o and o'  have different  limits in the 
complet ion ZI, o f  Zp, then X~(x) u Zo,(x) is inconsistent.  Let o = (a n ) 
be a Cauchy sequence in Zp ; for any k > 0. lhere exists n~. such that 
m, n >_ n~ implies p g" divides a .  - a  m . Ifa,,t = r~/st where r e. s l  ~ Z. 
( s ~ ,  p )  = 1,  let 

2o (x )  = { 3 y a z l ( / ~ y  = x- .z}  ^ Is,.: = q~bH "1 < k < ~ } .  

Then a realizes Z<, (.\'~ in a model  G of  Th{A) extending B. if and only if 
a is a limit o f  the Cauchy sequence (a,~ "b),~.~ ~ in Zpb ~ B. Clearly. if o 
and o' have different limits, Z a (xj o v.o,(x) is inconsistent.  Since Zp is 
uncountable,  there are uncountable  many 1-types in Th(B. b~. 

(II) (b) (i) Let A be a group satisfying (II) (b) (D. Consider 
SA .  = llpSt, • S a, as in the in t roduct ion ,,~ this section, for K ->- ~ I" 
For  each p.  Sp = %, Z(p 'z ) ~t','~ + Zp %'~ where ~, is finite. The comple- 
tion S'p of  Sp equals the direct sum of  the complet ion of  %~ Z{p n )¢~/'."~ 
and the complet ion of  Zp (~p~, Since Tf(p:  .4 ) < ~ .  e ,  Z{p ~, )~1 ,,.~ is of  
bounded  order and is fllerefore complete  (cf. (tl} {a)). The comple t ion  
of  Zp(~IP ~ has cardinality <- 2 s° since t3t, is finite. Since there are only 
finitely many p for which there is an n such that  U(p, n: .4 ) = ,,~. 
Card($~ )<- 2 s° for all but  a finite number  of  p. and for the remaining 

" S TM - K  - . p S we have Card(~ p ) < + ~*0 On the o ther  hand. since II,,S~, does 
not  have bounded  order, either there are infinitely many p such that 
~ ,  ~: {0} or 3p suci, that C ~ r d ( g )  = 2 ~o. Therefore C a r d ( l l p g )  > 2So. 

and ifK >- 2 '~°, CardlIv$'  ~ = K. 
(It) (b) (ii) l fA  satisfies the hypotheses  o f ( l l )  (b} (ii) and K D S 1 we 

shall prove that  S..** has cardinality ~: s° .  Consider $4. ~ = I1 , ,~  ,~'~ S a :  if  
there, are infinitely many p for which there exists t~ such that  Ut/;.n;.4 ) = 
~0, then since Z{p "÷l )(~) ~ S~ for any pair {1,, n) such that  U(p, n:A )= ~*, 
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we see that  there are int~nitely many  p such that CardSp = ~:. There fo re  
Card(llpS-v ) = ~: s°., In the o ther  case. i.e. if there .:s a I) such that  
T f ( p ; A )  = ~,, then Zp t~ c ~p (as a ptlre submodule) ,  and it will suffice 
to prove that  the comple t ion  o f  Zt(~) has cardinali ty ~: s0. Let a e be a 
genera tor  o f  the zuth copy o f  Zp in Zp<~-~{v < g), For  any o E ~:s0 def ine  

so = 1"o." ~ where  ,%,,, = ~ 1  p/~'aoo~l. Clearly s .  is a Cauchy sequence  in 
Z t,(~), and we claim lhat  if r E ~:~0 such that o =a r. then s o and s r have 
d i (Dren t  limits, Indeed if m is minima! such that  or(m) =/= r ( m )  then for 

al:y n >- m, 
P2 

so.  n ~ s t .  n = 1, m (aou~,)  ........ ar~ m ~ ) + ~ ,  1,1" (a~(l,.) ~- a t ( k }  } SO 
k=m+!  

so lhat so,,~ ..... ,~',~ is not divisible by p,,~+l, trod the same applies to tile 

two limits. 
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§ 4. Eliminalion of quantifiers 

In this section we will prove tl~,'~t eve~, lk~rmula in the language o f  
abelian groups is equivalent ~relarive to the theo~, o f  abelian groltps) to 
a formula which has a particularize simple form, viz., :l boolean combina- 
tion of  core sentences (see ~ ~ • "' § . ) a q d  formulas o f  tile ibrnl "'pkl ~ o I  rl"~i " 

This result is due to Szmielew ([ ~.21, Theorem 4.22} a~ad it is the basis 
for her proof  that the theory of  abelian groups is decidable. Our  approach 
will be model-theoretic, exploiting heavily tile pure-injectivity o f  ~o ! - 
saturated groups. In order to keep the discussion as se l f  contained as 
possible, we will first prove a series o f  lemmas o f  a n  algebraic sort which 
have analogues for modules over arbitrary rin,.,~, The above result will 
then be cast in the form of  an eliminat~on-of-qualltifiers theorem for a 
natural extension of  tile theory o f  abelian groups. 

Our first lemma expresses the fact that w;-saturated groups satisfy 
the usual defining propert3 of  pure-injectivc groups. 

4.1. Lemma. i r A  is w 1 -saturated and B is a pure ex to , , skm o.fA. then A 

is a direct s um m and  o f  B, 

Proof. Choosing an ~ 1 - ~ t u r a t c d  ele~zlentary (and hence pure} extension 
, . , )  that given a decomposi- B' of  B, we find (as in tile p r - o f  o f  Lemma " ~ 

tion A = llm~i~ e A a, there exl~ts a decomposition of  B' o f  the form: 

Lettipg (" = l ip(t ,  ~ C,j, we have B' = A ',~ (', and clearly B = A e 1(" c~ B), 
prov;ng the lemma. 

A positive primit ive (p.p~ p~rmula 9 is a fornmla of  tile i'orm 
l 

::ly I . . . .  ; . V m [  A ~.9~.()t" l . . . . . .  "t',~.y I . . . . .  l',,t ] ] , 
k=i  

+ ~ "  s i l~ = O. where each ~0 k is of  tile l'orm ~ ~ i  rixi ,-~/=~ - 

Note tha~ every such formula is preserved under homomorphis| l ls (into) 
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and that a conjunction or  existential quantification of  positive primitive 
formulas is logically equivalent to a positive primitive formula. 

4.2. Corollary. I r A  is a pure sul\~Iroup t~f ll, ¢ ( x  I . . . . .  x,, ) is a posi t ive 

primitil ,e Jbrmula, and a I , .... an ~ A ; then ¢(a I . . . . .  a,  ) is trt:e in A i f  
and only  Jr'it is tn~e in B, 

Proof. From the fact that positive existential formulas are preserved 
under  homomorphisms,  it should be clear that the conclusion holds if A 
is a direct summand of  B. Blowing up the situation to an ~l -sa tura ted  
extension, we have 

~.' C B' 

V y 

A c B  , 

where A' and B' are to I -saturated and :dl inclusions are pure. By Lemma 
4.1, A' is a direct summand ~ ; B and the corollary is proved after a short 
diagram chase. 

For a more standard proof  of  tiffs corollary, see Fuchs ([ 15], Theo- 
rem 28.5). 

I rA,  ,4', B and B' are groups with A'  c A and B' c B and f : A '  -~ B' is 
a Ilomonlorphism, then we say that f is a strong homomorph i sm  (rela- 
tive to A and B') if for every a ~ A' and every n ~ Z, n la in A only if 
nl.f(a) in B. f is called a strong isomorphism i f f  is an isomorphism and 
both f and .f- l are strong homcmorphisms.  

4,3. Lemma. Gtven homomorph i sms  f i  : B -~ Ai~ i = 1, 2, there exists a 

group C and homomorph i sms  gi : A i ~ C such t/tat 

gl 
A 1 . . . . .  =C 

f l  [g2 

B . . . . . . . . . .  ~ - A  2 

;2 
COl~lltllt teS al~d 
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(i) i f  f 1 is an embedding, ,;2 is also: 
(it) if, furthermore, f2 is a s tnmg honlomorphism relative to A ! m t d  

A 2, g2 is a pure embedding: 
(iii) if, furthermore, f2 is a s~rong isomorphism, gl is a pure em,~ed - 

d#lg. 

Proof. We take C to be the push-out A t ~ A 2/{(Jl (b), ~'J'2 (b)) : b ~ 3}  
and gi to be the inclusion map o f A  i in A l • A 2 followed by the canon- 
ical projection on C. That g2 is one-one i f f l  is one-one is well-known, 
and, in any case, is easily checked. Now suppose that f l  is an embedding 
and t h a t f  2 is a strong homomorphism relative to A 1 and A 2 (where we 
regard B as a subgroup o f A l  via.t 1 ). We want io prove g 2 is a pure em- 
bedding. Suppose n Ig 2 (a 2 ); thet~ there exists b E B and (x, y )E ,41  @A 2 
such that n(x, y )  = (0, a 2 ) + t f  1 (b), -J~(b)).  Thus nx = f l  (b), and since 
f2 is strong, n divides f 2 (b). t-Ie~ce, since tO' = a~ .~o° 12 l b), we conclude 
that n divides a 2. This finishes ":~e proof  o f  (ii), and (iii) follows from 
(i) and (ii). 

Given a group A and names for tile members of A ,  we let D*(A), the 
divisibiliO, diagram o f  A,  be ~h~ set o f  all sentences o f  the form a + b = c, 
a + b :~ e, and n "l'a which ar~ ~ true in A. 

Let T be the theory of  abelian groups. It should be ciear that the re- 
ducts (to the language of T) .)f models of  T o  D*(A)are  just the pure ex- 

tensions of  A. 

Given names for the members of  a set S. a posith'e primitive q~.p. ) 
system X(x) over S is a set o f  positive primitive formulas involving the 
names for the members  o f  S and a single free variable x Given :: subset 
S of  a group A and names for the members  of  A, we sa5 that such a sys- 

tem 2 (x )  ove rS  is consistent (relative to A) if T u  D*(.d ) u Z(x)  is con- 
sistent, i.e., if Z(x)  is realized in a pure extension of  A. 

Note that by the compactness theorem such a p.p. system Z(x)  over 
S is consistent relative to A if and only if  the existential closure o f  the 
conjunction of  every finite subset o f  Z(x)  is true in A : and moreover, if 
consistent, N(x) can be extended to a maximal consistent p.p, system 
over S relative to A. 
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4.4. Lemma. I f  A C B are groups such that eveo, maxbna; consistent 

p.p. system over A relative to B is realized 07 A, then A is ~ direct sum- 

mand o f  B, 

Proof. Consider the set of strong bomomorphismsf from ~ubgroups of 
B into A which extend the identity map on ,d. Clearly a n~aximal member 
f of  this set exists, We need only show that the domain o f f  is B. 

If not, let D be the domain o f f  and choose b ~ B - D .  Let Z(x) be the 
set of positive primitive formulas true of b with parameters in D. Let 
E'(x) be the set of  formulas obtained from those in Z(x) by replacing 
each occurrence of a name for a member of D by a n:~me for its image 
underL Let 7(x)  be a finite subse~ of X'(.\'). Since 7 ' (x)  zdses from a 
finite subset CY(x) of E and 3x ~ ~(x) is true in B and since f is strong, 
3 x ~ ' ( x )  is tnle in B. Thus Z'(x) is consistent relative to B. 

Let E"(x) be a maximal consistent p.p. system over A relative to B 
which extends X'(x). By assumption there exists a E A which realizes 
E"(x) and thus X'(x). We can now define g : D + Zb - A according to 
g(d  * rb) = f ( d )  + ra. We need only check that g is well-defined and 
strong, since it will' then be clear that g is a homomorphism which con- 
tradicts the maximality of/.. 

Suppose that d t + r I b = d 2 + r2b. Then d 1 - d  2 + (r I - r 2 ) b  = 0, so 
that "d I - d  2 + (r I - r 2  )x  = 0" belongs to Z(x). Thus " f (d  1 ) - f ( d  2) + 
(r I - r  2 )x = 0" belongs to E'(x), i.e., f ( d  I )+ r I a = f ( d  2 )+ rza and g is 
well-defined. 

l:inally suppose that n ld + rb, i.e., "3y (nv - d -  rx = 0)" belongs to 
X(x). This implies that " 3 y ( n y - f ( d ) - - r x  = 0)'" belongs to E'(x), i.e., 
n If(d) + ra. 

4.5. Lemma. Let S be a subgroup o f  a group A and let E(x) be a consis- 

tent p,p. ,Wsv',:: over S relative to A, There exists a countable subsystem 

E ' (x)  o f  E tx )  such that i f  an element b realizes E'(x) in a pure extension 

B o f  A, then b realizes E(x) in B. 

Proof. Let us call two fornmlas in X(x) equivalent if they differ only in 
the choice of  parameters from S. There are clearly only countably many 
equivalence classes, and we let Z'(x) be obtained by choosing a repre- 
sentative for each equivalence class from X;(x). 

Let b realize X'(x) in a pure extension B ofA.  Consider a formula 
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so(x) from Z(x) and the equivalent formula X(X) from X'(x). Since X(x) 
is consistent, there exists a E A such that so(a) and X(a) are true in A. 
Now let us assume that 9(x) is of the for'n: 

k o 

, , ,  ..... , , , ( ^  (~ ,,,.,,,+,.,.o,;~)). 
t=1 t=! 

while X(X) is of the form: 

k H 

,:,, .... ,.,,,,(^ (~ , i . , .,+,x--,,)). 
/ ! t 1 

where the ci's and di's name elements orS. 
Putting everything together we can write. 

,i) 3)'1 ..... Y, (//~. ( ~  r/.!'i+rb=di) ), 

(ii) 

and 

(iii) 

s y l  . . . . .  .,',, ( A  

syt , .  .... v . ( A  

(,~ )) ~/.,'~ ÷ r .  = 9 , 

(i) and (iii) imply: 

(iv) 3Yi ... . . .  ,',, ( A  
\ ]  

and (ii) and (iv) imply: 

(v) 3Yl,...,>', (A 
i.e., ~(b) is true. 

(~,,,~r,b o,-_o)) 
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4,6. Lemma, i r A  and  13 are w 1 -mturatcd,  A ' c A,  B' c B, and  f : A ' -~ B'  

is a s trong isomorphism,  then there exis t  direct  s u m m a n d s  A "  and  B "  o f  

A and  B respectively anda ! l  i somorphism g : A "  -, B"  which ex~ends f. 

A "  and  B"  m a y  be chosen to have cardinality ~ Card(A ') so , 

Proof, ! ! - i '  is not :t direct summand of  A, then by Lemma 4,4, there 
exists a p,p. sy; tem ,.,(x) overA which is maximal consistent relative to 
A and which is not  realized in A'. By Lemma 4.1 it is clear that there 
must exist a member  a of  A which realizes Z(x). 

If Z ' (x)  is obtained from G(x) by replacing each c~ccurrence o f  a 
name for a member  o f A '  by a name for its image under f, we see by a 
repetition of  the argument in the proof of  Lemma 4.4 that ,-,'(x) '.:s con- 
sistent relative to B, Thus by Lemma 4.1, there exists b ~ B which rea- 
lizes Z'(x). 

We claim that Z ' (x)  is the set of  a// positive primitive formulas over 
B' true of  b. if not, the amalgamation property expressed in Lemma 4.3 
would give us a contradiction to the maximality of  Z(x). 

if we now s e t f l ( a '  + to) = f (a ' )  + rb, we see by a repetition of  the re- 
mainder of  the argument in the proof  of  Lemma 4.4 that/ ' l  is a strong 
isomorphism property extendingf .  

We can continue this process of  extending f (by transfinite induction, 
taking unions at limit ordinals) until a direct summand A" of  A is ob- 
tained, The cardinality of  A"  must be ~ Card(A)S0, since every maxi- 
mal consistent system is equivalen~ by Lemma 4.5 to a countable sub- 

~'~0 system and the cofinality ofC'ard(A ~ i s>  ~0. 
We claim finally that the range o f  the map g which we have obtained 

is a direct summand B" o f  B. Otherwise ther~ would be a maximal con- 
sistent p,p. system over B"  of  B which would give rise by Leme,,a 4.3 
again t,~ a corresponding system over A",  contradicting the fact that A"  
is a direct summand of  an co I -saturated group. 

4,7, l~mma,  I r A  ! = B ! ~ C ! is an uncouna tb l e  saturated group  wi th  

Card(B l ) < Card(A I ), and i r a  I "~ '42 and  B 1 ~- B 2 wi th  A 2 = B 2 • C 2, 
then  C l ~- C , .  

Proof. We will show ti, at C l and C 2 are saturated and elementarily equiv- 
alent, Let d stand for the dimension o f  one o f  the vector spaces which 
we associate with abelian groups, Since these dimensions add over direct 
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sums, we have dnl + dcl  = dAl = dA? " = dt~ 2 + de2.  ~f da l  is finite, we 
can cancel and obtain d Q  = de2 < ~0" l f d ,  l ! is infinite, it mus t  be the 
cardinality o f A  l while dBl = d82 is < Card(A ! J, since A l is ~ t u r a t e d  
and Card(//1 ) < Card(A 1 )- N o w  we can conc lude  dcl  = dc~ " = Card(C 1 } 
= Card(C 2 ). 

Clearly C] and C 2 are saturated and elementari ly  equivalent ,  hence 
isomorphic.  

4.8. Theorem. I r A  & elementari ly  equivalent  to  B, a i . . . . .  a ,  ~ A,  f i s a  

s trong i somorphism f r o m  the stlbgrottp generated  by {a 1 . . . . .  an} iltto B, 

atta ~o(.x" l , :.., x n ) is an arbitrary for ' ,mla  hi the language t~f ahelian groups. 

then ~o(a 1 . . . . .  a n ) is true #1A i f a n d  on ly  i f  wSf(a I ) . . . . .  t'(an )) is truc in B, 

Proof. By first taking elementary extensions, we may assume that A and 
B are isomorphic saturated groups of  cardinality > 2 s° ,  By Lemma 4,6 

f c a n  be extended to an isomorphism between direc! summands of  A 
and B of  cardinality at most 2 s° .  By Lemma a. ? g can be further extend- 

ed to an isomorphism between A and B, The conclusion is immediate. 

We now introduce an expansion o f  the !anguage o f  group theory with 

apwopr ia te  new axioms. For  each core sentence o (see § 2L we introduce 
a propositional constant  Po together with the axiom p~ ~ u. For  each 
formula o f  the form pk Ix (with p a prime), we introduce a unary rela- 

tion symbol  Dp.k(x) tcgether  with the axiom vx (Dt , . k ( x )  ~ pk  Ixj. Let 

us call this the e x t e n d e d  tango.age o f  abe!iar, grolq~s. 

Since ever5, abelian group has a (unique) expansion to a m~le l  of  the 
extended theory, the ne:,v theory. T' is an inessential extension o f  1", in 
the sense that no new theorems in the language o f  T are derivable. We 

will call T' the e x t e n d e d  theory  o f  abelian groups. 

Let A be a group and let a ! . . . . .  a n ~ A, Let us call the set o f  all (open) 
formulas of  the extended language o f  abetian greups which ate tree o f  
(a ! . . . . .  a n ) in the ulfique expansion o f  A the e v t e n d e d  theory  (respec- 

tively, e x t e nde d  open  theory )  of  (A. a I , ..., a n ). 

4.9.  Theorem.  Given a group A a n d  elem ..... ts al , ..., a n o f : ! .  the  e x t e n d e d  

theor.v o f ( A ,  a I . . . . .  a n ) is equiralent  to the v,,~ion tff" :he e x t e n d e d  th'~,:~- 

ry o f  abelian groups and  the e x t e n d e d  open  theist: ~ f  (A,  a I . . . . .  a n ), 
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Proof. We need only  show that  i fA  ~t~d A'  are g'roups w i t h a  1 . . . . .  a n E A 
f 

and a l ,  . . .  a .  ~ A' such that  the exte; :ded open theory o f ( A ,  a 1 . . . . .  a n ) 

is the same as that  o f  (A'.  a] . . . . .  a,~ ~. then the (full'~ ex tended  theories 

are the same. But using open formulas we can say that  A - B and tha t  

the corresponding r~embers ~'i~= t ria ~ and ~2'~ ' o f  the subgroups gene- + ~"~t '= 1 riai 
~ t e d  by {a I . . . . .  a,+ } and {a] . . . . .  a~+ } have the same divisibility proper- 
ties. "rheorem 4.8 t+ten yields the desired conclusion.  

We can now sta~e and prove our  e l imina t ion-ofquant i f ie rs  theorem.  

4, I 0, Theorem.  Ereo '  .~,'ormula hz the e x t e n d e d  &nguage o f  abelian groups 

is equiraicnt  relative to the e x t e n d e d  theory  ,~f abelian g~'oups to an 

open  .formula. 

Proof.  Let ~p(x I . . . . .  x,~) be an arbitrary formula o f  the ex tended  language. 

Let q~ be the set o f  all open formulas  X(x I . . . . .  x .  ) such that  

T' ! v x 1 . . . . .  "% (×t ~1 . . . . .  x .  ) ~. ¢ ( x  1 . . . . . .  \-. )). If  ~ is no t  equivalent  
relative to 7 '  to one o f  the men,hers  o f  tl,. then since cI~ is closed under  

d i~unct ions .  ¢ (c ,  . . . . .  c . )  u {7  X(C I . . . . .  c,~) :×  ~ q,} u T' is consistent ,  

where the ci's are new individual constants .  Let (A, a I . . . . .  a n ) be a 
model for this theory.  By l 'heorem 4.9 if • is the set o f  all open state- 

ments  in the ex tended  la,,:guage o f  abelian groups which are true o f  

~a I . . . . .  a ,  ~ in A ,  then qt i ¢ ( c  I . . . . .  c , ) .  By the compactness  theorem,  

a finite co~iunct ion  ×(c I . . . . .  c ,  ) o f  members  o f  xp is such that  

it-' 1~ X ( C I  . . . . .  Cn ) "~ ¢ ( C 1  . . . . .  C n ~ and hence T' I- Vx I .... , x , ( × ( x  I ..... x,~ )-~ 

¢(."1 . . . . .  x , )~ .  Thus X ~ qb c~,ntradicfing the fact tha t  (A, a x , ..., a ,  ) is 
a model  of  {-7 ×(c |  . . . . .  c ,  ) : X ~ q~}. 

4. i !. Corollary (Szmielew [121, Theorem 4.22). E v e o , / b r m u l a  & the 

language o f  abelian groups is equirale~zt relative to the theory  o f  abelian 

groups to a ]~rmula  which is a dis junct ion o f  conf l tnct ions o f  core sen- 

tences and  formulas o / t h e  lbrm "pk  i ~'~= 1 r i x i "  and  ,,pk l ~;?:1 r i x / '  

where p is a pr ime  and  k is a posi t ive  btteger. 
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Proof. By Theorem 4.10 every, formula is equivalent relative to T' to a 
formula of the desired type. Since T' is an inessential expansion o f  T, 
the equivalence is a theorem o f  T. 
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In this section we d i scu~  how to generalize our results to modules  
over a Dedekind domain.  For  the reader who is only interested in such 
a generalization to principal ideal domains,  we remark that  the only new 
aspect of  file problem is expressed by Lemma 5.1 below; Theorem 5.2 is 
then a trivial generalization of  Theoren~ 1.11. 

We refer the reader to the stmldard sources [21 and [ 17] for the fun- 
damental  definit ions and properties o f  Dedekind domains.  In short,  a 
commuta t ive  integral domain A is a Dedekind domain if and only if one 
o f  the following equivalent condi t ions holds: 

(i) every ideal is a product  o f  prime ideals ( [17] ,  p. ":70), 
(~i) every ideal is invertible (I 171, p. 275), 
(iii) A is a Noetherian Prfifer ring ([21,  pp. 133-134) ,  
(iv) every divisible module  is injective ([21, p. 13e0, 
iv) A is Noetherian, every prime ideal is max ima l  amt A is integrally 

closed in its quot ien t  field ([ 171, p 275). 
Let A be a fixed Dedekind domain,  The language L in which we for- 

mulate the elementary theory of  modules over A has a binary funct ion 
symbol  + together  with a unary funct ion symbol fx corresponding to 
each X ~ A. The following axioms are adequate to define the theory T 
of  modules  over A: 

¥x ,  y,  ziIx + y)  + z = x + O' + z)) 

Vx, y(x +3" =Y +x) 

vx, y(L, ix +.v)=L,(x)+/'xO')), X ~ A 

vxi] ' l  ix}  = x} 

v x ,  y (Jo ix)  = fo(Y))  

vx(£1+~,,.(x) =]kl (x)+f~2(x)), X~, X 2 e A 

vx(fxlX2(X) =fx  I (fx2(X))), ;k I , ,'k 2 E A .  

We would now like to describe the complete  extensions of  T. Our  
method  is the same as before, viz., we look at saturated modules,  but  
now we consider ~:-~turated modules  for ~ > X = Card(A)+  ~0 '  I f M  is 
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~-saturated, then, o f  course, it is g-equationalty-compact,  and it can be 
shown that  the ?~*-equationally compact  modules are precisely the al- 
gebraically compact  or pure-injective modules  ( I51,  p. 178), It is known 
that  any pure-injective module  M over A is the direct sum of  a divisible 
(i.e., injective) module  M d and a p roduc t  M, = ll/,:il t, o f  mcxlules ~lte 
over the local rings Ap, where P ranges over the prime (i.e., maximal)  
ideals of  A and each M e is Hausdorff  and complete  in the P-adic topolo- 
gy ([ 15], Corollary 8). One may check that ,l~p = {x ~ M, : 3, dividesx 
for each ;k e A - P} and that M a = {x E M : ~, divides x for all ), e A ~o 

.(o}y 
Now A t, is a discrete valuation ring ([ 171, Vol. II, pp. 3 8 - 3 9 ) ,  and so 

the structure theorem o f  Kaplansky. for complete  modules  applies ([61,  
Theorem 22), i.e., Alp is the comple t ion  of  a direct sum 

kip =@n AP/tm Ae ('~n) • Ap (2P) 

of cyclic modules  over Ap. Also, M a. the maximal divi~ble submodulc  
of  M is a direct sum 

@p E(A/P) (~e) e F(6) 

where E(A/P) denotes  the injective envelope of  :LIP = Ap/PA e and :" 
the quot ient  field o f  A (181 ,2 ,5  and 3.1), As before we define 

dim(P"M[P]/Pn+IMIPI ) if finite ( 
U ( P , n ; M ) =  { 

,,~ otherwise 

ev. value dim(P"M/P "+IM) if finite t 
Tf(P; 11.1) = { 

otherwise 

D(?; ,.il) = 
ev. value dim(P'MlF] J if finite 

{ ~  otherwise 

where NIPI = {x ~ N: /5 :  = {0}} and "'dim" means dimension over A/P 



§ 5~ M:~ute~ o,,er a tk~dekind domain 163 

Note that kp  is a principal ideal domain and that i fp  ~ Ap is a generator 
o f  tl~e maximal ideal o f  Ap, then p a p  = PAp and dim(PnM[P]/P'r+lM[P] ) 
dim(tW~(l~, lp ]/pn ÷1 )~i~, [p] ) = dim(p" hip [p]/1:~"+1Mp [p ] ), since for any 
Q ¢ p, pn+~-lQ = t~O. Similarly for the other dimensions under conside- 
raticm. Moreover, one can check that Lemmas 1 .5 - I .  10 continue to 
hold~ with appropriate changes ha notation. For example (see the para- 
graph befere Lemma ! .6), to check that p k  I M/pk~ l T + PkM has the 
~ m e  dimension as P~'M/P ~ T + pk,~ M (where T is the torsion submod- 
ule o f  M), one should first note that each side is isomorphic to the cor- 
responding quotient with P replaced by p, M replaced by hip and T re- 
placed by T n Mp, and then use the natural map induced by multiplica- 
tion by p. 

However, this is not sufficient for the purposes of  characterizing ele- 
mentary eqt, ivalence of  modules over A. The additional complication 
is due to the t\~ct that if AlP = At,/PA P is infinite, then there is no ele- 
mentary formula ¢(x.  y)  which says that x and y are independent mod- 
ulo P. (We would need an infinite conjunction of the formulas 
~,lx + 3.2y ~ 0 where (~'i, ~'2) ranges over all pairs such that X l $ P or 
~,.~ ~ P). Thus the invariants U(P, n: hi), Tf(P: M), D(P; M) are not neces- 
sarily elementarily definable. However we can say elementarily that 

dim(P'M[P!/p,,+l MIP] ) ¢ O, 

dim(PnM/P "+1 M) :# O, 

dim(P'*M[P] ~ O. 

It turns out that for saturated modules this is enough to determine their 
structure up to isomorphism. Indeed, we have the following results. 

5.1. ILemma. Let A be a Dedekflad domain and P a prime Meal such that 
~VP is infinite. Let M be an o.~-saturated A-module. Then U(P, n; M), 
Tf(P: M) and D(P; M) are either 0 or ~.  

Proof. We prove that D(P;M) = 0 or ~ :  tile other proofs are similar. It 
suffices to prove for any k that dim(pkM[p1 ) ~ 0 implies 
3im(Pk,fflP] ) ~ ,n o. 

In the following, let us write 1 '7 for the n-th power of an ideal I and 
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I (n) for the set of  n-tuples from L Now let ~ . . . . .  ~r be a basis of  P k, It 
suffices to prove that for  any n the set o f  formulas 

r 

1--! 

u { ~ x i = O ' ? t G P ,  i= 1 .. . . .  n} 

n 

U{ ~ Xix i ~ O" (X l . . . . .  X, ,)~ A o't - P'")} 
i - - I  

in the free variables x i . . . .  x n is finitely satisfiable, hence satisfiable, in 
M. But given a finite number  of  n- tuNes (X t tl) . . . . .  ),, (t)) . . . . .  (kl(O ... . .  
Xn (t)) in Atn) - p(,:) it follows as in the p roof  of  Lemma 1.10 that there 

exist Ol, .--, 0,~ E A such that ~ in_-! ?rio Oi ~ P f o r j  = 1, ..., r Let a be a 

non-zero element of  pkM[P1 and let x i = oia. Then ~i '~ l  Xit~ xi = ' n  

(.~/--I kfl) oi)a ~ 0 f o r / =  1 . . . . .  t, so cY n is finitely satisfiable. 

l f P  is a prime ideal o f  A such that AlP is infinite, define 

t 0 if  U(P, n: M) = 0 
U*(P, M) 

~,, otherwise 

/ 0 i f  TffP; 31) = 0 
Tf*(P; M) ( 

~.  otherwise 

If AlP is finite, let U*(P, n; M) = U(P, n; M), Tf*(P: ,if) = Tf(P; M), 

D*(P: M) = D(P; M). We say M is o f  bounded order if there exists 
0 4: k ~ A such that XM = 0. 
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3.. . .  T h e o r e m ,  Let A be a Dcdekind domait~ and M a ~-salurated A-rood- 

tde, where ~ > C a r d ( A / +  S o.  Then 

M ~ Ilp,~'/,. + M d 

where .,it l, is the completion in the P-adic topology o f  

and 
3I t, =G n (ALP") (e't'n) + Ap C@~ 

M d =el,  E(A/P) (~P) + F (m 

where F = quotient field o f  A, and 

= U * ( P ,  n -..= 1 ",M), i f  f inite 
~t'm ~ ~, otherwise 

= T f * i P ; M ) ,  i f  f inite 
~3t" >-- ~c, othe,'wise 

amt 

~p 
= D * ( P ;  31), i f  f inite 

~, otherwise 

= 0, (f M is o f  bounded order 
5 >~ x, otherwise 

5.3.  C o r o l l a r y ,  Let A be a Dedekind domain, l f M  l and M 2 are A-mo- 
duh, s. then M 1 is dementar3y  equivalent to M 2 f f  and only i f  f or  every 
prime P and every n >- 0 

U*(P, ":;M l ) = U*(P,  n ; M  2) 

T f * f P ;  M l ) = T f * ( P ;  M 2 ) 

D*~P: M, ) = D*(P;  M 2 ) 

and M i and itl~ arc both o f  bounded order or both are not o f  bounded 
order.  
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(The corollary follows from the theorem given the existence o f  satu- 
rated elementary extensions of  M l and M 2. This assumption can be 
avoided in a number  o f  ways as has been indicated previously.) 

We can use Corollary 5.3 to prove decidability results as we did in 
§ 2. Of  course, we will need to assume that A is "'effectively given" in 
some sense. We define: A is computable if A is finite or there is a bi jeo 
tion between A and the natural numbers under which the operations on 
A correspond to recursive ftmctions o f  natural numbers (cf. 110] ). 

5.4. Theorem. Let A be a computable Dedekind domain stwh that: 
(i) there is a recursive enumeration o f  the +finite sets o f  generators o f  
prime ideals o f  A; and (ii) for eyeD, prime ideal P, we can decide wheth- 
er the residue class field AlP is ]Tnite or not, and ~f it is .lb~ite, we can 
effectively choose a set o f  representatives o f  A/P Then the theory o f  
A-modules is decidable. 

Proof. The proof  o f  Theorem 5.4 proceeds like the proof  o f  Theorem 
2.11. That  is to say, we first prove, using Corollary 5.3, that any consis- 
tent sentence of  the theory o f  A-modules is true in a module o f  the tbrm 

M =@e {®,, AP/PnAP ~e''D + Ap tap> + E(A/P)~P~} + Fi6) 

where only a finite number  of  the coefficients at. n , ~3 e,  3'p and 5 are non- 
zero and all are finite. Using h~,pothesis (i) above we can effectively enu- 
merate all such M, and for each ?.C because A is computable and satisfies 
(ii), we can effectively enumerate  all the sentences true in M (i.e. all the 
sentences which are consequences of  the complete axiomatization of  
Th(M) which Corollary 5.3 yields). 

Examples. Lel us look at some examples of  rings A such that the hypo- 
theses of  Theoren~ 5.4 are satisfied. 
(1)(1) If K is a finite field, then A = KIX] is a computable P.I.D. such that 
(i) the prime elements (= irreducible polynomials o f  A) are effectively 
enumerable (because there are only a finite number o f  polynomials o f  
each degree) and (ii) i f f ( X )  is irreducible of  degree m the polynomials 
of  degree < m represent all the non-zero elements o f  A/(.f(x)). 

(2) If K is a computable infinite field with a splitting algorithm (110],  
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Definition 9) .... for example, K = Q ([ 14], §25) or K = any countable 
algebraically dosed  field ([ 10], Theorem 7) - then A = K[X] is a com- 
putable P.I.D. such that (i) is satisfied: and (ii) the residue class fields 
are all infinite. 

(3) Let A be the ring of  integers in a quadratic number Field Q(x/-ffi) 
(m square-free). Thus (1131, Theorem 6-1-1) A = Z.I  + Z v r m ' i f  
m - I (mod 4); and A = Z, 1 +Z([  + [ ~/~i) if m = 2 or 3 (raod 4); clearly 

A is computable. Moreover, because o f ( [  16], Theorem ~-2-1), we can 
efl~ctively enumerate  the prime ideals P of  A in such a way that we can 
effectively determine P n Z = pZ. Then the residue class field 
A/P = (Z/pZ) IX] / (X 2 =~ m) (except possibly for p = 2. which case can 
be handled separately, see ([ 16], p. 235)) and clearly we can choose a 

~ t  of  representatives. 
(4) More generally, if K = Q(O) is an algebraic number field o f  degree 

m'Q such that the ring of  integers A of K is Z .1 + Z.O + ... + Z .0 "-I  

then a theorem of  Kummer  ([ 161, Theorem 4-9-1) enables us to effec- 
tively enumerate  the primes o f  A and to determine the residue class 
fields. 

Let L and T be as in the third paragraph of  this section. It is easy to 
see that the results (and proofs) of  section 4 generalize readily to Dede- 
kind domains. For  this purpose, let us define the core sentences of  L to 
be those which express the following assertions: 

dim(Pk- I m[P l /PkM[P]  ) -<- n, 

dim(pk-l  M/Pk M) < n. 

dim(P k ~IM[PI ) ~ n ,  

v.x" (Xx = O),  

for X ~ A, P a prime ideal, k a positive integer, and if AlP is infinite 
n = 0, otherwise n a non-negative integer. 

For each prime ideal P, let s0p.k(x) express the rel~tion x ~ pkM.  

Let L' be the language which has a propositional constant Po corres- 
ponding to each coco sentence o and a unary relation symbol Dpok(x) 
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corresponding to each formula ~oe. k . Let T'  be the extension o f  T in the 
language L' with the following additional axioms: 

vx(De, k(x) ~ ~ak(x)) 

5.5. Theorem. Let  L' and T'  be as above. Tlwn T' is wt inessential ex- 

tension o f  T such that every fornmla o f  L' is T'-equivah, n t  to an open 
~/brmula. 

Proof. As in section 4. 

Let N be an infinite A-module.  We consider the problem of  construct- 
ing a saturated model o f  Th(N) of  a given cardinali~.  Define 

Let 

c3 (N) = {g:x  > Card(A) and there exists a saturated 
mcmodel  o f  Th(N) of  cardinality g}. 

c~ i = { P : T f * ( P : N ) =  oo or :tn s.t, U*(P, n:.V) = ,,~}. 

~ 2  = {P:P6<)[I  , T f * ( P : N ) ¢  0 or 3n s.t. U * ( P , n : N ) . ~  0}. 

and let r~i = Card(~i) .  

5.6. Theorem. (i) f f  the reduc~.J t~art o f  N is o]" bounded order, then 
d (N) = {~: : h: > Card(A)} 

(ii) / f  tile reduced part o f  N is not  o f  bounded order attd i f  3P such 

that Tf*(P; N) = ,o or there exist infinitely mato'  P such that 3n such 
that U*(P, n; N) = oo, then 6(N)  = {~: :~: >- 2 n2 and ~: hI÷so = r.} 

(iii) t f N  does no t  sati~t), (i) or (ii), then ~(N)  = {g :~: ~ 2 n'*s0} . 

Proof. Since the idea o f  the proof  is the same as that for abelian ~ o u p s  
in §3 we will content  ourselves witil a sketch, indicating mainly the dif- 
ferences with the case o f  Z-modules. We consider 

SN ~ = Ht'SP ~ e  E(A)  P)(~*') ~ F¢~) 
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where 

where 

Sp =@n A/Pn~l"n) @ AP (:~P) 

ap., = min{U*(P, n -  1 ,N),  i¢} 

t~p = min{Tf*(P;N) ,  ~:} 

%0 = min{D*(P;N) ,  ~} 

= l0  if N has bounder  order 
otherwise. 

As in § 3 we have tha! Th(N) has a saturated model of  cardinality 

(i) If the reduced part of  N is o f  bounded order then there are only a 
finite number  of  P such that ~-? ~ 0, and for each such P, 

Sp = S p  = @ A l P  ~t(a'P'") • 

Clearly IS ¥ . I  ~ ~:, and, since N is infinite, ISN, ~ 1 = ~:. 
( i i)  Le t  9 =  {P:A/P is infinite}. Notice that  c~ n -'~, = 0, so that  if 

P c  ~ 2 ,  then Card Sr ~ 2~°" [To see this, note  that  if A/P i3 finite, the 
complet ion A/, o f  A t, has cardinality 2 s°  because every e lement  of  A? 
is uniquely represented in the form 

s i p i  

i ~ N  

where s i E S = a complete  set of  representatives of  A/P, and PA? = pA t, 
(116], Theorem 1-9-1, p. 35). Also note  that  the torsion part ofS  e is 
countable and of  finite length]. I f  Tf*(P; N) = o. then since the comple- 
t ion o f  A/,(~) has cardinality ~:s0 (cf. §3) ,  I,~t,I = ~:~0 By considering 
all the possibilities for Card{P E c~ i : Tf*(P; N) = ~o } and Card{P ~ ~ l  " 
Tf*(P; N ) ~  .o}, one can prove that  Card(neE ~l S--e) = xnl+s0 >_ 2 %. 
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Also it is not hard to see that if r/2 is infinite, Card(IIe~ .~2S'e)~ 2 '~2 
(because each St, f o r P ~ 2  satisfies 0 < Card ,~], <- 2So ). Therefore 

- -  ~/ +~ r /  r 

Card(IIeS e )= K l o + 2  2. 
(iii) We have already noted that Card(S- e) <- 2 s° for? '  in e~ 2 . Also, 

since we are assuming that l l e S  e is not  of  bou, tied order, either there 
exists P such that Tf*(P; N) 4 : 0  or there exist infinitely many P such 
that ~e 4: 0. Using these observations aad cons;dering all the possibilities 
for Card {P ~ 9Z 2 : Tf(P; N) #: 0} and Card {P ~:c~, : Tf(P; N) = 0} one 
can prove that Card(I]/,~ ~2S'/,) = 2 n2÷~O. Because we are in case (iii~ 
9t 1 is a finite set o f  P such that Tf*(P; N) = 9 and 3n such that 
U*(P, n; N) = ~,  Therefore Card(Hps ~1 ~/') = K. So Card(SA: ~ ) = 
t¢ + 2 n2+t~O. 

Added in proof. An earlier a t tempt  to give a new proof  of  some of  
Szmielew's results was made by Kargapolov [6al.  This work made use 
of Robinson's test for model-completeness, but it was later observed 
that the proof  contained an error (see the review by Mennicke 18a] ). 
A more recent paper by Kozlov and Kokorin f6b] makes use of  
Robinson's test to give a proof" of  a generalization of  Szmielew's crite- 
rion for elementary equivalence. We have not checked the details of  
the proof, but it appears to avoid Kargapolov'~ error. 
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